Towards Unsupervised Deep Image Enhancement With Generative Adversarial Network

Improving the aesthetic quality of images is challenging and eager for the public. To address this problem, most existing algorithms are based on supervised learning methods to learn an automatic photo enhancer for paired data, which consists of low-quality photos and corresponding expert-retouched...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on image processing Ročník 29; s. 9140 - 9151
Hlavní autoři: Ni, Zhangkai, Yang, Wenhan, Wang, Shiqi, Ma, Lin, Kwong, Sam
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1057-7149, 1941-0042, 1941-0042
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Improving the aesthetic quality of images is challenging and eager for the public. To address this problem, most existing algorithms are based on supervised learning methods to learn an automatic photo enhancer for paired data, which consists of low-quality photos and corresponding expert-retouched versions. However, the style and characteristics of photos retouched by experts may not meet the needs or preferences of general users. In this paper, we present an unsupervised image enhancement generative adversarial network (UEGAN), which learns the corresponding image-to-image mapping from a set of images with desired characteristics in an unsupervised manner, rather than learning on a large number of paired images. The proposed model is based on single deep GAN which embeds the modulation and attention mechanisms to capture richer global and local features. Based on the proposed model, we introduce two losses to deal with the unsupervised image enhancement: (1) fidelity loss , which is defined as a <inline-formula> <tex-math notation="LaTeX">\ell 2 </tex-math></inline-formula> regularization in the feature domain of a pre-trained VGG network to ensure the content between the enhanced image and the input image is the same, and (2) quality loss that is formulated as a relativistic hinge adversarial loss to endow the input image the desired characteristics. Both quantitative and qualitative results show that the proposed model effectively improves the aesthetic quality of images. Our code is available at: https://github.com/eezkni/UEGAN .
AbstractList Improving the aesthetic quality of images is challenging and eager for the public. To address this problem, most existing algorithms are based on supervised learning methods to learn an automatic photo enhancer for paired data, which consists of low-quality photos and corresponding expert-retouched versions. However, the style and characteristics of photos retouched by experts may not meet the needs or preferences of general users. In this paper, we present an unsupervised image enhancement generative adversarial network (UEGAN), which learns the corresponding image-to-image mapping from a set of images with desired characteristics in an unsupervised manner, rather than learning on a large number of paired images. The proposed model is based on single deep GAN which embeds the modulation and attention mechanisms to capture richer global and local features. Based on the proposed model, we introduce two losses to deal with the unsupervised image enhancement: (1) fidelity loss, which is defined as a l2 regularization in the feature domain of a pre-trained VGG network to ensure the content between the enhanced image and the input image is the same, and (2) quality loss that is formulated as a relativistic hinge adversarial loss to endow the input image the desired characteristics. Both quantitative and qualitative results show that the proposed model effectively improves the aesthetic quality of images.
Improving the aesthetic quality of images is challenging and eager for the public. To address this problem, most existing algorithms are based on supervised learning methods to learn an automatic photo enhancer for paired data, which consists of low-quality photos and corresponding expert-retouched versions. However, the style and characteristics of photos retouched by experts may not meet the needs or preferences of general users. In this paper, we present an unsupervised image enhancement generative adversarial network (UEGAN), which learns the corresponding image-to-image mapping from a set of images with desired characteristics in an unsupervised manner, rather than learning on a large number of paired images. The proposed model is based on single deep GAN which embeds the modulation and attention mechanisms to capture richer global and local features. Based on the proposed model, we introduce two losses to deal with the unsupervised image enhancement: (1) fidelity loss, which is defined as a l2 regularization in the feature domain of a pre-trained VGG network to ensure the content between the enhanced image and the input image is the same, and (2) quality loss that is formulated as a relativistic hinge adversarial loss to endow the input image the desired characteristics. Both quantitative and qualitative results show that the proposed model effectively improves the aesthetic quality of images.Improving the aesthetic quality of images is challenging and eager for the public. To address this problem, most existing algorithms are based on supervised learning methods to learn an automatic photo enhancer for paired data, which consists of low-quality photos and corresponding expert-retouched versions. However, the style and characteristics of photos retouched by experts may not meet the needs or preferences of general users. In this paper, we present an unsupervised image enhancement generative adversarial network (UEGAN), which learns the corresponding image-to-image mapping from a set of images with desired characteristics in an unsupervised manner, rather than learning on a large number of paired images. The proposed model is based on single deep GAN which embeds the modulation and attention mechanisms to capture richer global and local features. Based on the proposed model, we introduce two losses to deal with the unsupervised image enhancement: (1) fidelity loss, which is defined as a l2 regularization in the feature domain of a pre-trained VGG network to ensure the content between the enhanced image and the input image is the same, and (2) quality loss that is formulated as a relativistic hinge adversarial loss to endow the input image the desired characteristics. Both quantitative and qualitative results show that the proposed model effectively improves the aesthetic quality of images.
Improving the aesthetic quality of images is challenging and eager for the public. To address this problem, most existing algorithms are based on supervised learning methods to learn an automatic photo enhancer for paired data, which consists of low-quality photos and corresponding expert-retouched versions. However, the style and characteristics of photos retouched by experts may not meet the needs or preferences of general users. In this paper, we present an unsupervised image enhancement generative adversarial network (UEGAN), which learns the corresponding image-to-image mapping from a set of images with desired characteristics in an unsupervised manner, rather than learning on a large number of paired images. The proposed model is based on single deep GAN which embeds the modulation and attention mechanisms to capture richer global and local features. Based on the proposed model, we introduce two losses to deal with the unsupervised image enhancement: (1) fidelity loss , which is defined as a <inline-formula> <tex-math notation="LaTeX">\ell 2 </tex-math></inline-formula> regularization in the feature domain of a pre-trained VGG network to ensure the content between the enhanced image and the input image is the same, and (2) quality loss that is formulated as a relativistic hinge adversarial loss to endow the input image the desired characteristics. Both quantitative and qualitative results show that the proposed model effectively improves the aesthetic quality of images. Our code is available at: https://github.com/eezkni/UEGAN .
Improving the aesthetic quality of images is challenging and eager for the public. To address this problem, most existing algorithms are based on supervised learning methods to learn an automatic photo enhancer for paired data, which consists of low-quality photos and corresponding expert-retouched versions. However, the style and characteristics of photos retouched by experts may not meet the needs or preferences of general users. In this paper, we present an unsupervised image enhancement generative adversarial network (UEGAN), which learns the corresponding image-to-image mapping from a set of images with desired characteristics in an unsupervised manner, rather than learning on a large number of paired images. The proposed model is based on single deep GAN which embeds the modulation and attention mechanisms to capture richer global and local features. Based on the proposed model, we introduce two losses to deal with the unsupervised image enhancement: (1) fidelity loss , which is defined as a [Formula Omitted] regularization in the feature domain of a pre-trained VGG network to ensure the content between the enhanced image and the input image is the same, and (2) quality loss that is formulated as a relativistic hinge adversarial loss to endow the input image the desired characteristics. Both quantitative and qualitative results show that the proposed model effectively improves the aesthetic quality of images. Our code is available at: https://github.com/eezkni/UEGAN .
Author Wang, Shiqi
Ma, Lin
Kwong, Sam
Ni, Zhangkai
Yang, Wenhan
Author_xml – sequence: 1
  givenname: Zhangkai
  orcidid: 0000-0003-3682-6288
  surname: Ni
  fullname: Ni, Zhangkai
  email: eezkni@gmail.com
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
– sequence: 2
  givenname: Wenhan
  orcidid: 0000-0002-1692-0069
  surname: Yang
  fullname: Yang, Wenhan
  email: yangwenhan@pku.edu.cn
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
– sequence: 3
  givenname: Shiqi
  orcidid: 0000-0002-3583-959X
  surname: Wang
  fullname: Wang, Shiqi
  email: shiqwang@cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
– sequence: 4
  givenname: Lin
  orcidid: 0000-0002-7331-6132
  surname: Ma
  fullname: Ma, Lin
  email: forest.linma@gmail.com
  organization: Meituan-Dianping Group, Beijing, China
– sequence: 5
  givenname: Sam
  orcidid: 0000-0001-7484-7261
  surname: Kwong
  fullname: Kwong, Sam
  email: cssamk@cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32960763$$D View this record in MEDLINE/PubMed
BookMark eNp9kT1rHDEQhkWwiT-SPhAwC27c7GX0uafS-CsHJk5xJqWQpdlYzq72LO2eyb-PjjuncOFqpnieYXjfI7IXh4iEfKEwoxT0t-Xi54wBgxkHxhWVH8gh1YLWAILtlR1kUzdU6ANylPMTABWSqo_kgDOtoFH8kNwthxebfK7uY55WmNYho68uEVfVore_sbqKjzY67DGO1a8wPlY3GDHZMayxOvdrTNmmYLvqB44vQ_rziey3tsv4eTePyf311fLie317d7O4OL-tHRfNWHvHWuCN5nPvtSsfau5ogwpbLaVEgLnw2DiB3jmq5xSFkIp5ytWDaGmr-TE5295dpeF5wjyaPmSHXWcjDlM2rAiCKaZkQU_foE_DlGL5bkM1skSieKFOdtT00KM3qxR6m_6a16gKoLaAS0POCVvjwlhyGOKYbOgMBbPpxJROzKYTs-ukiPBGfL39jvJ1qwRE_I9rBkKIOf8H1EuU5w
CODEN IIPRE4
CitedBy_id crossref_primary_10_1016_j_measurement_2025_117932
crossref_primary_10_1109_TCSVT_2023_3239511
crossref_primary_10_1109_TCSVT_2024_3408007
crossref_primary_10_1109_TPAMI_2025_3545966
crossref_primary_10_1007_s10791_024_09488_9
crossref_primary_10_1109_ACCESS_2021_3084339
crossref_primary_10_1109_TCSVT_2022_3146731
crossref_primary_10_1016_j_cag_2023_12_014
crossref_primary_10_1016_j_dsp_2024_104521
crossref_primary_10_1016_j_neucom_2025_129509
crossref_primary_10_1109_TETCI_2023_3301337
crossref_primary_10_3390_sym17050725
crossref_primary_10_1109_TCSVT_2021_3121012
crossref_primary_10_1007_s11831_025_10226_7
crossref_primary_10_1016_j_asoc_2025_112778
crossref_primary_10_1109_TMM_2023_3307903
crossref_primary_10_1109_TIP_2023_3274988
crossref_primary_10_1038_s41598_024_65270_3
crossref_primary_10_1007_s13042_022_01659_8
crossref_primary_10_1109_TNNLS_2025_3566647
crossref_primary_10_1016_j_eswa_2025_127106
crossref_primary_10_1145_3763240
crossref_primary_10_1109_ACCESS_2021_3083075
crossref_primary_10_1109_TMM_2023_3293736
crossref_primary_10_1142_S0129156425401524
crossref_primary_10_1007_s11263_024_02084_w
crossref_primary_10_1016_j_cviu_2023_103681
crossref_primary_10_1016_j_cviu_2024_104276
crossref_primary_10_1007_s13735_023_00310_8
crossref_primary_10_1016_j_image_2023_116923
crossref_primary_10_1007_s11042_023_15147_w
crossref_primary_10_1109_TIP_2024_3378910
crossref_primary_10_1109_TCSVT_2022_3141578
crossref_primary_10_3390_photonics10020198
crossref_primary_10_1109_TPAMI_2021_3126387
crossref_primary_10_1109_TCSVT_2023_3241162
crossref_primary_10_1145_3716820
crossref_primary_10_1109_TCSVT_2025_3556203
crossref_primary_10_1109_TMM_2023_3262185
crossref_primary_10_1109_TMM_2024_3405729
crossref_primary_10_1016_j_neucom_2025_131052
crossref_primary_10_1109_TCSVT_2024_3454763
crossref_primary_10_1109_TGRS_2022_3220230
crossref_primary_10_1109_ACCESS_2022_3209807
crossref_primary_10_1109_TIP_2023_3251695
crossref_primary_10_1007_s00371_022_02651_7
crossref_primary_10_3390_app14167177
crossref_primary_10_1016_j_bspc_2022_104450
crossref_primary_10_1016_j_engappai_2023_107799
crossref_primary_10_1016_j_bspc_2025_107765
crossref_primary_10_1016_j_cviu_2025_104496
crossref_primary_10_1109_TMM_2024_3400668
crossref_primary_10_1109_TMM_2022_3207330
crossref_primary_10_1109_TMM_2025_3535333
crossref_primary_10_1016_j_knosys_2023_111053
crossref_primary_10_1109_JBHI_2024_3454068
crossref_primary_10_1109_TITS_2022_3165176
crossref_primary_10_3390_app14052121
crossref_primary_10_1007_s10586_025_05538_z
crossref_primary_10_1109_TPAMI_2024_3516874
crossref_primary_10_1109_TCSVT_2023_3262303
crossref_primary_10_1109_ACCESS_2022_3187209
crossref_primary_10_3390_electronics12214445
crossref_primary_10_1002_mco2_70247
crossref_primary_10_1007_s00146_023_01836_5
crossref_primary_10_1049_ipr2_13092
crossref_primary_10_1142_S0218194025410025
crossref_primary_10_1080_09540091_2022_2147902
crossref_primary_10_1109_ACCESS_2022_3178698
crossref_primary_10_1109_TCSVT_2023_3340506
crossref_primary_10_1016_j_neucom_2024_128974
crossref_primary_10_1016_j_image_2022_116890
crossref_primary_10_1016_j_imavis_2024_105281
crossref_primary_10_1109_TIP_2023_3340522
crossref_primary_10_1051_shsconf_202521401006
crossref_primary_10_1109_TIP_2024_3519997
crossref_primary_10_3390_electronics11010032
Cites_doi 10.1145/3181974
10.1109/83.826787
10.1109/ICASSP.1991.150915
10.1109/TIP.2018.2831899
10.1109/CVPR.2019.00701
10.1145/2980179.2982423
10.1109/ICCV.2017.244
10.1109/TIP.2009.2021548
10.1109/TIP.2005.864170
10.1109/ICCV.2019.00461
10.1109/ICCVW.2017.356
10.1109/83.841534
10.1145/3072959.3073592
10.1109/CVPR.2018.00660
10.1109/TIP.2018.2838660
10.1145/2790296
10.1109/TIM.2010.2089110
10.1109/TIP.2016.2639450
10.1109/TCE.2007.4429280
10.1109/TIP.2013.2261309
10.1109/TPAMI.2012.213
10.1109/CVPR.2012.6247954
10.1109/TIP.2013.2284059
10.1109/TIP.2018.2810539
10.1109/ICCV.2017.355
10.1109/TIP.2019.2910412
10.1109/TCE.2007.381734
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2020.3023615
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 9151
ExternalDocumentID 32960763
10_1109_TIP_2020_3023615
9204448
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Key Project of Science and Technology Innovation 2030
– fundername: Natural Science Foundation of China
  grantid: 61772344; 61672443
  funderid: 10.13039/501100001809
– fundername: Ministry of Science and Technology of China
  grantid: 2018AAA0101301
  funderid: 10.13039/501100002855
– fundername: Hong Kong Research Grants Council (RGC) Early Career Scheme
  grantid: 9048122 (CityU 21211018)
  funderid: 10.13039/501100002920
– fundername: Hong Kong Research Grants Council (RGC) General Research Funds
  grantid: 9042816 (CityU 11209819); 9042957 (CityU 11203220)
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c347t-dc2f037938dd9c14993c17e6ef9555e0084de7c4edcc1981e44562d136b4f1f93
IEDL.DBID RIE
ISICitedReferencesCount 117
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000574739100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Sun Sep 28 08:55:49 EDT 2025
Mon Jun 30 10:24:38 EDT 2025
Sun Nov 09 08:39:25 EST 2025
Sat Nov 29 03:21:13 EST 2025
Tue Nov 18 21:18:39 EST 2025
Wed Aug 27 02:31:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-dc2f037938dd9c14993c17e6ef9555e0084de7c4edcc1981e44562d136b4f1f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7484-7261
0000-0003-3682-6288
0000-0002-7331-6132
0000-0002-1692-0069
0000-0002-3583-959X
PMID 32960763
PQID 2447551663
PQPubID 85429
PageCount 12
ParticipantIDs crossref_primary_10_1109_TIP_2020_3023615
proquest_miscellaneous_2445426265
pubmed_primary_32960763
ieee_primary_9204448
crossref_citationtrail_10_1109_TIP_2020_3023615
proquest_journals_2447551663
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref14
ref33
ref10
simonyan (ref31) 2014
ref2
ref1
ref17
ref19
ref18
ronneberger (ref27) 2015
bychkovsky (ref11) 2011
zhang (ref30) 2019
kingma (ref32) 2014
jiang (ref16) 2019
ref24
ref23
ref26
ref25
ref20
jolicoeur-martineau (ref29) 2018
ref22
ref21
ref28
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – start-page: 7354
  year: 2019
  ident: ref30
  article-title: Self-attention generative adversarial networks
  publication-title: Proc Int Conf Mach Learn
– ident: ref15
  doi: 10.1145/3181974
– ident: ref22
  doi: 10.1109/83.826787
– year: 2014
  ident: ref31
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv 1409 1556
– ident: ref20
  doi: 10.1109/ICASSP.1991.150915
– ident: ref33
  doi: 10.1109/TIP.2018.2831899
– ident: ref10
  doi: 10.1109/CVPR.2019.00701
– ident: ref28
  doi: 10.1145/2980179.2982423
– ident: ref12
  doi: 10.1109/ICCV.2017.244
– start-page: 97
  year: 2011
  ident: ref11
  article-title: Learning photographic global tonal adjustment with a database of input/output image pairs
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref1
  doi: 10.1109/TIP.2009.2021548
– ident: ref4
  doi: 10.1109/TIP.2005.864170
– ident: ref14
  doi: 10.1109/ICCV.2019.00461
– ident: ref26
  doi: 10.1109/ICCVW.2017.356
– ident: ref18
  doi: 10.1109/83.841534
– ident: ref6
  doi: 10.1145/3072959.3073592
– year: 2019
  ident: ref16
  article-title: EnlightenGAN: Deep light enhancement without paired supervision
  publication-title: arXiv 1906 06972
– ident: ref13
  doi: 10.1109/CVPR.2018.00660
– ident: ref19
  doi: 10.1109/TIP.2018.2838660
– ident: ref8
  doi: 10.1145/2790296
– ident: ref2
  doi: 10.1109/TIM.2010.2089110
– year: 2018
  ident: ref29
  article-title: The relativistic discriminator: A key element missing from standard GAN
  publication-title: arXiv 1807 00734
– ident: ref25
  doi: 10.1109/TIP.2016.2639450
– ident: ref17
  doi: 10.1109/TCE.2007.4429280
– ident: ref24
  doi: 10.1109/TIP.2013.2261309
– start-page: 234
  year: 2015
  ident: ref27
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
– ident: ref21
  doi: 10.1109/TPAMI.2012.213
– ident: ref34
  doi: 10.1109/CVPR.2012.6247954
– ident: ref3
  doi: 10.1109/TIP.2013.2284059
– ident: ref23
  doi: 10.1109/TIP.2018.2810539
– ident: ref7
  doi: 10.1109/ICCV.2017.355
– ident: ref9
  doi: 10.1109/TIP.2019.2910412
– ident: ref5
  doi: 10.1109/TCE.2007.381734
– year: 2014
  ident: ref32
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
SSID ssj0014516
Score 2.6082873
Snippet Improving the aesthetic quality of images is challenging and eager for the public. To address this problem, most existing algorithms are based on supervised...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9140
SubjectTerms Algorithms
Gallium nitride
generative adversarial network
Generative adversarial networks
Generators
global attention
Histograms
Image color analysis
Image enhancement
Image quality
Machine learning
Mapping
Regularization
Task analysis
Unsupervised learning
Title Towards Unsupervised Deep Image Enhancement With Generative Adversarial Network
URI https://ieeexplore.ieee.org/document/9204448
https://www.ncbi.nlm.nih.gov/pubmed/32960763
https://www.proquest.com/docview/2447551663
https://www.proquest.com/docview/2445426265
Volume 29
WOSCitedRecordID wos000574739100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjB92N9EcGLYN1t-khzFB8oyOphxb2VJpmgoN3F7vr7zaTd4kEFb4WmSck3M5nJJN8AnLglQ0mtTJDZIgtiK2VQpCIOrMl0Ia1VifJI34t-PxsO5eMcnLV3YRDRHz7Dc3r0uXwz0lPaKutKTuxm2TzMCyHqu1ptxoAKzvrMZiIC4dz-WUqyJ7uDu0cXCHIXnxJdOhXA_bYE-Zoqv7uXfpm5Wf3fD67BSuNOsosa_3WYw3IDVhvXkjWKW23A8jfewU14GPjDshV7KqvpmKxF5VpfIY7Z3bszMOy6fCFpoNHY8-vkhdXs1GQamS_hXBUkuKxfHyLfgqeb68HlbdBUVgh0FItJYDS3vcipZmaM1G62ZKRDgSlamSQJEsm-QaFjNFqHMgsxpkDJhFGqYhtaGW3DQjkqcRdYokKqf6WN4WGMaVFwboue5SkqFUZGdaA7m-xcN7TjVP3iLffhR0_mDp6c4MkbeDpw2n4xrik3_mi7SSi07RoAOnAwwzNvdLLKOXEbOilJow4ct6-dNlGKpChxNPVtEuLoT13PO7UctH1H3EV7zhzv_TzmPizRn9XbMwewMPmY4iEs6s_Ja_Vx5ER2mB15kf0C8Hfncw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RqFQ4QAsFllddqZdKTXftOA8fUQGx6nbLYVG5RbE9FkiQXZFdfj8eJxtxaJF6i5TxQ56HZzz2NwBf_JahldE2yl2ZR9IpFZVpJiNnc1Mq53SiA6dH2Xic39yoqxX41r2FQcRw-Qy_02fI5dupWdBRWV8JQjfL38BaIqXgzWutLmdAJWdDbjPJosw7_suk5ED1J8MrHwoKH6ESYDqVwH2xCYWqKv92MMNGc7H1f1N8D5utQ8lOGwn4ACtYbcNW61yyVnXrbdh4gTy4A78n4bpsza6rejEje1F76jPEGRs-eBPDzqtbkgcajf25m9-yBp-ajCMLRZzrkkSXjZtr5B_h-uJ88uMyamsrRCaW2TyyRrhB7JUzt1YZv1oqNjzDFJ1KkgQJZt9iZiRaY7jKOUoKlSyPUy0ddyrehdVqWuE-sERzqoBlrBVcYlqWQrhy4ESKWvPY6h70l4tdmBZ4nOpf3BchABmowrOnIPYULXt68LVrMWtAN16h3SEudHQtA3pwtORn0WplXQhCN_RSksY9-Nz99vpESZKywuki0CSE0p_6nvcaOej6joWP97xBPvj7mJ_g3eXk16gYDcc_D2GdZtkc1hzB6vxxgcfw1jzN7-rHkyC4z6uI6dI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Unsupervised+Deep+Image+Enhancement+with+Generative+Adversarial+Network&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Ni%2C+Zhangkai&rft.au=Yang%2C+Wenhan&rft.au=Wang%2C+Shiqi&rft.au=Ma%2C+Lin&rft.date=2020-01-01&rft.eissn=1941-0042&rft.volume=PP&rft_id=info:doi/10.1109%2FTIP.2020.3023615&rft_id=info%3Apmid%2F32960763&rft.externalDocID=32960763
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon