Multiple-Instance Discriminant Analysis for Weakly Supervised Segment Annotation

In this paper, we propose a multiple-instance discriminant analysis algorithm for weakly supervised segment annotation. We introduce a selection parameter for each image/video with weak labels and expect that it can sift out object regions from the background clutter to train a better transformation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing Jg. 28; H. 11; S. 5716 - 5728
Hauptverfasser: Wang, Liantao, Li, Qingwu, Zhou, Yan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1057-7149, 1941-0042, 1941-0042
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we propose a multiple-instance discriminant analysis algorithm for weakly supervised segment annotation. We introduce a selection parameter for each image/video with weak labels and expect that it can sift out object regions from the background clutter to train a better transformation vector. The selection parameter and the transformation parameter are incorporated into a single objective function and optimized in an alternate way. The optimization is an iteration between the eigenvalue decomposition and a set of quadratic programming. We also integrate a regularization term into the objective function to formulate the spatial constraint of segments, which is ignored in ordinary multiple-instance learning methods. The algorithm is able to overcome the limitations that arise when applying ordinary multiple-instance methods to the task. The experimental results validate the effectiveness of our method.
AbstractList In this paper, we propose a multiple-instance discriminant analysis algorithm for weakly supervised segment annotation. We introduce selection parameter for each image/video with weak labels, and expect it can sift out object regions from the background clutter to train a better transformation vector. The selection parameter and the transformation parameter are incorporated into a single objective function, and optimized in an alternate way. The optimization is an iteration between eigenvalue decomposition and a set of quadratic programming. We also integrate a regularization term into the objective function to formulate the spatial constraint of segments, which is ignored in ordinary multiple-instance learning methods. The algorithm is able to overcome the limitations that arise when applying ordinary multiple-instance methods to the task. Experimental results validate the effectiveness of our method.
In this paper, we propose a multiple-instance discriminant analysis algorithm for weakly supervised segment annotation. We introduce a selection parameter for each image/video with weak labels and expect that it can sift out object regions from the background clutter to train a better transformation vector. The selection parameter and the transformation parameter are incorporated into a single objective function and optimized in an alternate way. The optimization is an iteration between the eigenvalue decomposition and a set of quadratic programming. We also integrate a regularization term into the objective function to formulate the spatial constraint of segments, which is ignored in ordinary multiple-instance learning methods. The algorithm is able to overcome the limitations that arise when applying ordinary multiple-instance methods to the task. The experimental results validate the effectiveness of our method.
In this paper, we propose a multiple-instance discriminant analysis algorithm for weakly supervised segment annotation. We introduce a selection parameter for each image/video with weak labels and expect that it can sift out object regions from the background clutter to train a better transformation vector. The selection parameter and the transformation parameter are incorporated into a single objective function and optimized in an alternate way. The optimization is an iteration between the eigenvalue decomposition and a set of quadratic programming. We also integrate a regularization term into the objective function to formulate the spatial constraint of segments, which is ignored in ordinary multiple-instance learning methods. The algorithm is able to overcome the limitations that arise when applying ordinary multiple-instance methods to the task. The experimental results validate the effectiveness of our method.In this paper, we propose a multiple-instance discriminant analysis algorithm for weakly supervised segment annotation. We introduce a selection parameter for each image/video with weak labels and expect that it can sift out object regions from the background clutter to train a better transformation vector. The selection parameter and the transformation parameter are incorporated into a single objective function and optimized in an alternate way. The optimization is an iteration between the eigenvalue decomposition and a set of quadratic programming. We also integrate a regularization term into the objective function to formulate the spatial constraint of segments, which is ignored in ordinary multiple-instance learning methods. The algorithm is able to overcome the limitations that arise when applying ordinary multiple-instance methods to the task. The experimental results validate the effectiveness of our method.
