Closeness: A New Privacy Measure for Data Publishing

The k-anonymity privacy requirement for publishing microdata requires that each equivalence class (i.e., a set of records that are indistinguishable from each other with respect to certain "identifying" attributes) contains at least k records. Recently, several authors have recognized that...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on knowledge and data engineering Vol. 22; no. 7; pp. 943 - 956
Main Authors: Ninghui Li, Tiancheng Li, Venkatasubramanian, Suresh
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.07.2010
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1041-4347, 1558-2191
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The k-anonymity privacy requirement for publishing microdata requires that each equivalence class (i.e., a set of records that are indistinguishable from each other with respect to certain "identifying" attributes) contains at least k records. Recently, several authors have recognized that k-anonymity cannot prevent attribute disclosure. The notion of ℓ-diversity has been proposed to address this; ℓ-diversity requires that each equivalence class has at least ℓ well-represented (in Section 2) values for each sensitive attribute. In this paper, we show that ℓ-diversity has a number of limitations. In particular, it is neither necessary nor sufficient to prevent attribute disclosure. Motivated by these limitations, we propose a new notion of privacy called "closeness." We first present the base model t-closeness, which requires that the distribution of a sensitive attribute in any equivalence class is close to the distribution of the attribute in the overall table (i.e., the distance between the two distributions should be no more than a threshold t). We then propose a more flexible privacy model called (n,t)-closeness that offers higher utility. We describe our desiderata for designing a distance measure between two probability distributions and present two distance measures. We discuss the rationale for using closeness as a privacy measure and illustrate its advantages through examples and experiments.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1041-4347
1558-2191
DOI:10.1109/TKDE.2009.139