Quasilinear Extreme Learning Machine Model Based Internal Model Control for Nonlinear Process

A new strategy for internal model control (IMC) is proposed using a regression algorithm of quasilinear model with extreme learning machine (QL-ELM). Aimed at the chemical process with nonlinearity, the learning process of the internal model and inverse model is derived. The proposed QL-ELM is const...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering Vol. 2015; no. 2015; pp. 1 - 9
Main Authors: Li, Dazi, Jin, Qibing, Xie, Qianwen
Format: Journal Article
Language:English
Published: Cairo, Egypt Hindawi Publishing Corporation 01.01.2015
John Wiley & Sons, Inc
Subjects:
ISSN:1024-123X, 1563-5147
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new strategy for internal model control (IMC) is proposed using a regression algorithm of quasilinear model with extreme learning machine (QL-ELM). Aimed at the chemical process with nonlinearity, the learning process of the internal model and inverse model is derived. The proposed QL-ELM is constructed as a linear ARX model with a complicated nonlinear coefficient. It shows some good approximation ability and fast convergence. The complicated coefficients are separated into two parts. The linear part is determined by recursive least square (RLS), while the nonlinear part is identified through extreme learning machine. The parameters of linear part and the output weights of ELM are estimated iteratively. The proposed internal model control is applied to CSTR process. The effectiveness and accuracy of the proposed method are extensively verified through numerical results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1024-123X
1563-5147
DOI:10.1155/2015/181389