Author Yan Zhou
Liantao Wang
Qingwu Li
Author_xml – sequence: 1
  givenname: Liantao
  orcidid: 0000-0003-1632-5179
  surname: Wang
  fullname: Wang, Liantao
– sequence: 2
  givenname: Qingwu
  surname: Li
  fullname: Li, Qingwu
– sequence: 3
  givenname: Yan
  surname: Zhou
  fullname: Zhou, Yan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31217109$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1rGzEQxUVJqPN1LxTKQi-5rKuRdlfSMaRpakhIIA45Clk7KkrXWlfaDfi_r1zbPfiQi0Ywv_ekmXdKjkIfkJBPQKcAVH2bzx6njIKaMsVACvmBnICqoKS0Ykf5TmtRCqjUhJym9EopVDU0H8mEAwORDU7I4_3YDX7VYTkLaTDBYvHdJxv90gcThuIqmG6dfCpcH4sXNL-7dfE0rjC--YRt8YS_lvgPC_1gBt-Hc3LsTJfwYlfPyPOPm_n1z_Lu4XZ2fXVXWl6JoXSLtmmoYvkUjimUZtHWDUMqubXKyda4tq6lVLnhbE2FrYRrgfK6WRjmJD8jl1vfVez_jJgGvcz_xq4zAfsxacaqCjhQqjL69QB97ceYB9tQknPIr9SZ-rKjxsUSW73KOzBxrfe7ykCzBWzsU4rotPXbmYdofKeB6k0oOoeiN6HoXShZSA-Ee-93JJ-3Eo-I_3EpeKMU438BJYaWsA
CODEN IIPRE4
CitedBy_id crossref_primary_10_1016_j_ecoinf_2021_101323
crossref_primary_10_1109_LSP_2024_3404348
crossref_primary_10_1016_j_rse_2020_112045
Cites_doi 10.1007/978-3-319-10599-4_28
10.1109/TPAMI.2010.161
10.1109/TNN.2011.2156808
10.1109/ICCV.2017.204
10.1109/CVPR.2013.321
10.1016/j.patcog.2014.02.002
10.1109/CVPR.2016.319
10.1109/CVPR.2016.326
10.1109/ICCV.2007.4408856
10.1007/s10994-009-5125-7
10.1109/CVPR.2011.5995545
10.1007/978-3-642-33709-3_1
10.1109/TPAMI.2016.2567393
10.1016/j.patcog.2016.01.015
10.1007/s10115-006-0013-y
10.1016/j.neucom.2015.10.066
10.1109/ICCV.2015.352
10.1109/TPAMI.2009.144
10.1109/TCYB.2017.2647965
10.1109/NNSP.1999.788121
10.1007/978-3-030-01240-3_23
10.1007/978-3-642-33783-3_45
10.5244/C.28.6
10.1109/CVPR.2018.00399
10.1007/978-3-540-88682-2_16
10.1109/CVPR.2008.4587586
10.1023/B:VISI.0000029664.99615.94
10.1109/TPAMI.2009.167
10.21236/ADA507101
10.1109/CVPR.2015.7298968
10.1109/TPAMI.2016.2535231
10.1109/CVPR.2014.309
10.1007/978-3-319-46493-0_42
10.1007/978-3-642-04174-7_2
10.1109/TIP.2016.2514503
10.1109/CVPR.2016.311
10.1109/CVPR.2015.7298711
10.1109/ICCV.2015.75
10.1023/A:1018677409366
10.1111/j.1469-1809.1936.tb02137.x
10.1109/ICCV.2013.271
10.1109/TIP.2017.2688133
10.1109/TCYB.2016.2631528
10.1109/CVPR.2015.7298642
10.1109/TPAMI.2015.2435740
10.1109/TNN.2009.2015760
10.1007/978-3-642-15561-1_33
10.5244/C.31.29
10.1109/CVPR.2006.91
10.1109/ICCV.2011.6126383
10.1109/ICPR.2014.29
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2019.2921878
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 5728
ExternalDocumentID 31217109
10_1109_TIP_2019_2921878
8736992
Genre orig-research
Journal Article
GrantInformation_xml – fundername: State Key Laboratory of Novel Software Technology
  grantid: KFKT2017B09
  funderid: 10.13039/501100011246
– fundername: National Natural Science Foundation of China
  grantid: 61703139
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
NPM
RIG
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c347t-fbd66092d667f29e8abd562e083cc9f8dafd558898abfc507c47fd10356ba2f83
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000484209100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Sun Sep 28 14:11:46 EDT 2025
Mon Jun 30 10:15:57 EDT 2025
Wed Feb 19 02:33:51 EST 2025
Sat Nov 29 03:21:10 EST 2025
