Scale-Free Single Image Deraining Via Visibility-Enhanced Recurrent Wavelet Learning

In this paper, we address a rain removal problem from a single image, even in the presence of large rain streaks and rain streak accumulation (where individual streaks cannot be seen and thus are visually similar to mist or fog). For rain streak removal, the mismatch problem between different streak...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on image processing Ročník 28; číslo 6; s. 2948 - 2961
Hlavní autoři: Yang, Wenhan, Liu, Jiaying, Yang, Shuai, Guo, Zongming
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1057-7149, 1941-0042, 1941-0042
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we address a rain removal problem from a single image, even in the presence of large rain streaks and rain streak accumulation (where individual streaks cannot be seen and thus are visually similar to mist or fog). For rain streak removal, the mismatch problem between different streak sizes in training and testing phases leads to poor performance, especially when there are large streaks. To mitigate this problem, we embed a hierarchical representation of wavelet transform into a recurrent rain removal process: 1) rain removal on the low-frequency component and 2) recurrent detail recovery on high-frequency components under the guidance of the recovered low-frequency component. Benefiting from the recurrent multi-scale modeling of wavelet transform-like design, the proposed network trained on streaks with one size can adapt to those with larger sizes, which significantly favors real rain streak removal. The dilated residual dense network is used as the basic model of the recurrent recovery process. The network includes multiple paths with different receptive fields, thus it can make full use of multi-scale redundancy and utilize context information in large regions. Furthermore, to handle heavy rain cases where rain streak accumulation is presented, we construct a detail appearing rain accumulation removal to not only improve the visibility but also enhance the details in dark regions. The evaluation of both synthetic and real images, particularly on those containing large rain streaks and heavy accumulation, shows the effectiveness of our novel models, which significantly outperforms the state-of-the-art methods.
AbstractList In this paper, we address a rain removal problem from a single image, even in the presence of large rain streaks and rain streak accumulation (where individual streaks cannot be seen and thus are visually similar to mist or fog). For rain streak removal, the mismatch problem between different streak sizes in training and testing phases leads to poor performance, especially when there are large streaks. To mitigate this problem, we embed a hierarchical representation of wavelet transform into a recurrent rain removal process: 1) rain removal on the low-frequency component and 2) recurrent detail recovery on high-frequency components under the guidance of the recovered low-frequency component. Benefiting from the recurrent multi-scale modeling of wavelet transform-like design, the proposed network trained on streaks with one size can adapt to those with larger sizes, which significantly favors real rain streak removal. The dilated residual dense network is used as the basic model of the recurrent recovery process. The network includes multiple paths with different receptive fields, thus it can make full use of multi-scale redundancy and utilize context information in large regions. Furthermore, to handle heavy rain cases where rain streak accumulation is presented, we construct a detail appearing rain accumulation removal to not only improve the visibility but also enhance the details in dark regions. The evaluation of both synthetic and real images, particularly on those containing large rain streaks and heavy accumulation, shows the effectiveness of our novel models, which significantly outperforms the state-of-the-art methods.
In this paper, we address a rain removal problem from a single image, even in the presence of large rain streaks and rain streak accumulation (where individual streaks cannot be seen, and thus visually similar to mist or fog). For rain streak removal, the mismatch problem between different streak sizes in training and testing phases leads to a poor performance, especially when there are large streaks. To mitigate this problem, we embed a hierarchical representation of wavelet transform into a recurrent rain removal process: 1) rain removal on the low-frequency component; 2) recurrent detail recovery on highfrequency components under the guidance of the recovered lowfrequency component. Benefiting from the recurrent multi-scale modeling of wavelet transform-like design, the proposed network trained on streaks with one size can adapt to those with larger sizes, which significantly favors real rain streak removal. The dilated residual dense network is used as the basic model of the recurrent recovery process. The network includes multiple paths with different receptive fields, thus can make full use of multi-scale redundancy and utilize context information in large regions. Furthermore, to handle heavy rain cases where rain streak accumulation is presented, we construct a detail appearing rain accumulation removal to not only improve the visibility but also enhance the details in dark regions. The evaluation on both synthetic and real images, particularly on those containing large rain streaks and heavy accumulation, shows the effectiveness of our novel models, which significantly outperforms the state-ofthe- art methods.
