Low-Rank Approximation via Generalized Reweighted Iterative Nuclear and Frobenius Norms
The low-rank approximation problem has recently attracted wide concern due to its excellent performance in realworld applications such as image restoration, traffic monitoring, and face recognition. Compared with the classic nuclear norm, the Schatten-p norm is stated to be a closer approximation to...
Saved in:
| Published in: | IEEE transactions on image processing Vol. 29; pp. 2244 - 2257 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The low-rank approximation problem has recently attracted wide concern due to its excellent performance in realworld applications such as image restoration, traffic monitoring, and face recognition. Compared with the classic nuclear norm, the Schatten-p norm is stated to be a closer approximation to restrain the singular values for practical applications in the real world. However, Schatten-p norm minimization is a challenging non-convex, non-smooth, and non-Lipschitz problem. In this paper, inspired by the reweighted ℓ 1 and ℓ 2 norm for compressive sensing, the generalized iterative reweighted nuclear norm (GIRNN) and the generalized iterative reweighted Frobenius norm (GIRFN) algorithms are proposed to approximate Schatten-p norm minimization. By involving the proposed algorithms, the problem becomes more tractable and the closed solutions are derived from the iteratively reweighted subproblems. In addition, we prove that both proposed algorithms converge at a linear rate to a bounded optimum. Numerical experiments for the practical matrix completion (MC), robust principal component analysis (RPCA), and image decomposition problems are illustrated to validate the superior performance of both algorithms over some common state-of-the-art methods. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1057-7149 1941-0042 1941-0042 |
| DOI: | 10.1109/TIP.2019.2949383 |