Tue Nov 18 22:41:40 EST 2025
Wed Aug 27 08:34:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-fbd66092d667f29e8abd562e083cc9f8dafd558898abfc507c47fd10356ba2f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1632-5179
PMID 31217109
PQID 2283318985
PQPubID 85429
PageCount 13
ParticipantIDs pubmed_primary_31217109
proquest_journals_2283318985
crossref_citationtrail_10_1109_TIP_2019_2921878
ieee_primary_8736992
proquest_miscellaneous_2244131009
crossref_primary_10_1109_TIP_2019_2921878
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
yan (ref39) 2012; 13
ref52
ref55
ref10
ref17
ref19
ye (ref22) 2008; 9
ref51
ref50
fukunaga (ref53) 1990
bishop (ref54) 2006
ref46
ref45
ref48
ref47
ref42
ref44
ref43
zhang (ref6) 2016
chen (ref24) 2012
ref49
jia (ref41) 2009; 20
ref9
ref3
zhu (ref4) 2014
ref5
ref40
viola (ref8) 2005
ref35
liu (ref62) 2012
ref34
ref37
ref31
ref30
ref33
ref32
ref2
ref1
ref38
sugiyama (ref36) 2007; 8
simonyan (ref65) 2014; abs 1409 1556
doersch (ref7) 2013
ref67
ref26
ref25
ref64
ref20
ref63
ref66
ref21
andrews (ref16) 2002
ref28
ref27
ref29
ren (ref11) 2015
yakhnenko (ref18) 2011
ref60
zhou (ref23) 2012
ref61
References_xml – ident: ref64
  doi: 10.1007/978-3-319-10599-4_28
– ident: ref57
  doi: 10.1109/TPAMI.2010.161
– start-page: 1
  year: 2011
  ident: ref18
  article-title: Region-based image classification with a latent SVM model
– start-page: 91
  year: 2015
  ident: ref11
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref38
  doi: 10.1109/TNN.2011.2156808
– ident: ref15
  doi: 10.1109/ICCV.2017.204
– ident: ref3
  doi: 10.1109/CVPR.2013.321
– ident: ref42
  doi: 10.1016/j.patcog.2014.02.002
– ident: ref13
  doi: 10.1109/CVPR.2016.319
– ident: ref14
  doi: 10.1109/CVPR.2016.326
– ident: ref21
  doi: 10.1109/ICCV.2007.4408856
– ident: ref37
  doi: 10.1007/s10994-009-5125-7
– ident: ref2
  doi: 10.1109/CVPR.2011.5995545
– ident: ref60
  doi: 10.1007/978-3-642-33709-3_1
– ident: ref47
  doi: 10.1109/TPAMI.2016.2567393
– ident: ref50
  doi: 10.1016/j.patcog.2016.01.015
– ident: ref20
  doi: 10.1007/s10115-006-0013-y
– ident: ref56
  doi: 10.1016/j.neucom.2015.10.066
– ident: ref46
  doi: 10.1109/ICCV.2015.352
– ident: ref67
  doi: 10.1109/TPAMI.2009.144
– ident: ref25
  doi: 10.1109/TCYB.2017.2647965
– start-page: 71
  year: 2012
  ident: ref23
  article-title: Arbitrary-shape object localization using adaptive image grids
  publication-title: Proc Asian Conf Comput Vis (ACCV)
– ident: ref35
  doi: 10.1109/NNSP.1999.788121
– ident: ref52
  doi: 10.1007/978-3-030-01240-3_23
– ident: ref61
  doi: 10.1007/978-3-642-33783-3_45
– ident: ref44
  doi: 10.5244/C.28.6
– ident: ref51
  doi: 10.1109/CVPR.2018.00399
– volume: 8
  start-page: 985
  year: 2007
  ident: ref36
  article-title: Covariate shift adaptation by importance weighted cross validation
  publication-title: J Mach Learn Res
– ident: ref30
  doi: 10.1007/978-3-540-88682-2_16
– ident: ref66
  doi: 10.1109/CVPR.2008.4587586
– ident: ref43
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 13
  start-page: 607
  year: 2012
  ident: ref39
  article-title: Non-sparse multiple kernel Fisher discriminant analysis
  publication-title: J Mach Learn Res
– start-page: 577
  year: 2002
  ident: ref16
  article-title: Support vector machines for multiple-instance learning
  publication-title: Proc 15th Int Conf Neural Inf Proc
– ident: ref17
  doi: 10.1109/TPAMI.2009.167
– ident: ref9
  doi: 10.21236/ADA507101
– start-page: 1125
  year: 2014
  ident: ref4
  article-title: Learning from weakly supervised data by the expectation loss SVM (e-SVM) algorithm
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref31
  doi: 10.1109/CVPR.2015.7298968
– ident: ref10
  doi: 10.1109/TPAMI.2016.2535231
– ident: ref29
  doi: 10.1109/CVPR.2014.309
– ident: ref49
  doi: 10.1007/978-3-319-46493-0_42
– start-page: 253
  year: 2012
  ident: ref62
  article-title: Key instance detection in multi-instance learning
  publication-title: Proc Asian Conf Mach Learn
– ident: ref1
  doi: 10.1007/978-3-642-04174-7_2
– year: 1990
  ident: ref53
  publication-title: Introduction to statistical pattern recognition
– ident: ref5
  doi: 10.1109/TIP.2016.2514503
– ident: ref12
  doi: 10.1109/CVPR.2016.311
– start-page: 1
  year: 2005
  ident: ref8
  article-title: Multiple instance boosting for object detection
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 1274
  year: 2012
  ident: ref24
  article-title: Efficient activity detection with max-subgraph search
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref63
  doi: 10.1109/CVPR.2015.7298711
– volume: 9
  start-page: 719
  year: 2008
  ident: ref22
  article-title: Multi-class discriminant kernel learning via convex programming
  publication-title: J Mach Learn Res
– ident: ref32
  doi: 10.1109/ICCV.2015.75
– ident: ref19
  doi: 10.1023/A:1018677409366
– start-page: 494
  year: 2013
  ident: ref7
  article-title: Mid-level visual element discovery as discriminative mode seeking
  publication-title: Proc 27th Annu Conf Adv Neural Inf Process Syst
– ident: ref34
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– ident: ref27
  doi: 10.1109/ICCV.2013.271
– ident: ref48
  doi: 10.1109/TIP.2017.2688133
– ident: ref28
  doi: 10.1109/TCYB.2016.2631528
– ident: ref45
  doi: 10.1109/CVPR.2015.7298642
– ident: ref40
  doi: 10.1109/TPAMI.2015.2435740
– volume: 20
  start-page: 729
  year: 2009
  ident: ref41
  article-title: Trace ratio problem revisited
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2009.2015760
– ident: ref58
  doi: 10.1007/978-3-642-15561-1_33
– year: 2006
  ident: ref54
  publication-title: Pattern Recognition and Machine Learning
– volume: abs 1409 1556
  year: 2014
  ident: ref65
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: CoRR
– start-page: 3538
  year: 2016
  ident: ref6
  article-title: Bridging saliency detection to weakly supervised object detection based on self-paced curriculum learning
  publication-title: Proc Intern Joint Conf Artificial Intel (IJCAI)
– ident: ref33
  doi: 10.5244/C.31.29
– ident: ref26
  doi: 10.1109/CVPR.2006.91
– ident: ref59
  doi: 10.1109/ICCV.2011.6126383
– ident: ref55
  doi: 10.1109/ICPR.2014.29
SSID ssj0014516
Score 2.3307257
Snippet In this paper, we propose a multiple-instance discriminant analysis algorithm for weakly supervised segment annotation. We introduce a selection parameter for...
In this paper, we propose a multiple-instance discriminant analysis algorithm for weakly supervised segment annotation. We introduce selection parameter for...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5716
SubjectTerms Algorithms
Annotations
Clutter
Discriminant analysis
Eigenvalues
Image segmentation
linear discriminant analysis
Linear programming
Machine learning
Multiple-instance learning
Optimization
Parameters
Proposals
Quadratic programming
region selection
Regularization
Semantics
Support vector machines
Training
Transformations
Visualization
weakly supervised segment annotation
Title Multiple-Instance Discriminant Analysis for Weakly Supervised Segment Annotation
URI https://ieeexplore.ieee.org/document/8736992
https://www.ncbi.nlm.nih.gov/pubmed/31217109
https://www.proquest.com/docview/2283318985
https://www.proquest.com/docview/2244131009
Volume 28
WOSCitedRecordID wos000484209100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB3S0EN7SNp8tG7T4EIvhSi7a1uW5ljahubQsNCE7M3I8riEBm_I7gby7zMja00OaaEXY9BYHjya0ZOfNAPwyZnMaWwnKteEqvBYqJodSzEYINRCfWkfik2YszM7m-F0A46GszBEFDaf0bHcBi6_mfuV_CobWZOXiBxwnxlT9me1BsZACs4GZlMbZRj2rynJMY7OT6eyhwuPM-QJTQqqPZqCQk2Vv8PLMM2cbP-fgq9gK8LJ9Etv_9ewQd0ObEdomUbHXezAy0d5B3dh-jNuI1SnAR16Sr9dSfzo98Wk60wlKSPa9JLcn-v79NfqRsLKQrql36IHi3Xznsnfg4uT7-dff6hYWkH5vDBL1dZNWY4x46tpMyTr6oaREDEg8x5b27i20dpa5IbWM2b0hWmbCVuurF3W2nwfNrt5R28h1VljqTAOsXaFrXPncyNsKlFdZ9gUCYzWX7vyMe-4lL-4rsL6Y4wV26cS-1TRPgl8Hp646XNu_EN2V8wwyEULJHCwNmgVnXJRSaYfDmFodQIfh2Z2J-FIXEfzlcgwPhTSAxN40w-Eoe98wus3VuLd0-98Dy9Es_6g4gFsLm9X9AGe-7vl1eL2kMfszB6GMfsAWFHnog
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEB5KFdQHq60_UqtG8EVwe3dJ9nbnUaqlh-1x4Il9C5vNRIolV3p3gv99ZzZ7oQ9W8CUEdrIZMjuz3-bbnQF470zmNDYjlWtCVXgsVMWOpRgMEGqhvrQPxSbMdGrPz3G2BR_7szBEFDaf0aHcBi6_Xvi1_CobWJOPETng3tNFkQ2701o9ZyAlZwO3qY0yDPw3pOQQB_PJTHZx4WGGPKVJSbVbk1CoqnI3wAwTzfHO_6n4BB5HQJl-6kbAU9iidhd2IrhMo-sud-HRrcyDezA7ixsJ1STgQ0_p5wuJIN3OmHSTqyRlTJv-IPfr8k_6bX0lgWUp3dJP0YPF2kXH5T-D78df5kcnKhZXUD4vzEo1VT0eDzHjq2kyJOuqmrEQMSTzHhtbu6bW2lrkhsYzavSFaeoR225cuayx-XPYbhctvYRUZ7WlwjjEyhW2yp3PjfCpRFWVYV0kMNh87dLHzONSAOOyDCuQIZZsn1LsU0b7JPChf-Kqy7rxD9k9MUMvFy2QwMHGoGV0y2UpuX44iKHVCbzrm9mhhCVxLS3WIsMIUWgPTOBFNxD6vvMRr-BYif2_v_MtPDiZn52Wp5Pp11fwULTsji0ewPbqek2v4b7_vbpYXr8JI_cGEVPqAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple-Instance+Discriminant+Analysis+for+Weakly+Supervised+Segment+Annotation&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Wang%2C+Liantao&rft.au=Li%2C+Qingwu&rft.au=Zhou%2C+Yan&rft.date=2019-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=28&rft.issue=11&rft.spage=5716&rft_id=info:doi/10.1109%2FTIP.2019.2921878&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon