Hippocampus Segmentation Based on Iterative Local Linear Mapping With Representative and Local Structure-Preserved Feature Embedding

Hippocampus segmentation plays a significant role in mental disease diagnoses, such as Alzheimer's disease, epilepsy, and so on. Patch-based multi-atlas segmentation (PBMAS) approach is a popular method for hippocampus segmentation and has achieved a promising result. However, the PBMAS approac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging Jg. 38; H. 10; S. 2271 - 2280
Hauptverfasser: Pang, Shumao, Feng, Qianjin, Lu, Zhentai, Jiang, Jun, Zhao, Lei, Lin, Liyan, Li, Xueli, Lian, Tao, Huang, Meiyan, Yang, Wei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0278-0062, 1558-254X, 1558-254X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Hippocampus segmentation plays a significant role in mental disease diagnoses, such as Alzheimer's disease, epilepsy, and so on. Patch-based multi-atlas segmentation (PBMAS) approach is a popular method for hippocampus segmentation and has achieved a promising result. However, the PBMAS approach needs high computation cost due to registration and the segmentation accuracy is subject to the registration accuracy. In this paper, we propose a novel method based on iterative local linear mapping (ILLM) with the representative and local structure-preserved feature embedding to achieve accurate and robust hippocampus segmentation with no need for registration. In the proposed approach, semi-supervised deep autoencoder (SSDA) exploits unsupervised deep autoencoder and local structure-preserved manifold regularization to nonlinearly transform the extracted magnetic resonance (MR) patch to embedded feature manifold, whose adjacent relationship is similar to the signed distance map (SDM) patch manifold. Local linear mapping is used to preliminarily predict SDM patch corresponding to the MR patch. Subsequently, threshold segmentation generates a preliminary segmentation. The ILLM refines the segmentation result iteratively by ensuring the local constraints of embedded feature manifold and SDM patch manifold using a space-constrained dictionary update. Thus, a refined segmentation is obtained with no need for registration. The experiments on 135 subjects from ADNI dataset show that the proposed approach is superior to the state-of-the-art PBMAS and classification-based approaches with mean Dice similarity coefficients of 0.8852 ± 0.0203 and 0.8783 ± 0.0251 for bilateral hippocampus segmentation of 1.5T and 3.0T datasets, respectively.
AbstractList Hippocampus segmentation plays a significant role in mental disease diagnoses, such as Alzheimer's disease, epilepsy, and so on. Patch-based multi-atlas segmentation (PBMAS) approach is a popular method for hippocampus segmentation and has achieved a promising result. However, the PBMAS approach needs high computation cost due to registration and the segmentation accuracy is subject to the registration accuracy. In this paper, we propose a novel method based on iterative local linear mapping (ILLM) with the representative and local structure-preserved feature embedding to achieve accurate and robust hippocampus segmentation with no need for registration. In the proposed approach, semi-supervised deep autoencoder (SSDA) exploits unsupervised deep autoencoder and local structure-preserved manifold regularization to nonlinearly transform the extracted magnetic resonance (MR) patch to embedded feature manifold, whose adjacent relationship is similar to the signed distance map (SDM) patch manifold. Local linear mapping is used to preliminarily predict SDM patch corresponding to the MR patch. Subsequently, threshold segmentation generates a preliminary segmentation. The ILLM refines the segmentation result iteratively by ensuring the local constraints of embedded feature manifold and SDM patch manifold using a space-constrained dictionary update. Thus, a refined segmentation is obtained with no need for registration. The experiments on 135 subjects from ADNI dataset show that the proposed approach is superior to the state-of-the-art PBMAS and classification-based approaches with mean Dice similarity coefficients of 0.8852±0.0203 and 0.8783 ± 0.0251 for bilateral hippocampus segmentation of 1.5T and 3.0T datasets, respectively.Hippocampus segmentation plays a significant role in mental disease diagnoses, such as Alzheimer's disease, epilepsy, and so on. Patch-based multi-atlas segmentation (PBMAS) approach is a popular method for hippocampus segmentation and has achieved a promising result. However, the PBMAS approach needs high computation cost due to registration and the segmentation accuracy is subject to the registration accuracy. In this paper, we propose a novel method based on iterative local linear mapping (ILLM) with the representative and local structure-preserved feature embedding to achieve accurate and robust hippocampus segmentation with no need for registration. In the proposed approach, semi-supervised deep autoencoder (SSDA) exploits unsupervised deep autoencoder and local structure-preserved manifold regularization to nonlinearly transform the extracted magnetic resonance (MR) patch to embedded feature manifold, whose adjacent relationship is similar to the signed distance map (SDM) patch manifold. Local linear mapping is used to preliminarily predict SDM patch corresponding to the MR patch. Subsequently, threshold segmentation generates a preliminary segmentation. The ILLM refines the segmentation result iteratively by ensuring the local constraints of embedded feature manifold and SDM patch manifold using a space-constrained dictionary update. Thus, a refined segmentation is obtained with no need for registration. The experiments on 135 subjects from ADNI dataset show that the proposed approach is superior to the state-of-the-art PBMAS and classification-based approaches with mean Dice similarity coefficients of 0.8852±0.0203 and 0.8783 ± 0.0251 for bilateral hippocampus segmentation of 1.5T and 3.0T datasets, respectively.
Hippocampus segmentation plays a significant role in mental disease diagnoses, such as Alzheimer's disease, epilepsy, and so on. Patch-based multi-atlas segmentation (PBMAS) approach is a popular method for hippocampus segmentation and has achieved a promising result. However, the PBMAS approach needs high computation cost due to registration and the segmentation accuracy is subject to the registration accuracy. In this paper, we propose a novel method based on iterative local linear mapping (ILLM) with the representative and local structure-preserved feature embedding to achieve accurate and robust hippocampus segmentation with no need for registration. In the proposed approach, semi-supervised deep autoencoder (SSDA) exploits unsupervised deep autoencoder and local structure-preserved manifold regularization to nonlinearly transform the extracted magnetic resonance (MR) patch to embedded feature manifold, whose adjacent relationship is similar to the signed distance map (SDM) patch manifold. Local linear mapping is used to preliminarily predict SDM patch corresponding to the MR patch. Subsequently, threshold segmentation generates a preliminary segmentation. The ILLM refines the segmentation result iteratively by ensuring the local constraints of embedded feature manifold and SDM patch manifold using a space-constrained dictionary update. Thus, a refined segmentation is obtained with no need for registration. The experiments on 135 subjects from ADNI dataset show that the proposed approach is superior to the state-of-the-art PBMAS and classification-based approaches with mean Dice similarity coefficients of 0.8852 ± 0.0203 and 0.8783 ± 0.0251 for bilateral hippocampus segmentation of 1.5T and 3.0T datasets, respectively.
Hippocampus segmentation plays a significant role in mental disease diagnoses, such as Alzheimer's disease, epilepsy, and so on. Patch-based multi-atlas segmentation (PBMAS) approach is a popular method for hippocampus segmentation and has achieved a promising result. However, the PBMAS approach needs high computation cost due to registration and the segmentation accuracy is subject to the registration accuracy. In this paper, we propose a novel method based on iterative local linear mapping (ILLM) with the representative and local structure-preserved feature embedding to achieve accurate and robust hippocampus segmentation with no need for registration. In the proposed approach, semi-supervised deep autoencoder (SSDA) exploits unsupervised deep autoencoder and local structure-preserved manifold regularization to nonlinearly transform the extracted magnetic resonance (MR) patch to embedded feature manifold, whose adjacent relationship is similar to the signed distance map (SDM) patch manifold. Local linear mapping is used to preliminarily predict SDM patch corresponding to the MR patch. Subsequently, threshold segmentation generates a preliminary segmentation. The ILLM refines the segmentation result iteratively by ensuring the local constraints of embedded feature manifold and SDM patch manifold using a space-constrained dictionary update. Thus, a refined segmentation is obtained with no need for registration. The experiments on 135 subjects from ADNI dataset show that the proposed approach is superior to the state-of-the-art PBMAS and classification-based approaches with mean Dice similarity coefficients of 0.8852±0.0203 and 0.8783 ± 0.0251 for bilateral hippocampus segmentation of 1.5T and 3.0T datasets, respectively.
Author Lu, Zhentai
Pang, Shumao
Feng, Qianjin
Lin, Liyan
Zhao, Lei
Li, Xueli
Huang, Meiyan
Lian, Tao
Jiang, Jun
Yang, Wei
Author_xml – sequence: 1
  givenname: Shumao
  orcidid: 0000-0003-0409-8562
  surname: Pang
  fullname: Pang, Shumao
  email: pangshumao@126.com
  organization: Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
– sequence: 2
  givenname: Qianjin
  orcidid: 0000-0001-8647-0596
  surname: Feng
  fullname: Feng, Qianjin
  email: fengqj99@fimmu.com
  organization: Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
– sequence: 3
  givenname: Zhentai
  surname: Lu
  fullname: Lu, Zhentai
  email: luzhentai@163.com
  organization: Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
– sequence: 4
  givenname: Jun
  surname: Jiang
  fullname: Jiang, Jun
  email: smujiang@gmail.com
  organization: Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
– sequence: 5
  givenname: Lei
  surname: Zhao
  fullname: Zhao, Lei
  email: lei6730@smu.edu.cn
  organization: Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
– sequence: 6
  givenname: Liyan
  orcidid: 0000-0003-0394-339X
  surname: Lin
  fullname: Lin, Liyan
  email: liyanlinn@gmail.com
  organization: Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
– sequence: 7
  givenname: Xueli
  surname: Li
  fullname: Li, Xueli
  email: shelleywo@163.com
  organization: Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
– sequence: 8
  givenname: Tao
  orcidid: 0000-0001-7893-0978
  surname: Lian
  fullname: Lian, Tao
  email: taolian92@gmail.com
  organization: Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
– sequence: 9
  givenname: Meiyan
  surname: Huang
  fullname: Huang, Meiyan
  email: huangmeiyan11@gmail.com
  organization: Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
– sequence: 10
  givenname: Wei
  orcidid: 0000-0002-2161-3231
  surname: Yang
  fullname: Yang, Wei
  email: weiyanggm@gmail.com
  organization: Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30908202$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFv1DAQRi1URLeFOxISisSFS5axE9vxEaqWrrQViBbBLXLiSXGVOKntVOLOD8dRlh564GRr_N6MNd8JOXKjQ0JeU9hSCurDzdVuy4CqLVMgJJPPyIZyXuWMlz-PyAaYrHIAwY7JSQh3ALTkoF6Q4wIUVAzYhvy5tNM0tnqY5pBd4-2ALupoR5d90gFNli67iD6VHjDbJ7DP9tah9tmVnibrbrMfNv7KvuHkMaxuArUzB_g6-rmNs8f86wL4h9TzAvVSyc6HBo1JPV6S553uA746nKfk-8X5zdllvv_yeXf2cZ-3RSlj3kHHwSjdGVVpllRRNoZSw0TTgOywZRwaQQEKLru0FuSCSyZK1AqZKkxxSt6vfSc_3s8YYj3Y0GLfa4fjHGpGlVQArCoT-u4JejfO3qXf1axIEwpKxUK9PVBzM6CpJ28H7X_X__abAFiB1o8heOweEQr1EmGdIqyXCOtDhEkRT5TWrpFEr23_P_HNKlpEfJxTpTdeyeIvNDSpEw
CODEN ITMID4
CitedBy_id crossref_primary_10_1109_ACCESS_2020_2993504
crossref_primary_10_3233_JAD_221261
crossref_primary_10_1109_TMI_2020_3025087
crossref_primary_10_1371_journal_pone_0282082
crossref_primary_10_3390_biology12020196
crossref_primary_10_1109_ACCESS_2025_3577266
crossref_primary_10_1007_s11517_022_02673_2
crossref_primary_10_1111_os_13431
crossref_primary_10_3390_biology13010018
crossref_primary_10_1016_j_neucom_2024_127325
crossref_primary_10_1016_j_compbiomed_2023_106752
crossref_primary_10_3390_math10122099
crossref_primary_10_3389_fnins_2023_1162096
crossref_primary_10_3390_make5020035
crossref_primary_10_1016_j_acra_2025_04_038
crossref_primary_10_1007_s11517_024_03097_w
crossref_primary_10_1515_bmt_2023_0266
crossref_primary_10_1016_j_media_2021_102261
crossref_primary_10_1038_s41598_019_53387_9
crossref_primary_10_3390_math10101665
crossref_primary_10_1109_TETC_2022_3210568
Cites_doi 10.1016/j.neuroimage.2015.07.076
10.1016/j.neuroimage.2010.09.018
10.1006/nimg.2000.0730
10.1088/0031-9155/60/22/8851
10.1016/j.jalz.2005.06.003
10.1016/j.neuroimage.2013.06.006
10.1002/ima.22207
10.1007/978-3-319-28194-0_13
10.1109/TPAMI.2012.143
10.1038/srep45501
10.1016/j.neuroimage.2014.04.054
10.1002/hbm.22359
10.1109/TMI.2014.2308901
10.1016/j.neuroimage.2003.12.015
10.2967/jnumed.115.163121
10.1109/TMI.2009.2014372
10.1016/j.neuroimage.2006.05.061
10.1016/j.neuroimage.2014.01.059
10.1016/j.ejmp.2015.08.003
10.1109/CVPR.2010.5540018
10.1007/s12021-016-9312-y
10.1016/j.media.2017.11.013
10.1016/j.neuroimage.2003.11.010
10.1016/S1361-8415(01)00036-6
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2019.2906727
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 2280
ExternalDocumentID 30908202
10_1109_TMI_2019_2906727
8672587
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: China Scholarship Council
  grantid: 201708440350
  funderid: 10.13039/501100004543
– fundername: Science and Technology Project of Guangdong Province
  grantid: 2015B010131011; 2015B010106008
– fundername: National Natural Science Foundation of China
  grantid: U1501256; 81601562
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2016A030313574
  funderid: 10.13039/501100003453
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c347t-f0f50d9afd98a2edd64bd11d26bb07fec250b6100357f201e5657264ea9e293d3
IEDL.DBID RIE
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000489784000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0062
1558-254X
IngestDate Thu Oct 02 09:57:20 EDT 2025
Sun Nov 09 06:02:39 EST 2025
Thu Apr 03 07:02:17 EDT 2025
Sat Nov 29 05:14:06 EST 2025
Tue Nov 18 20:59:39 EST 2025
Wed Aug 27 02:44:46 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-f0f50d9afd98a2edd64bd11d26bb07fec250b6100357f201e5657264ea9e293d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0409-8562
0000-0001-8647-0596
0000-0002-2161-3231
0000-0003-0394-339X
0000-0001-7893-0978
PMID 30908202
PQID 2300331164
PQPubID 85460
PageCount 10
ParticipantIDs crossref_primary_10_1109_TMI_2019_2906727
pubmed_primary_30908202
proquest_journals_2300331164
proquest_miscellaneous_2197900284
ieee_primary_8672587
crossref_citationtrail_10_1109_TMI_2019_2906727
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
avants (ref24) 2009; 2
kingma (ref27) 2014
krizhevsky (ref26) 2012
meng (ref15) 2017; 27
ref23
ref25
ref20
ref22
ref21
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref14
  doi: 10.1016/j.neuroimage.2015.07.076
– ident: ref7
  doi: 10.1016/j.neuroimage.2010.09.018
– ident: ref2
  doi: 10.1006/nimg.2000.0730
– ident: ref20
  doi: 10.1088/0031-9155/60/22/8851
– volume: 2
  start-page: 1
  year: 2009
  ident: ref24
  article-title: Advanced normalization tools (ANTs)
  publication-title: Insight J
– ident: ref3
  doi: 10.1016/j.jalz.2005.06.003
– ident: ref9
  doi: 10.1016/j.neuroimage.2013.06.006
– volume: 27
  start-page: 23
  year: 2017
  ident: ref15
  article-title: An improved label fusion approach with sparse patch-based representation for MRI brain image segmentation
  publication-title: Int J Imag Syst Technol
  doi: 10.1002/ima.22207
– ident: ref17
  doi: 10.1007/978-3-319-28194-0_13
– ident: ref6
  doi: 10.1109/TPAMI.2012.143
– ident: ref18
  doi: 10.1038/srep45501
– ident: ref10
  doi: 10.1016/j.neuroimage.2014.04.054
– year: 2014
  ident: ref27
  publication-title: Adam A method for stochastic optimization
– ident: ref8
  doi: 10.1002/hbm.22359
– ident: ref21
  doi: 10.1109/TMI.2014.2308901
– ident: ref1
  doi: 10.1016/j.neuroimage.2003.12.015
– ident: ref22
  doi: 10.2967/jnumed.115.163121
– ident: ref13
  doi: 10.1109/TMI.2009.2014372
– ident: ref11
  doi: 10.1016/j.neuroimage.2006.05.061
– ident: ref16
  doi: 10.1016/j.neuroimage.2014.01.059
– ident: ref19
  doi: 10.1016/j.ejmp.2015.08.003
– ident: ref23
  doi: 10.1109/CVPR.2010.5540018
– ident: ref5
  doi: 10.1007/s12021-016-9312-y
– ident: ref4
  doi: 10.1016/j.media.2017.11.013
– start-page: 1097
  year: 2012
  ident: ref26
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref12
  doi: 10.1016/j.neuroimage.2003.11.010
– ident: ref25
  doi: 10.1016/S1361-8415(01)00036-6
SSID ssj0014509
Score 2.4524002
Snippet Hippocampus segmentation plays a significant role in mental disease diagnoses, such as Alzheimer's disease, epilepsy, and so on. Patch-based multi-atlas...
Hippocampus segmentation plays a significant role in mental disease diagnoses, such as Alzheimer’s disease, epilepsy, and so on. Patch-based multi-atlas...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2271
SubjectTerms Algorithms
Alzheimer Disease - diagnostic imaging
Constraints
Datasets
Deep Learning
Dictionaries
Diseases
Embedding
Epilepsy
Feature extraction
Hippocampus
Hippocampus - diagnostic imaging
Humans
Image Interpretation, Computer-Assisted - methods
Image processing
Image reconstruction
Image segmentation
iterative local linear mapping
Iterative methods
Magnetic resonance
Magnetic Resonance Imaging
manifold regularization
Manifolds
Mapping
Mental disorders
multi-atlas segmentation
Neuroimaging - methods
Registration
Regularization
Segmentation
Training
Title Hippocampus Segmentation Based on Iterative Local Linear Mapping With Representative and Local Structure-Preserved Feature Embedding
URI https://ieeexplore.ieee.org/document/8672587
https://www.ncbi.nlm.nih.gov/pubmed/30908202
https://www.proquest.com/docview/2300331164
https://www.proquest.com/docview/2197900284
Volume 38
WOSCitedRecordID wos000489784000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB21FarKgY-WwkKpjMQFiXSdOInjI6BWrdStEC2wt8iJJ2UlNrvq7vIL-OHMOE7EAZC4Wck4sTLjzBvP-BngdZygTVVVREVF8I08hIkqq1zUOGYnp-jN-nXIL5f66qqYTs3HLXg77IVBRF98hifc9Ll8t6g3vFQ2LnKdZIXehm2t826v1pAxSLOunCNhxliZJ31KUprxzeSCa7jMCVObk7_eg10l-ajvsJbSeyN_vMrfkab3OGcP_2-sj-BBQJbiXWcKj2EL2324_xvf4D7sTkIm_QB-ns-WS_Jj8-VmJa7xdh72ILXiPfk1J6hx4QmX6W8oLtnhCQpbaVqIiWVKh1vxdbb-Jj75QtquLwna1gXha89Lu7nDiIs8uKzSCYabdEWczit07DOfwOez05sP51E4kSGqVarXUSObTDpjG2cKm5BonlYujl2SV5XUDdYEqCoCZFJluqFPjpxUJciF1iDhCqcOYaddtPgMhEKZ2bimHqlODTINmjZNbgnhuEpbM4Jxr5myDnTlfGrG99KHLdKUpNaS1VoGtY7gzdBj2VF1_EP2gFU2yAVtjeCoV34Z5vKqpCBNKhVTXDmCV8NtmoWcWrEtLjYkExttOH4lmaed0QzP7m3t-Z_f-QL2eGRdgeAR7JB68CXcq3-sZ6u7YzL1aXHsTf0XhqD4rg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-Ngcb2wMfGRscAI_GCtKzOp-PHgTa1oq0QK7C3yI6dUYmm1dryF_CHc-c4EQ8DiTcrOSdW7pz7ne_8M8DbMLIqiXUe5BrhG3oIGWgVm6AyxE6O0Zty65BfR2Iyya-v5actOO32wlhrXfGZPaOmy-WbRbmhpbJ-nokozcU9uJ8mScSb3VpdziBJm4KOiDhjeRa1SUku-9PxkKq45BmRm6PH3oWdmNNh3341pfVH7oCVv2NN53MuH__faJ_AI48t2XljDE9hy9b7sPcH4-A-7Ix9Lv0Afg1myyV6svlys2JX9mbudyHV7D16NsOwMXSUy_g_ZCNyeQwDV5wYbKyI1OGGfZutv7PPrpS26YuCqjZe-Mox025ubUBlHlRYaRgBTrzCLubaGvKaz-DL5cX0wyDwZzIEZZyIdVDxKuVGqsrIXEUomiXahKGJMq25qGyJkEojJONxKir85JbSqgi6rJIWkYWJD2G7XtT2ObDY8lSFJfZIRCItEaEJWWUKMY7RQske9FvNFKUnLKdzM34ULnDhskC1FqTWwqu1B--6HsuGrOMfsgeksk7Oa6sHJ63yCz-bVwWGaTyOQ4wse_Cmu43zkJIrqraLDcqEUkiKYFHmqDGa7tmtrR3f_c7X8HAwHY-K0XDy8QXs0iibcsET2EZV2ZfwoPy5nq1uXzmD_w27Y_sN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hippocampus+Segmentation+Based+on+Iterative+Local+Linear+Mapping+With+Representative+and+Local+Structure-Preserved+Feature+Embedding&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Pang%2C+Shumao&rft.au=Feng%2C+Qianjin&rft.au=Lu%2C+Zhentai&rft.au=Jiang%2C+Jun&rft.date=2019-10-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=38&rft.issue=10&rft.spage=2271&rft.epage=2280&rft_id=info:doi/10.1109%2FTMI.2019.2906727&rft_id=info%3Apmid%2F30908202&rft.externalDocID=8672587
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon