ZAKI: A Smart Method and Tool for Automatic Performance Optimization of Parallel SpMV Computations on Distributed Memory Machines

SpMV is a vital computing operation of many scientific, engineering, economic and social applications, increasingly being used to develop timely intelligence for the design and management of smart societies. Several factors affect the performance of SpMV computations, such as matrix characteristics,...

Full description

Saved in:
Bibliographic Details
Published in:Mobile networks and applications Vol. 28; no. 2; pp. 744 - 763
Main Authors: Usman, Sardar, Mehmood, Rashid, Katib, Iyad, Albeshri, Aiiad, Altowaijri, Saleh M.
Format: Journal Article
Language:English
Published: New York Springer US 01.04.2023
Springer Nature B.V
Subjects:
ISSN:1383-469X, 1572-8153
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract SpMV is a vital computing operation of many scientific, engineering, economic and social applications, increasingly being used to develop timely intelligence for the design and management of smart societies. Several factors affect the performance of SpMV computations, such as matrix characteristics, storage formats, software and hardware platforms. The complexity of the computer systems is on the rise with the increasing number of cores per processor, different levels of caches, processors per node and high speed interconnect. There is an ever-growing need for new optimization techniques and efficient ways of exploiting parallelism. In this paper, we propose ZAKI, a data-driven, machine-learning approach and tool, to predict the optimal number of processes for SpMV computations of an arbitrary sparse matrix on a distributed memory machine. The aim herein is to allow application scientists to automatically obtain the best configuration, and hence the best performance, for the execution of SpMV computations. We train and test the tool using nearly 2000 real world matrices obtained from 45 application domains including computational fluid dynamics (CFD), computer vision, and robotics. The tool uses three machine learning methods, decision trees, random forest, gradient boosting, and is evaluated in depth. A discussion on the applicability of our proposed tool to energy efficiency optimization of SpMV computations is given. This is the first work where the sparsity structure of matrices have been exploited to predict the optimal number of processes for a given matrix in distributed memory environments by using different base and ensemble machine learning methods.
AbstractList SpMV is a vital computing operation of many scientific, engineering, economic and social applications, increasingly being used to develop timely intelligence for the design and management of smart societies. Several factors affect the performance of SpMV computations, such as matrix characteristics, storage formats, software and hardware platforms. The complexity of the computer systems is on the rise with the increasing number of cores per processor, different levels of caches, processors per node and high speed interconnect. There is an ever-growing need for new optimization techniques and efficient ways of exploiting parallelism. In this paper, we propose ZAKI, a data-driven, machine-learning approach and tool, to predict the optimal number of processes for SpMV computations of an arbitrary sparse matrix on a distributed memory machine. The aim herein is to allow application scientists to automatically obtain the best configuration, and hence the best performance, for the execution of SpMV computations. We train and test the tool using nearly 2000 real world matrices obtained from 45 application domains including computational fluid dynamics (CFD), computer vision, and robotics. The tool uses three machine learning methods, decision trees, random forest, gradient boosting, and is evaluated in depth. A discussion on the applicability of our proposed tool to energy efficiency optimization of SpMV computations is given. This is the first work where the sparsity structure of matrices have been exploited to predict the optimal number of processes for a given matrix in distributed memory environments by using different base and ensemble machine learning methods.
Author Katib, Iyad
Albeshri, Aiiad
Usman, Sardar
Mehmood, Rashid
Altowaijri, Saleh M.
Author_xml – sequence: 1
  givenname: Sardar
  orcidid: 0000-0003-4698-6461
  surname: Usman
  fullname: Usman, Sardar
  email: susman@stu.kau.edu.sa
  organization: Department of Computer Science, FCIT, King Abdulaziz University
– sequence: 2
  givenname: Rashid
  surname: Mehmood
  fullname: Mehmood, Rashid
  organization: High Performance Computing Center, King Abdulaziz University
– sequence: 3
  givenname: Iyad
  surname: Katib
  fullname: Katib, Iyad
  organization: Department of Computer Science, FCIT, King Abdulaziz University
– sequence: 4
  givenname: Aiiad
  surname: Albeshri
  fullname: Albeshri, Aiiad
  organization: Department of Computer Science, FCIT, King Abdulaziz University
– sequence: 5
  givenname: Saleh M.
  surname: Altowaijri
  fullname: Altowaijri, Saleh M.
  organization: Faculty of Computing and Information Technology, Northern Border University
BookMark eNp9kctOxSAQhonRxOsLuCJxXYVCC3V3crxGTzTxEuOGUKCKaUsFujjufHPRmpi4OAsyZOb7GWb-bbDeu94AsI_RIUaIHQWMESkzhKt0COYZWQNbuGB5xnFB1tOdcJLRsnraBNshvCGEioLTLfD5PLu6PIYzeNdJH-HCxFenoew1vHeuhY3zcDZG18loFbw1PiU62SsDb4ZoO_uR8q6HroG30su2NS28GxaPcO66YYw_xQATcGJD9LYeo9GpR-f8Ei6kerW9Cbtgo5FtMHu_cQc8nJ3ezy-y65vzy_nsOlOEspjpkjKjykZKSqpGm7pulOa5LKhCWOkapQF1RYwpaFXjqk6VSjOGNc2Z5DwnO-Bgenfw7n00IYo3N_o-tRQ55yWjpGDVSiovWc4LxlCi-EQp70LwphHKTtNGL20rMBLftojJFpFsET-2CJKk-T_p4G3a_XK1iEyikOD-xfi_X61QfQF5UKJA
CitedBy_id crossref_primary_10_3390_ijerph18010282
crossref_primary_10_1007_s11036_020_01635_y
crossref_primary_10_3390_info15110685
crossref_primary_10_3390_info16070553
crossref_primary_10_3390_electronics9101675
crossref_primary_10_3390_app10207120
crossref_primary_10_1007_s11036_022_01990_y
crossref_primary_10_3390_su13168952
crossref_primary_10_3390_s21092993
crossref_primary_10_1007_s11227_020_03489_3
crossref_primary_10_3390_en15186659
crossref_primary_10_3390_s20205796
crossref_primary_10_1038_s41598_024_67462_3
crossref_primary_10_3390_electronics12010053
crossref_primary_10_3390_app10041398
crossref_primary_10_3390_app12147073
Cites_doi 10.1504/IJCAT.2016.076790
10.2495/SDP-V11-N4-546-557
10.1016/j.jnca.2010.08.002
10.3390/app9050947
10.1016/j.procs.2015.08.566
10.1016/j.procs.2017.05.440
10.1007/978-3-319-63450-0_13
10.1587/transinf.2017EDP7176
10.1007/s11554-014-0442-x
10.1016/j.future.2016.12.033
10.1108/IJOPM-03-2015-0179
10.1108/17410381111149657
10.1016/j.egypro.2017.07.286
10.3390/jsan5040020
10.24138/jcomss.v13i2.373
10.1109/ACCESS.2017.2668840
10.1145/2851500
10.5402/2012/728913
10.1007/s11036-013-0489-0
10.1145/1562764.1562783
10.1007/978-3-319-94180-6_12
10.1007/978-3-319-94180-6_22
10.1109/IPDPSW.2018.00164
10.1007/978-3-319-94180-6_24
10.1145/1375527.1375558
10.1109/HPCC/SmartCity/DSS.2018.00116
10.1007/978-3-319-94180-6_15
10.1109/ICPADS.2011.91
10.1007/978-3-319-94180-6_13
10.1109/ICPPW.2014.30
10.1007/978-3-319-94180-6_29
10.1007/978-3-319-01884-3_20
10.1016/j.procs.2017.05.439
10.1007/978-3-319-94180-6_16
10.1109/IPDPSW.2017.155
10.1109/SGCF.2016.7492425
10.1109/ICPADS.2016.0120
10.1109/ONDM.2008.4578420
10.1109/MASCOT.2004.1348189
10.1109/ISMS.2010.84
10.1007/978-3-319-94180-6
10.1007/978-3-319-94180-6_4
10.1109/MuCoCoS.2013.6633600
10.1007/978-3-319-94180-6_30
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Mobile Networks and Applications is a copyright of Springer, (2019). All Rights Reserved.
Springer Science+Business Media, LLC, part of Springer Nature 2019.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Mobile Networks and Applications is a copyright of Springer, (2019). All Rights Reserved.
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2019.
DBID AAYXX
CITATION
3V.
7SC
7SP
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11036-019-01318-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ABI/INFORM Collection (ProQuest)
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1572-8153
EndPage 763
ExternalDocumentID 10_1007_s11036_019_01318_3
GrantInformation_xml – fundername: King Abdulaziz University
  grantid: G-673-793-38
  funderid: http://dx.doi.org/10.13039/501100004054
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
85S
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8US
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACM
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADL
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HGAVV
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I07
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SCV
SDH
SDM
SHX
SISQX
SJN
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W7O
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AETEA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7SP
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c347t-d647ec6faa439fdebbfcd82a54c01cdb0383d93ee549b19b2a59d771d427a8823
IEDL.DBID M0C
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001103024300021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1383-469X
IngestDate Wed Nov 05 09:16:36 EST 2025
Wed Nov 05 00:48:16 EST 2025
Sat Nov 29 03:18:14 EST 2025
Tue Nov 18 22:05:16 EST 2025
Fri Feb 21 02:41:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Distributed memory
Parallel computing
Machine learning
MPI
Random forest
Sparse matrix vector product (SpMV)
Decision trees
Sparse linear equation systems
Gradient boosting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-d647ec6faa439fdebbfcd82a54c01cdb0383d93ee549b19b2a59d771d427a8823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4698-6461
PQID 2267285770
PQPubID 26070
PageCount 20
ParticipantIDs proquest_journals_2886743579
proquest_journals_2267285770
crossref_citationtrail_10_1007_s11036_019_01318_3
crossref_primary_10_1007_s11036_019_01318_3
springer_journals_10_1007_s11036_019_01318_3
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle The Journal of SPECIAL ISSUES on Mobility of Systems, Users, Data and Computing
PublicationTitle Mobile networks and applications
PublicationTitleAbbrev Mobile Netw Appl
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Suma, Mehmood, Albugami, Katib, Albeshri (CR27) 2017; 109
Zappatore, Longo, Bochicchio (CR10) 2017; 13
CR39
CR38
CR37
CR36
CR35
CR32
CR31
Mehmood, Alturki, Zeadally (CR16) 2011; 34
Davis, Hu (CR49) 2011; 38
Montemayor, Pantrigo, Salgado (CR4) 2015; 10
González García, Meana-Llorián, Pelayo G-Bustelo, Cueva Lovelle, Garcia-Fernandez (CR3) 2017; 76
Triscone (CR2) 2016; 11
Aqib, Mehmood, Alzahrani, Katib, Albeshri (CR20) 2018; 18
CR5
CR9
CR48
CR47
CR46
Mehmood, Meriton, Graham, Hennelly, Kumar (CR12) 2017; 37
CR45
CR44
CR43
CR40
Bello, Mydlarz, Salamon (CR11) 2018
Yilmaz, Aktemur, Garzarán, Kamin, Kiraç (CR58) 2016; 13
Mehmood, Parker, Kwiatkowska (CR41) 2013
Mehmood, Alam, Albogami, Katib, Albeshri, Altowaijri (CR29) 2017; 5
Aliaga (CR7) 2012; 2012
Gade (CR8) 2016; 53
CR19
CR18
CR17
Mehmood, Lu (CR14) 2011; 22
CR15
CR59
CR56
CR55
CR54
Tabib, Rasheed, Priya Uteng (CR1) 2017; 122
CR53
Mehmood, Crowcroft (CR33) 2005
CR51
Mehmood, Graham (CR13) 2015; 64
CR50
Rahman (CR6) 2016; 5
Chen, Mao, Liu (CR34) 2014; 19
Muhammed (CR30) 2019; 9
CR28
CR26
CR25
CR24
CR23
CR67
CR22
CR66
CR21
CR65
Asanovic (CR52) 2009; 52
CR64
CUI, HIRASAWA, KOBAYASHI, TAKIZAWA (CR57) 2018; E101.D
CR63
CR62
Mehmood (CR42) 2003
CR61
CR60
A Rahman (1318_CR6) 2016; 5
R Gade (1318_CR8) 2016; 53
1318_CR40
M Chen (1318_CR34) 2014; 19
G Triscone (1318_CR2) 2016; 11
1318_CR43
1318_CR44
R Mehmood (1318_CR12) 2017; 37
1318_CR45
1318_CR46
1318_CR47
1318_CR48
H CUI (1318_CR57) 2018; E101.D
JP Bello (1318_CR11) 2018
AS Montemayor (1318_CR4) 2015; 10
1318_CR31
1318_CR32
R Mehmood (1318_CR14) 2011; 22
1318_CR35
1318_CR36
1318_CR37
1318_CR38
1318_CR39
TA Davis (1318_CR49) 2011; 38
R Mehmood (1318_CR33) 2005
C González García (1318_CR3) 2017; 76
DG Aliaga (1318_CR7) 2012; 2012
R Mehmood (1318_CR13) 2015; 64
1318_CR61
1318_CR62
1318_CR63
1318_CR64
1318_CR21
1318_CR65
1318_CR22
1318_CR66
1318_CR23
1318_CR67
1318_CR24
1318_CR25
R Mehmood (1318_CR16) 2011; 34
1318_CR26
R Mehmood (1318_CR29) 2017; 5
1318_CR28
B Yilmaz (1318_CR58) 2016; 13
T Muhammed (1318_CR30) 2019; 9
R Mehmood (1318_CR42) 2003
1318_CR9
M Zappatore (1318_CR10) 2017; 13
1318_CR5
S Suma (1318_CR27) 2017; 109
R Mehmood (1318_CR41) 2013
K Asanovic (1318_CR52) 2009; 52
1318_CR60
1318_CR50
1318_CR51
1318_CR53
MV Tabib (1318_CR1) 2017; 122
M Aqib (1318_CR20) 2018; 18
1318_CR54
1318_CR55
1318_CR56
1318_CR15
1318_CR59
1318_CR17
1318_CR18
1318_CR19
References_xml – ident: CR45
– ident: CR22
– ident: CR39
– ident: CR51
– volume: 53
  start-page: 291
  issue: 4
  year: 2016
  ident: CR8
  article-title: Thermal imaging systems for real-time applications in smart cities
  publication-title: Int J Comput Appl Technol
  doi: 10.1504/IJCAT.2016.076790
– ident: CR35
– year: 2003
  ident: CR42
  publication-title: A Survey of Out-of-Core Analysis Techniques in Stochastic Modelling
– ident: CR54
– ident: CR61
– year: 2005
  ident: CR33
  publication-title: Parallel iterative solution method for large sparse linear equation systems
– volume: 11
  start-page: 546
  issue: 4
  year: 2016
  end-page: 557
  ident: CR2
  article-title: Computational fluid dynamics as a tool to predict the air pollution dispersion in a neighborhood – a research project to improve the quality of life in cities
  publication-title: Int J Sustain Dev Plan
  doi: 10.2495/SDP-V11-N4-546-557
– volume: 34
  start-page: 1518
  issue: 5
  year: 2011
  end-page: 1529
  ident: CR16
  article-title: Multimedia applications over metropolitan area networks (MANs)
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2010.08.002
– ident: CR25
– ident: CR21
– ident: CR46
– ident: CR19
– volume: 9
  start-page: 947
  issue: 5
  year: 2019
  ident: CR30
  article-title: SURAA: A Novel Method and Tool for Loadbalanced and Coalesced SpMV Computations on GPUs
  publication-title: Appl Sci
  doi: 10.3390/app9050947
– volume: 64
  start-page: 1107
  year: 2015
  end-page: 1114
  ident: CR13
  article-title: Big Data Logistics: A health-care Transport Capacity Sharing Model
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2015.08.566
– ident: CR67
– ident: CR15
– volume: 18
  start-page: 246
  issue: 12
  year: 2018
  end-page: 254
  ident: CR20
  article-title: A Deep Learning Model to Predict Vehicles Occupancy on Freeways for Traffic Management
  publication-title: IJCSNS - Int J Comput Sci Netw Secur
– ident: CR50
– ident: CR9
– ident: CR32
– ident: CR60
– ident: CR36
– ident: CR5
– volume: 109
  start-page: 1122
  year: 2017
  end-page: 1127
  ident: CR27
  article-title: Enabling Next Generation Logistics and Planning for Smarter Societies
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2017.05.440
– ident: CR64
– start-page: 373
  year: 2018
  end-page: 397
  ident: CR11
  article-title: Sound Analysis in Smart Cities
  publication-title: Computational Analysis of Sound Scenes and Events
  doi: 10.1007/978-3-319-63450-0_13
– ident: CR26
– volume: E101.D
  start-page: 2307
  issue: 9
  year: 2018
  end-page: 2314
  ident: CR57
  article-title: A Machine Learning-Based Approach for Selecting SpMV Kernels and Matrix Storage Formats
  publication-title: IEICE Trans Inf Syst
  doi: 10.1587/transinf.2017EDP7176
– ident: CR18
– ident: CR43
– ident: CR66
– ident: CR47
– volume: 10
  start-page: 723
  issue: 4
  year: 2015
  end-page: 724
  ident: CR4
  article-title: Special issue on real-time computer vision in smart cities
  publication-title: J Real-Time Image Process
  doi: 10.1007/s11554-014-0442-x
– volume: 76
  start-page: 301
  year: 2017
  end-page: 313
  ident: CR3
  article-title: Midgar: Detection of people through computer vision in the Internet of Things scenarios to improve the security in Smart Cities, Smart Towns, and Smart Homes
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2016.12.033
– ident: CR37
– ident: CR53
– volume: 37
  start-page: 75
  issue: 1
  year: 2017
  end-page: 104
  ident: CR12
  article-title: Exploring the influence of big data on city transport operations: a Markovian approach
  publication-title: Int J Oper Prod Manag
  doi: 10.1108/IJOPM-03-2015-0179
– volume: 22
  start-page: 804
  issue: 6
  year: 2011
  end-page: 817
  ident: CR14
  article-title: Computational Markovian analysis of large systems
  publication-title: J Manuf Technol Manag
  doi: 10.1108/17410381111149657
– volume: 38
  start-page: 1
  issue: 1
  year: 2011
  end-page: 25
  ident: CR49
  article-title: The university of Florida sparse matrix collection
  publication-title: ACM Trans Math Softw
– ident: CR56
– volume: 122
  start-page: 361
  year: 2017
  end-page: 366
  ident: CR1
  article-title: Methodology for assessing cycling comfort during a smart city development
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.07.286
– ident: CR40
– ident: CR63
– ident: CR23
– ident: CR44
– ident: CR48
– volume: 5
  start-page: 20
  issue: 4
  year: 2016
  ident: CR6
  article-title: Cloud-Enhanced Robotic System for Smart City Crowd Control
  publication-title: J Sens Actuator Networks
  doi: 10.3390/jsan5040020
– ident: CR65
– ident: CR38
– volume: 13
  start-page: 53
  issue: 2
  year: 2017
  ident: CR10
  article-title: Crowd-sensing our Smart Cities: a Platform for Noise Monitoring and Acoustic Urban Planning
  publication-title: J Commun Softw Syst
  doi: 10.24138/jcomss.v13i2.373
– ident: CR17
– ident: CR31
– volume: 5
  start-page: 2615
  year: 2017
  end-page: 2635
  ident: CR29
  article-title: UTiLearn: A Personalised Ubiquitous Teaching and Learning System for Smart Societies
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2668840
– ident: CR55
– volume: 13
  start-page: 1
  issue: 1
  year: 2016
  end-page: 26
  ident: CR58
  article-title: Autotuning Runtime Specialization for Sparse Matrix-Vector Multiplication
  publication-title: ACM Trans Archit Code Optim
  doi: 10.1145/2851500
– ident: CR59
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 19
  ident: CR7
  article-title: 3D Design and Modeling of Smart Cities from a Computer Graphics Perspective
  publication-title: ISRN Comput Graph
  doi: 10.5402/2012/728913
– ident: CR28
– year: 2013
  ident: CR41
  publication-title: An efficient BDD-based implementation of Gauss-Seidel for CTMC analysis
– ident: CR62
– volume: 19
  start-page: 171
  issue: 2
  year: 2014
  end-page: 209
  ident: CR34
  article-title: Big data: A survey
  publication-title: Mob Networks Appl
  doi: 10.1007/s11036-013-0489-0
– ident: CR24
– volume: 52
  start-page: 56
  issue: 10
  year: 2009
  ident: CR52
  article-title: A view of the parallel computing landscape
  publication-title: Commun ACM
  doi: 10.1145/1562764.1562783
– ident: 1318_CR36
  doi: 10.1007/978-3-319-94180-6_12
– ident: 1318_CR18
  doi: 10.1007/978-3-319-94180-6_22
– ident: 1318_CR39
– volume: 38
  start-page: 1
  issue: 1
  year: 2011
  ident: 1318_CR49
  publication-title: ACM Trans Math Softw
– ident: 1318_CR50
  doi: 10.1109/IPDPSW.2018.00164
– volume: 11
  start-page: 546
  issue: 4
  year: 2016
  ident: 1318_CR2
  publication-title: Int J Sustain Dev Plan
  doi: 10.2495/SDP-V11-N4-546-557
– ident: 1318_CR19
  doi: 10.1007/978-3-319-94180-6_24
– ident: 1318_CR55
– ident: 1318_CR60
  doi: 10.1145/1375527.1375558
– ident: 1318_CR5
– volume: 22
  start-page: 804
  issue: 6
  year: 2011
  ident: 1318_CR14
  publication-title: J Manuf Technol Manag
  doi: 10.1108/17410381111149657
– ident: 1318_CR63
  doi: 10.1109/HPCC/SmartCity/DSS.2018.00116
– ident: 1318_CR64
– volume: 10
  start-page: 723
  issue: 4
  year: 2015
  ident: 1318_CR4
  publication-title: J Real-Time Image Process
  doi: 10.1007/s11554-014-0442-x
– ident: 1318_CR45
– ident: 1318_CR21
  doi: 10.1007/978-3-319-94180-6_15
– volume-title: An efficient BDD-based implementation of Gauss-Seidel for CTMC analysis
  year: 2013
  ident: 1318_CR41
– ident: 1318_CR47
  doi: 10.1109/ICPADS.2011.91
– ident: 1318_CR26
  doi: 10.1007/978-3-319-94180-6_13
– ident: 1318_CR38
– volume: 18
  start-page: 246
  issue: 12
  year: 2018
  ident: 1318_CR20
  publication-title: IJCSNS - Int J Comput Sci Netw Secur
– ident: 1318_CR61
  doi: 10.1109/ICPPW.2014.30
– volume-title: Parallel iterative solution method for large sparse linear equation systems
  year: 2005
  ident: 1318_CR33
– ident: 1318_CR54
– volume: 5
  start-page: 20
  issue: 4
  year: 2016
  ident: 1318_CR6
  publication-title: J Sens Actuator Networks
  doi: 10.3390/jsan5040020
– start-page: 373
  volume-title: Computational Analysis of Sound Scenes and Events
  year: 2018
  ident: 1318_CR11
  doi: 10.1007/978-3-319-63450-0_13
– ident: 1318_CR31
  doi: 10.1007/978-3-319-94180-6_29
– ident: 1318_CR23
  doi: 10.1007/978-3-319-01884-3_20
– volume: 9
  start-page: 947
  issue: 5
  year: 2019
  ident: 1318_CR30
  publication-title: Appl Sci
  doi: 10.3390/app9050947
– volume: 122
  start-page: 361
  year: 2017
  ident: 1318_CR1
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.07.286
– ident: 1318_CR40
– ident: 1318_CR65
– ident: 1318_CR22
  doi: 10.1016/j.procs.2017.05.439
– ident: 1318_CR44
– volume: 64
  start-page: 1107
  year: 2015
  ident: 1318_CR13
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2015.08.566
– ident: 1318_CR24
  doi: 10.1007/978-3-319-94180-6_16
– ident: 1318_CR59
  doi: 10.1109/IPDPSW.2017.155
– volume: 34
  start-page: 1518
  issue: 5
  year: 2011
  ident: 1318_CR16
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2010.08.002
– ident: 1318_CR9
  doi: 10.1109/SGCF.2016.7492425
– volume: 5
  start-page: 2615
  year: 2017
  ident: 1318_CR29
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2668840
– ident: 1318_CR35
  doi: 10.1016/j.procs.2017.05.439
– ident: 1318_CR51
  doi: 10.1109/ICPADS.2016.0120
– ident: 1318_CR17
  doi: 10.1109/ONDM.2008.4578420
– ident: 1318_CR32
  doi: 10.1109/MASCOT.2004.1348189
– ident: 1318_CR15
  doi: 10.1109/ISMS.2010.84
– ident: 1318_CR53
– volume: E101.D
  start-page: 2307
  issue: 9
  year: 2018
  ident: 1318_CR57
  publication-title: IEICE Trans Inf Syst
  doi: 10.1587/transinf.2017EDP7176
– volume: 76
  start-page: 301
  year: 2017
  ident: 1318_CR3
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2016.12.033
– volume-title: A Survey of Out-of-Core Analysis Techniques in Stochastic Modelling
  year: 2003
  ident: 1318_CR42
– volume: 52
  start-page: 56
  issue: 10
  year: 2009
  ident: 1318_CR52
  publication-title: Commun ACM
  doi: 10.1145/1562764.1562783
– volume: 2012
  start-page: 1
  year: 2012
  ident: 1318_CR7
  publication-title: ISRN Comput Graph
  doi: 10.5402/2012/728913
– ident: 1318_CR28
  doi: 10.1007/978-3-319-94180-6
– ident: 1318_CR66
– ident: 1318_CR43
– ident: 1318_CR62
– ident: 1318_CR37
  doi: 10.1007/978-3-319-94180-6_4
– ident: 1318_CR67
– volume: 53
  start-page: 291
  issue: 4
  year: 2016
  ident: 1318_CR8
  publication-title: Int J Comput Appl Technol
  doi: 10.1504/IJCAT.2016.076790
– volume: 109
  start-page: 1122
  year: 2017
  ident: 1318_CR27
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2017.05.440
– ident: 1318_CR48
  doi: 10.1109/MuCoCoS.2013.6633600
– ident: 1318_CR25
  doi: 10.1007/978-3-319-94180-6_30
– volume: 19
  start-page: 171
  issue: 2
  year: 2014
  ident: 1318_CR34
  publication-title: Mob Networks Appl
  doi: 10.1007/s11036-013-0489-0
– ident: 1318_CR56
– volume: 13
  start-page: 53
  issue: 2
  year: 2017
  ident: 1318_CR10
  publication-title: J Commun Softw Syst
  doi: 10.24138/jcomss.v13i2.373
– volume: 37
  start-page: 75
  issue: 1
  year: 2017
  ident: 1318_CR12
  publication-title: Int J Oper Prod Manag
  doi: 10.1108/IJOPM-03-2015-0179
– volume: 13
  start-page: 1
  issue: 1
  year: 2016
  ident: 1318_CR58
  publication-title: ACM Trans Archit Code Optim
  doi: 10.1145/2851500
– ident: 1318_CR46
SSID ssj0005584
Score 2.442136
Snippet SpMV is a vital computing operation of many scientific, engineering, economic and social applications, increasingly being used to develop timely intelligence...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 744
SubjectTerms Artificial intelligence
Communications Engineering
Computational fluid dynamics
Computer Communication Networks
Computer vision
Computing costs
Datasets
Decision trees
Distributed memory
Domains
Electrical Engineering
Engineering
IT in Business
Machine learning
Microprocessors
Networks
Optimization
Optimization techniques
Robotics
Smart cities
Software
Sparse matrices
Sparsity
SummonAdditionalLinks – databaseName: SpringerLink
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELXYDnBgR5RNc-AGluI4rRNuFYtAUKgooIpL5C0SUtugtiBx5M8ZZyGAAAnOduxoZmKP43nvEbKbCN-3njWUSaNoYCJGJWauVCecSTyPoNMzT1-Iy8uw243aBShsVFa7l1eS2Updgd2YI8_1HOiGYSRSPkmmcbsLnWDDdeeuKuyoh7mUbcgpHv66BVTm-zE-b0dVjvnlWjTbbU4W_veei2S-yC6hmYfDEpmwg2Uy94FzcIW83jfPzw6gCZ0-Rg20MgVpkAMDN2naA8xhofk0TjMmV2hXsAK4wsWlX6A2IU2gLYdOh6UHncfWHeTqEPnvP8AOR46Q12lpWYNz9NPhC7Syuk07WiW3J8c3h6e00GGgmgdiTE0jEFY3Eikxe0mMVSrRJvTRldpj2igPLW0ibi36VrFIYUtkhGAm8IXEDJ6vkalBOrDrBKRUkhut6w2pAqYwFnzDFFeRkYlu6KBGWOmOWBck5U4roxdX9MrOvDGaN87MG_Ma2Xt_5jGn6Pi191bp5bj4XEcx5qDCD-tCeN83h6HDatRFVCP7pdOr5p8n2_hb900y69Ts88KgLTI1Hj7ZbTKjn8cPo-FOFuVvwYz3Bg
  priority: 102
  providerName: Springer Nature
Title ZAKI: A Smart Method and Tool for Automatic Performance Optimization of Parallel SpMV Computations on Distributed Memory Machines
URI https://link.springer.com/article/10.1007/s11036-019-01318-3
https://www.proquest.com/docview/2267285770
https://www.proquest.com/docview/2886743579
Volume 28
WOSCitedRecordID wos001103024300021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-8153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005584
  issn: 1383-469X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH_aBwd2YONjWtlW-cANLOI4qRMuU_elodESrWOUXSJ_RUJqm9J2SBz5z_ecuMtAbBculiI7cZTfi_2z_d77AbwpRBjawBrKpFE0MimjEpkr1QVnEtcjCHqF9CfR7yfDYZr5Dbe5d6tcjonVQG1K7fbI34dJ4vzlY5EeTH9QpxrlTle9hMYqrDtm41z6esFR4-IRJ7WobcIpLgOHPmimDp1jLhVv4EJ4GNo15X9OTA3b_OuAtJp3Tjf_94234JlnnKRbm8hzWLGTF7BxLw_hS_h93T3_-IF0yWCMlkR6lao0kRNDLstyRJDXku7Noqyyu5KsCTUgn3HAGftITlIWJJMzp80yIoNp74rUihH1liDBBscuSa_T17IG-xiXs1-kV_ly2vkr-HJ6cnl0Rr02A9U8EgtqOpGwulNIiYymMFapQpskRHh1wLRRAX5zk3JrEW_FUoU1qRGCmSgUElk934a1STmxO0CkVJIbreOOVBFTaB-hYYqr1MhCd3TUArYEJtc-cbnTzxjlTcplB2aOYOYVmDlvwdu7e6Z12o5HW-8tEcz9LzzPkZeKMImFCP5dfYduC94tTaSpfriz148_bReeOkX72jloD9YWsxu7D0_0z8X3-awNq-LrtzasH570swu8Ohe0Xdk8lll8jeXF4OoWoRQGyQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VggQceCMCBeYAJ7BY25t4FwmhiFI1yoNIDSjisvi1ElKSDUkK6pE_xG9kvI8GEPTWA2d7bWv9zXjGnpkP4EmuhPCRd4xrZ1jsUs40Wa7M5pJr8kdo08udHqjRKJlO0_EO_GhyYUJYZaMTS0XtChvuyF-IJAnx8m2Vvl5-YYE1KryuNhQaFSz6_uQbuWzrV7192t-nQhy8nbw5ZDWrALMyVhvmOrHytpNrTWdx7rwxuXWJoIXZiFtnIvLZXCq9p5UanhpqSZ1S3MVCabJHJY17AS7GMlFBrvqKbUNK2klFoptIRm7ntE7SqVL1eCj9G4WUIU5yxOTvB-HWuv3jQbY85w6u_29_6AZcqy1q7FYicBN2_OIWXP2lzuJt-P6x2--9xC4ezUlScFiyZqNeOJwUxQzJbsfu8aYoq9fieJtKge9Ioc7rTFUschzrVeCemeHRcvgBK0aM6soTqcN-KEIc-MO8oznmxeoEh2Wsql_fgffn8g_uwu6iWPh7gFobLZ217Y42MTeEf-G4kSZ1OrcdG7eAN0DIbF2YPfCDzLJtSekAnozAk5XgyWQLnp1-s6zKkpzZe69BTFarqHVGdrcSSVup6O_Np2hqwfMGktvmf092_-zRHsPlw8lwkA16o_4DuCLIZqwCofZgd7M69g_hkv26-bxePSplC-HTeUP1Jx7qYBo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VglA58EYECvgAJ7C6tnfjXSSEIkJElCas1IKiXrZ-rVQpyYYkBfXI3-LXMd5HFxD01gNne21r_c14xp6ZD-B5Ljl3gbOUKatpaBNGFVqu1OSCKfRHcNPLnd6Xk0k8nSbpFvxocmF8WGWjE0tFbQvj78j3eBz7ePlIJnt5HRaR9gdvl1-oZ5DyL60NnUYFkZE7-4bu2_rNsI97_YLzwfvDdx9ozTBAjQjlhtpuKJ3p5krhuZxbp3VubMxxkSZgxuoA_TebCOdw1ZolGlsSKyWzIZcKbVOB416BqxJ9TB9OmEZHbXhJFFeEurGg2DytE3aqtD3mywAHPn2IoUxR8fuh2Fq6fzzOlmfe4Nb__Lduw83a0ia9SjTuwJZb3IUbv9RfvAffj3qj4WvSIwdzlCAyLtm0iVpYclgUM4L2POmdboqyqi1J2xQL8hEV7bzOYCVFTlK18pw0M3KwHH8mFVNGdRVKsEPfFyf2vGLO4hzzYnVGxmUMq1vfh0-X8g8ewPaiWLiHQJTSSlhjoq7SIdMoF9wyLXRiVW66JuwAa0CRmbpgu-cNmWVtqWkPpAyBlJVAykQHXp5_s6zKlVzYe7dBT1arrnWG9rjkcSRl8Pfmc2R14FUDz7b535M9uni0Z3AdEZrtDyejx7DD0ZSs4qN2YXuzOnVP4Jr5ujlZr56WYkbg-LKR-hNndWk-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ZAKI%3A+A+Smart+Method+and+Tool+for+Automatic+Performance+Optimization+of+Parallel+SpMV+Computations+on+Distributed+Memory+Machines&rft.jtitle=Mobile+networks+and+applications&rft.au=Usman%2C+Sardar&rft.au=Mehmood%2C+Rashid&rft.au=Katib%2C+Iyad&rft.au=Albeshri%2C+Aiiad&rft.date=2023-04-01&rft.issn=1383-469X&rft.eissn=1572-8153&rft.volume=28&rft.issue=2&rft.spage=744&rft.epage=763&rft_id=info:doi/10.1007%2Fs11036-019-01318-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11036_019_01318_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-469X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-469X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-469X&client=summon