In this paper, we address a rain removal problem from a single image, even in the presence of large rain streaks and rain streak accumulation (where individual streaks cannot be seen, and thus visually similar to mist or fog). For rain streak removal, the mismatch problem between different streak sizes in training and testing phases leads to a poor performance, especially when there are large streaks. To mitigate this problem, we embed a hierarchical representation of wavelet transform into a recurrent rain removal process: 1) rain removal on the low-frequency component; 2) recurrent detail recovery on highfrequency components under the guidance of the recovered lowfrequency component. Benefiting from the recurrent multi-scale modeling of wavelet transform-like design, the proposed network trained on streaks with one size can adapt to those with larger sizes, which significantly favors real rain streak removal. The dilated residual dense network is used as the basic model of the recurrent recovery process. The network includes multiple paths with different receptive fields, thus can make full use of multi-scale redundancy and utilize context information in large regions. Furthermore, to handle heavy rain cases where rain streak accumulation is presented, we construct a detail appearing rain accumulation removal to not only improve the visibility but also enhance the details in dark regions. The evaluation on both synthetic and real images, particularly on those containing large rain streaks and heavy accumulation, shows the effectiveness of our novel models, which significantly outperforms the state-ofthe- art methods.In this paper, we address a rain removal problem from a single image, even in the presence of large rain streaks and rain streak accumulation (where individual streaks cannot be seen, and thus visually similar to mist or fog). For rain streak removal, the mismatch problem between different streak sizes in training and testing phases leads to a poor performance, especially when there are large streaks. To mitigate this problem, we embed a hierarchical representation of wavelet transform into a recurrent rain removal process: 1) rain removal on the low-frequency component; 2) recurrent detail recovery on highfrequency components under the guidance of the recovered lowfrequency component. Benefiting from the recurrent multi-scale modeling of wavelet transform-like design, the proposed network trained on streaks with one size can adapt to those with larger sizes, which significantly favors real rain streak removal. The dilated residual dense network is used as the basic model of the recurrent recovery process. The network includes multiple paths with different receptive fields, thus can make full use of multi-scale redundancy and utilize context information in large regions. Furthermore, to handle heavy rain cases where rain streak accumulation is presented, we construct a detail appearing rain accumulation removal to not only improve the visibility but also enhance the details in dark regions. The evaluation on both synthetic and real images, particularly on those containing large rain streaks and heavy accumulation, shows the effectiveness of our novel models, which significantly outperforms the state-ofthe- art methods.
Author Shuai Yang
Jiaying Liu
Wenhan Yang
Zongming Guo
Author_xml – sequence: 1
  givenname: Wenhan
  orcidid: 0000-0002-1692-0069
  surname: Yang
  fullname: Yang, Wenhan
– sequence: 2
  givenname: Jiaying
  orcidid: 0000-0002-0468-9576
  surname: Liu
  fullname: Liu, Jiaying
– sequence: 3
  givenname: Shuai
  orcidid: 0000-0002-5576-8629
  surname: Yang
  fullname: Yang, Shuai
– sequence: 4
  givenname: Zongming
  orcidid: 0000-0002-4944-9621
  surname: Guo
  fullname: Guo, Zongming
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30640610$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LxDAQhoMofqzeBUEKXrx0naRpmxxFXV1YUHTVY0jTqUa6qSat4L83y64ePHgYMoTnna93j2y6ziEhhxTGlII8m0_vxgyoHDMhWSHyDbJLJacpAGebMYe8TEvK5Q7ZC-ENgPKcFttkJ4OCQ0Fhl8wfjG4xnXjE5MG6lxaT6UK_YHKJXlsXf5Inq2MEW9nW9l_plXvVzmCd3KMZvEfXJ8_6E1vskxlqv5Tsk61GtwEP1u-IPE6u5hc36ez2enpxPktNxss-xVyXLAeODa-NASZi1biIYCjQ0JpXjeaiBk15xnkmtGGmyptS6oqVWEqZjcjpqu677z4GDL1a2GCwbbXDbgiK0VJmRdxTRPTkD_rWDd7F6RRjFCCTBRSROl5TQ7XAWr17u9D-S_3cKwKwAozvQvDY_CIU1NISFS1RS0vU2pIoKf5IjO11bzvXxwu3_wmPVkKLiL99xHIMlmffpiiWvQ
CODEN IIPRE4
CitedBy_id crossref_primary_10_1007_s11432_020_3225_9
crossref_primary_10_1016_j_patcog_2023_109740
crossref_primary_10_1007_s00034_024_02762_7
crossref_primary_10_1017_S0373463321000783
crossref_primary_10_1109_TPAMI_2022_3186629
crossref_primary_10_1007_s11263_024_02281_7
crossref_primary_10_1016_j_knosys_2021_106832
crossref_primary_10_1109_TCSVT_2024_3411655
crossref_primary_10_1109_TIP_2020_2993406
crossref_primary_10_1109_ACCESS_2021_3073127
crossref_primary_10_1109_TCSVT_2021_3068985
crossref_primary_10_1109_TIM_2022_3204081
crossref_primary_10_1007_s11263_020_01428_6
crossref_primary_10_1109_TMM_2020_3013383
crossref_primary_10_1109_TCSVT_2021_3121012
crossref_primary_10_1007_s11263_020_01421_z
crossref_primary_10_1109_TMM_2020_3019680
crossref_primary_10_1016_j_jvcir_2021_103133
crossref_primary_10_1109_TIP_2020_3000612
crossref_primary_10_1109_TMM_2024_3359480
crossref_primary_10_3390_app11030997
crossref_primary_10_1007_s00521_023_08899_x
crossref_primary_10_1109_LSP_2020_2974691
crossref_primary_10_3390_s22134707
crossref_primary_10_1016_j_image_2023_116926
crossref_primary_10_1109_TGRS_2022_3142805
crossref_primary_10_1109_TIP_2020_2990606
crossref_primary_10_1109_TNNLS_2022_3227730
crossref_primary_10_1109_TIP_2020_2973802
crossref_primary_10_1109_TNNLS_2020_3015897
crossref_primary_10_1109_ACCESS_2020_3003126
crossref_primary_10_1109_TNNLS_2021_3071245
crossref_primary_10_1109_TIP_2022_3180561
crossref_primary_10_1007_s00530_024_01469_8
crossref_primary_10_1016_j_neucom_2022_02_059
crossref_primary_10_1109_TMM_2021_3127360
crossref_primary_10_1109_TPAMI_2023_3307666
crossref_primary_10_1109_TCI_2025_3527142
crossref_primary_10_3390_atmos12070828
crossref_primary_10_1007_s10489_022_03441_3
crossref_primary_10_1016_j_neucom_2021_06_052
crossref_primary_10_1109_TCSVT_2020_3024687
crossref_primary_10_1109_ACCESS_2020_3024542
crossref_primary_10_1016_j_image_2025_117311
crossref_primary_10_1016_j_image_2021_116460
crossref_primary_10_1109_TCSVT_2022_3207516
crossref_primary_10_1117_1_JEI_31_4_043003
crossref_primary_10_1109_ACCESS_2020_3034238
crossref_primary_10_1007_s41870_021_00742_7
crossref_primary_10_1049_ipr2_12347
crossref_primary_10_1109_TIP_2023_3335822
crossref_primary_10_1007_s10723_023_09684_9
crossref_primary_10_1016_j_knosys_2020_106000
crossref_primary_10_1049_ipr2_13258
crossref_primary_10_1145_3639407
crossref_primary_10_1109_TCSVT_2023_3246953
crossref_primary_10_1109_TPAMI_2020_2995190
crossref_primary_10_3390_s25030951
crossref_primary_10_1016_j_image_2020_115839
crossref_primary_10_1145_3625818
crossref_primary_10_1007_s10489_021_02485_1
crossref_primary_10_1109_ACCESS_2021_3072687
crossref_primary_10_1007_s11063_021_10486_x
crossref_primary_10_1007_s11263_024_02250_0
crossref_primary_10_1109_TNNLS_2021_3112235
crossref_primary_10_1007_s00034_022_02279_x
crossref_primary_10_1109_LSP_2020_2970345
crossref_primary_10_1016_j_neucom_2023_127066
crossref_primary_10_1109_TCSVT_2022_3229730
Cites_doi 10.1109/CVPR.2017.183
10.1109/CVPR.2017.243
10.1145/3123266.3127927
10.1109/CVPR.2017.19
10.1109/VCIP.2017.8305071
10.1109/ICIP.2013.6738189
10.1109/ICCV.2015.388
10.1109/TPAMI.2015.2439281
10.1109/DCC.2018.00066
10.1109/TMM.2013.2284759
10.1109/CVPR.2018.00854
10.1109/CVPR.2016.185
10.1109/ISCAS.2018.8351165
10.1109/TIP.2017.2708502
10.1109/ICCV.2017.517
10.1109/ICIP.2016.7532596
10.5121/ijma.2013.5402
10.1098/rsta.2015.0203
10.1109/34.192463
10.1109/TIP.2003.819861
10.1023/A:1016328200723
10.1016/j.apm.2018.03.001
10.1109/CVPR.2016.299
10.1109/MMSP.2012.6343435
10.1109/ICCV.2013.84
10.1109/ICPR.2018.8545729
10.1109/CVPR.2017.186
10.1109/TIP.2018.2882923
10.1109/TIP.2017.2750403
10.1109/TPAMI.2008.103
10.1109/ICIP.2014.7025909
10.1109/CVPR.2016.90
10.1109/ICCV.2017.191
10.1109/ICCV.2017.486
10.1007/s11042-018-5805-z
10.1109/DCC.2018.00021
10.1109/TIP.2016.2598681
10.1109/TIP.2017.2662206
10.1109/ICCV.2017.276
10.1109/WOCN.2013.6616235
10.1109/ICIP.2018.8451694
10.1109/ICCV.2009.5459440
10.1109/83.718489
10.1109/CVPR.2017.618
10.1049/el:20080522
10.1109/ICCV.2013.247
10.1109/TIP.2011.2179057
10.1109/CVPR.2012.6247661
10.1109/TCSVT.2017.2734838
10.1109/FG.2018.00118
10.1109/TIP.2017.2691802
10.1109/ICME.2012.92
10.1109/TIP.2018.2869722
10.1109/ICCV.2017.189
10.1016/j.cviu.2017.09.002
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2019.2892685
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
PubMed
Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 2961
ExternalDocumentID 30640610
10_1109_TIP_2019_2892685
8610325
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61772043
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Beijing Municipality
  grantid: L182002; 4192025
  funderid: 10.13039/501100004826
– fundername: Nvidia
  funderid: 10.13039/100007065
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
NPM
RIG
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c347t-e5a72504ef4dcc028ced28982e8ec1d4bfa48d0a1434438ac2cb5f79ab27e7993
IEDL.DBID RIE
ISICitedReferencesCount 92
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464920200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Thu Oct 02 17:58:50 EDT 2025
Mon Jun 30 10:20:57 EDT 2025
Wed Feb 19 02:09:32 EST 2025
Tue Nov 18 21:15:22 EST 2025
Sat Nov 29 03:21:09 EST 2025
Wed Aug 27 02:47:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-e5a72504ef4dcc028ced28982e8ec1d4bfa48d0a1434438ac2cb5f79ab27e7993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1692-0069
0000-0002-5576-8629
0000-0002-4944-9621
0000-0002-0468-9576
PMID 30640610
PQID 2210039606
PQPubID 85429
PageCount 14
ParticipantIDs crossref_primary_10_1109_TIP_2019_2892685
crossref_citationtrail_10_1109_TIP_2019_2892685
proquest_miscellaneous_2179366108
proquest_journals_2210039606
ieee_primary_8610325
pubmed_primary_30640610
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref12
ref59
ref58
ref14
ref53
ref52
ref55
ref54
ref10
wei (ref35) 2018
ref17
ref16
ref19
ref18
chen (ref11) 2013
ref46
ref45
zhang (ref15) 2018
ref48
gatys (ref30) 2015
ref42
ref41
ref44
yu (ref65) 2016
ref8
ref7
zhao (ref56) 2003; 2
ref4
ref3
ref6
ref5
li (ref9) 2017
ref40
zhang (ref49) 2018
ref34
ref37
ref36
ref31
ref74
ref32
dong (ref51) 2018
ref2
ref1
ref39
schuler (ref29) 2014
ref38
lore (ref33) 2015
zhang (ref47) 2018
ren (ref72) 2018
zhang (ref50) 2018
zhang (ref70) 2017
ref71
lai (ref26) 0
ref73
yang (ref23) 0
ref68
ref24
ref67
ref69
ref25
ref64
ref20
ref63
ref66
ref22
ref21
ref28
ref27
ref60
denton (ref62) 2015
ref61
hu (ref43) 2018
References_xml – start-page: 1
  year: 2018
  ident: ref50
  article-title: Densely connected pyramid dehazing network
  publication-title: Proc IEEE Int Conf Comput Vis Pattern Recognit
– ident: ref8
  doi: 10.1109/CVPR.2017.183
– ident: ref45
  doi: 10.1109/CVPR.2017.243
– ident: ref27
  doi: 10.1145/3123266.3127927
– start-page: 2139
  year: 2013
  ident: ref11
  article-title: Rain removal from dynamic scene based on motion segmentation
  publication-title: Proc IEEE Int Symp Circuits Syst (ISCAS)
– year: 2017
  ident: ref70
  publication-title: Image De-raining Using a Conditional Generative Adversarial Network
– ident: ref46
  doi: 10.1109/CVPR.2017.19
– ident: ref28
  doi: 10.1109/VCIP.2017.8305071
– start-page: 1
  year: 2018
  ident: ref15
  article-title: Density-aware single image de-raining using a multi-stream dense network
  publication-title: Proc IEEE Int Conf Comput Vis Pattern Recognit
– start-page: 1486
  year: 2015
  ident: ref62
  article-title: Deep generative image models using a Laplacian pyramid of adversarial networks
  publication-title: Proc Annu Conf Neural Inf Process Syst
– ident: ref14
  doi: 10.1109/ICIP.2013.6738189
– ident: ref4
  doi: 10.1109/ICCV.2015.388
– start-page: 1
  year: 2018
  ident: ref35
  article-title: Deep retinex decomposition for low-light enhancement
  publication-title: Proc Brit Mach Vis Conf (BMVC)
– ident: ref21
  doi: 10.1109/TPAMI.2015.2439281
– ident: ref42
  doi: 10.1109/DCC.2018.00066
– ident: ref2
  doi: 10.1109/TMM.2013.2284759
– ident: ref53
  doi: 10.1109/CVPR.2018.00854
– year: 2018
  ident: ref51
  publication-title: Joint demosaicing and denoising with perceptual optimization on a generative adversarial network
– ident: ref71
  doi: 10.1109/CVPR.2016.185
– start-page: 1
  year: 2018
  ident: ref43
  article-title: Optimized recurrent network for intra prediction in video coding
  publication-title: Proc IEEE Vis Commun Image Process
– ident: ref25
  doi: 10.1109/ISCAS.2018.8351165
– start-page: 1
  year: 2018
  ident: ref72
  article-title: Gated fusion network for single image dehazing
  publication-title: Proc IEEE Int Conf Comput Vis Pattern Recognit
– start-page: 1
  year: 2016
  ident: ref65
  article-title: Multi-scale context aggregation by dilated convolutions
  publication-title: Proc Int Conf Learn Represent
– ident: ref19
  doi: 10.1109/TIP.2017.2708502
– ident: ref52
  doi: 10.1109/ICCV.2017.517
– ident: ref57
  doi: 10.1109/ICIP.2016.7532596
– ident: ref55
  doi: 10.5121/ijma.2013.5402
– ident: ref58
  doi: 10.1098/rsta.2015.0203
– ident: ref64
  doi: 10.1109/34.192463
– year: 2015
  ident: ref33
  publication-title: Llnet A deep autoencoder approach to natural low-light image enhancement
– ident: ref74
  doi: 10.1109/TIP.2003.819861
– ident: ref66
  doi: 10.1023/A:1016328200723
– ident: ref69
  doi: 10.1016/j.apm.2018.03.001
– ident: ref5
  doi: 10.1109/CVPR.2016.299
– ident: ref12
  doi: 10.1109/MMSP.2012.6343435
– ident: ref32
  doi: 10.1109/ICCV.2013.84
– ident: ref61
  doi: 10.1109/ICPR.2018.8545729
– ident: ref6
  doi: 10.1109/CVPR.2017.186
– ident: ref40
  doi: 10.1109/TIP.2018.2882923
– ident: ref22
  doi: 10.1109/TIP.2017.2750403
– ident: ref54
  doi: 10.1109/TPAMI.2008.103
– ident: ref3
  doi: 10.1109/ICIP.2014.7025909
– ident: ref44
  doi: 10.1109/CVPR.2016.90
– ident: ref16
  doi: 10.1109/ICCV.2017.191
– start-page: 1
  year: 2018
  ident: ref49
  article-title: Image super-resolution using very deep residual channel attention networks
  publication-title: Proc IEEE Int Conf Comput Vis
– ident: ref48
  doi: 10.1109/ICCV.2017.486
– year: 2015
  ident: ref30
  publication-title: A neural algorithm of artistic style
– ident: ref39
  doi: 10.1007/s11042-018-5805-z
– ident: ref41
  doi: 10.1109/DCC.2018.00021
– ident: ref31
  doi: 10.1109/TIP.2016.2598681
– ident: ref20
  doi: 10.1109/TIP.2017.2662206
– year: 2014
  ident: ref29
  publication-title: Learning to deblur
– start-page: 1
  year: 2018
  ident: ref47
  article-title: Residual dense network for image super-resolution
  publication-title: Proc IEEE Int Conf Comput Vis Pattern Recognit
– ident: ref17
  doi: 10.1109/ICCV.2017.276
– year: 0
  ident: ref26
  article-title: Fast and accurate image super-resolution with deep Laplacian pyramid networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 0
  ident: ref23
  article-title: Reference guided deep super-resolution via manifold localized external compensation
  publication-title: IEEE Trans Circuits Syst Video Technol
– ident: ref59
  doi: 10.1109/WOCN.2013.6616235
– ident: ref37
  doi: 10.1109/ICIP.2018.8451694
– ident: ref67
  doi: 10.1109/ICCV.2009.5459440
– volume: 2
  start-page: ii-953
  year: 2003
  ident: ref56
  article-title: Wavelet-domain HMT-based image super-resolution
  publication-title: Proc IEEE Int Conf Image Process
– ident: ref60
  doi: 10.1109/83.718489
– ident: ref63
  doi: 10.1109/CVPR.2017.618
– ident: ref73
  doi: 10.1049/el:20080522
– ident: ref13
  doi: 10.1109/ICCV.2013.247
– year: 2017
  ident: ref9
  publication-title: Single image deraining using scale-aware multi-stage recurrent network
– ident: ref1
  doi: 10.1109/TIP.2011.2179057
– ident: ref68
  doi: 10.1109/CVPR.2012.6247661
– ident: ref38
  doi: 10.1109/TCSVT.2017.2734838
– ident: ref34
  doi: 10.1109/FG.2018.00118
– ident: ref7
  doi: 10.1109/TIP.2017.2691802
– ident: ref10
  doi: 10.1109/ICME.2012.92
– ident: ref36
  doi: 10.1109/TIP.2018.2869722
– ident: ref18
  doi: 10.1109/ICCV.2017.189
– ident: ref24
  doi: 10.1016/j.cviu.2017.09.002
SSID ssj0014516
Score 2.5696616
Snippet In this paper, we address a rain removal problem from a single image, even in the presence of large rain streaks and rain streak accumulation (where individual...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2948
SubjectTerms Accumulation
Adaptation models
Degradation
Image enhancement
Rain
Recovery
recurrent process
Redundancy
residual dense network
scale-free
Single image deraining
Testing
Training
Visibility
wavelet transform
Wavelet transforms
Title Scale-Free Single Image Deraining Via Visibility-Enhanced Recurrent Wavelet Learning
URI https://ieeexplore.ieee.org/document/8610325
https://www.ncbi.nlm.nih.gov/pubmed/30640610
https://www.proquest.com/docview/2210039606
https://www.proquest.com/docview/2179366108
Volume 28
WOSCitedRecordID wos000464920200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7BikN7KM-2gQUZiUslzIass3aOVWEFF4RgoXuLHGfSItFstY9K_HtmHG_EoSBxiBQljmN5PPY3nvE3AEdJpZ3Jqpg0zRVSuSqTlhY6WaSqZO4T6wbOJ5vQV1dmPM6uV-C4PQuDiD74DE_41vvyy4lb8FZZzwyY_i1dhVWtB81ZrdZjwAlnvWcz1VIT7F-6JOOsN7q85hiu7ISMi2TAWZNfLEE-p8rr8NIvM8P19zVwAz4FOCm-N_LfhBWst2A9QEsRFHe2BR9f8A5uw-iWJINyOEUUt_TkEcXlH5pYxBmGjBHi_sHSFWJnn-R5_duHCogb3p9nRifx03LOirkIDK2_duBueD76cSFDegXp-krPJaZWM4EZVqp0jnAG1UI9ZBI06E5LVVRWmTK2hKiU6hvrEleklc5skWjUhGs-Q6ee1PgVhFYZWm1im6YlWYjWmIJ55PrWIVOinUbQW_Z47gL3OKfAeMy9DRJnOckoZxnlQUYRfGu_-NvwbrxRdptF0ZYLUoiguxRqHhRzlidk4sZ9NtsiOGxfk0qxn8TWOFlQGZ60CLfEJoIvzWBo62aDjSBQvPv_f-7BB25ZE0vWhc58usB9WHP_5g-z6QGN27E58OP2Ges-57o
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB1RQCo9lAKFBmhxpV6QajZknbVzrIAVK2CFYFu4RY4zKUiQRftRqf-eGa834tBW6iFSlDhO5PHHm8z4PYAvSaWdyaqYRporpHJVJi0tdLJIVcncJ9Z1nBeb0P2-ub3NLhfga7MXBhF98hke8KmP5ZdDN-VfZS3TYfq39BUssXJW2K3VxAxYctbHNlMtNQH_eVAyzlqD3iVncWUH5F4kHdZNfrEIeVWVvwNMv9B0V__vE9_B2wAoxbdZD1iDBazXYTWASxGG7ngd3rxgHtyAwTXZBmV3hCiu6coDit4jTS3iGINmhPhxb-kI2bO_5Ul955MFxBX_oWdOJ3FjWbViIgJH68_38L17Mjg6lUFgQbq20hOJqdVMYYaVKp0jpEG1UAuZBA26w1IVlVWmjC1hKqXaxrrEFWmlM1skGjUhm01YrIc1fgChVYZWm9imaUk-ojWmYCa5tnXIpGiHEbTmLZ67wD7OIhgPufdC4iwnG-VsozzYKIL95omnGfPGP8pusCmacsEKEezOjZqHoTnOE3Jy4zY7bhF8bm7ToOJIia1xOKUyPG0RcolNBFuzztDUzS4bgaB4-8_v3IPXp4OL8_y81z_bgRX-yllm2S4sTkZT_AjL7tfkfjz65HvvM6196hs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scale-Free+Single+Image+Deraining+Via+Visibility-Enhanced+Recurrent+Wavelet+Learning&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Yang%2C+Wenhan&rft.au=Liu%2C+Jiaying&rft.au=Yanga%2C+Shuai&rft.au=Guo%2C+Zongming&rft.date=2019-06-01&rft.issn=1941-0042&rft.eissn=1941-0042&rft_id=info:doi/10.1109%2FTIP.2019.2892685&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon