Image Restoration via Reconciliation of Group Sparsity and Low-Rank Models

Image nonlocal self-similarity (NSS) property has been widely exploited via various sparsity models such as joint sparsity (JS) and group sparse coding (GSC). However, the existing NSS-based sparsity models are either too restrictive, e.g. , JS enforces the sparse codes to share the same support, or...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing Vol. 30; pp. 5223 - 5238
Main Authors: Zha, Zhiyuan, Wen, Bihan, Yuan, Xin, Zhou, Jiantao, Zhu, Ce
Format: Journal Article
Language:English
Published: United States IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1057-7149, 1941-0042, 1941-0042
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Image nonlocal self-similarity (NSS) property has been widely exploited via various sparsity models such as joint sparsity (JS) and group sparse coding (GSC). However, the existing NSS-based sparsity models are either too restrictive, e.g. , JS enforces the sparse codes to share the same support, or too general, e.g. , GSC imposes only plain sparsity on the group coefficients, which limit their effectiveness for modeling real images. In this paper, we propose a novel NSS-based sparsity model, namely, low-rank regularized group sparse coding (LR-GSC) , to bridge the gap between the popular GSC and JS. The proposed LR-GSC model simultaneously exploits the sparsity and low-rankness of the dictionary-domain coefficients for each group of similar patches. An alternating minimization with an adaptive adjusted parameter strategy is developed to solve the proposed optimization problem for different image restoration tasks, including image denoising, image deblocking, image inpainting, and image compressive sensing. Extensive experimental results demonstrate that the proposed LR-GSC algorithm outperforms many popular or state-of-the-art methods in terms of objective and perceptual metrics.
AbstractList Image nonlocal self-similarity (NSS) property has been widely exploited via various sparsity models such as joint sparsity (JS) and group sparse coding (GSC). However, the existing NSS-based sparsity models are either too restrictive, e.g. , JS enforces the sparse codes to share the same support, or too general, e.g. , GSC imposes only plain sparsity on the group coefficients, which limit their effectiveness for modeling real images. In this paper, we propose a novel NSS-based sparsity model, namely, low-rank regularized group sparse coding (LR-GSC) , to bridge the gap between the popular GSC and JS. The proposed LR-GSC model simultaneously exploits the sparsity and low-rankness of the dictionary-domain coefficients for each group of similar patches. An alternating minimization with an adaptive adjusted parameter strategy is developed to solve the proposed optimization problem for different image restoration tasks, including image denoising, image deblocking, image inpainting, and image compressive sensing. Extensive experimental results demonstrate that the proposed LR-GSC algorithm outperforms many popular or state-of-the-art methods in terms of objective and perceptual metrics.
Image nonlocal self-similarity (NSS) property has been widely exploited via various sparsity models such as joint sparsity (JS) and group sparse coding (GSC). However, the existing NSS-based sparsity models are either too restrictive, e.g., JS enforces the sparse codes to share the same support, or too general, e.g., GSC imposes only plain sparsity on the group coefficients, which limit their effectiveness for modeling real images. In this paper, we propose a novel NSS-based sparsity model, namely, low-rank regularized group sparse coding (LR-GSC), to bridge the gap between the popular GSC and JS. The proposed LR-GSC model simultaneously exploits the sparsity and low-rankness of the dictionary-domain coefficients for each group of similar patches. An alternating minimization with an adaptive adjusted parameter strategy is developed to solve the proposed optimization problem for different image restoration tasks, including image denoising, image deblocking, image inpainting, and image compressive sensing. Extensive experimental results demonstrate that the proposed LR-GSC algorithm outperforms many popular or state-of-the-art methods in terms of objective and perceptual metrics.Image nonlocal self-similarity (NSS) property has been widely exploited via various sparsity models such as joint sparsity (JS) and group sparse coding (GSC). However, the existing NSS-based sparsity models are either too restrictive, e.g., JS enforces the sparse codes to share the same support, or too general, e.g., GSC imposes only plain sparsity on the group coefficients, which limit their effectiveness for modeling real images. In this paper, we propose a novel NSS-based sparsity model, namely, low-rank regularized group sparse coding (LR-GSC), to bridge the gap between the popular GSC and JS. The proposed LR-GSC model simultaneously exploits the sparsity and low-rankness of the dictionary-domain coefficients for each group of similar patches. An alternating minimization with an adaptive adjusted parameter strategy is developed to solve the proposed optimization problem for different image restoration tasks, including image denoising, image deblocking, image inpainting, and image compressive sensing. Extensive experimental results demonstrate that the proposed LR-GSC algorithm outperforms many popular or state-of-the-art methods in terms of objective and perceptual metrics.
Author Yuan, Xin
Zhu, Ce
Zhou, Jiantao
Wen, Bihan
Zha, Zhiyuan
Author_xml – sequence: 1
  givenname: Zhiyuan
  orcidid: 0000-0002-5515-5339
  surname: Zha
  fullname: Zha, Zhiyuan
  email: zhiyuan.zha@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
– sequence: 2
  givenname: Bihan
  orcidid: 0000-0002-6874-6453
  surname: Wen
  fullname: Wen, Bihan
  email: bihan.wen@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
– sequence: 3
  givenname: Xin
  orcidid: 0000-0002-8311-7524
  surname: Yuan
  fullname: Yuan, Xin
  email: xyuan@bell-labs.com
  organization: Nokia Bell Labs, Murray Hill, NJ, USA
– sequence: 4
  givenname: Jiantao
  orcidid: 0000-0002-6015-2618
  surname: Zhou
  fullname: Zhou, Jiantao
  email: jtzhou@umac.mo
  organization: Department of Computer and Information Science, State Key Laboratory of Internet of Things for Smart City, University of Macau, Macau, China
– sequence: 5
  givenname: Ce
  orcidid: 0000-0001-7607-707X
  surname: Zhu
  fullname: Zhu, Ce
  email: eczhu@uestc.edu.cn
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34010133$$D View this record in MEDLINE/PubMed
BookMark eNp9kctLwzAcx4Mo7qF3QZCCFy-dvzz6yFGGzslEmbuXNE0ls2tm0ir7783s3GEHD3ny-SZfvt8BOq5NrRC6wDDCGPjtYvo6IkDwiEKSUsKPUB9zhkMARo79HqIkTDDjPTRwbgmAWYTjU9SjDDBgSvvoaboS7yqYK9cYKxpt6uBLC3-Wppa60t2VKYOJNe06eFsL63SzCURdBDPzHc5F_RE8m0JV7gydlKJy6ny3DtHi4X4xfgxnL5Pp-G4WSsqSxs-x9J455WlM0qRgPM85KzjjkNJECJIWkspSxILwMldEUZACUsC5HyqmQ3TTPbu25rP1vrOVdlJVlaiVaV1GIsI5SdKIefT6AF2a1tbenKcooT6CCHvqake1-UoV2drqlbCb7C8kD0AHSGucs6rcIxiybQ-Z7yHb9pDtevCS-EAidfObZWOFrv4TXnZCrZTa_8MZjXgc0R-DApH_
CODEN IIPRE4
CitedBy_id crossref_primary_10_3390_math10203810
crossref_primary_10_1109_TIP_2021_3086049
crossref_primary_10_1016_j_dsp_2021_103270
crossref_primary_10_1109_TNNLS_2022_3144630
crossref_primary_10_1109_TCI_2023_3244396
crossref_primary_10_1109_TMM_2024_3521833
crossref_primary_10_1016_j_sigpro_2024_109513
crossref_primary_10_1109_JSTARS_2025_3568783
crossref_primary_10_1016_j_asoc_2024_111322
crossref_primary_10_1109_TCI_2022_3224281
crossref_primary_10_1088_1361_6560_ad8c98
crossref_primary_10_1016_j_ijleo_2023_171013
crossref_primary_10_1016_j_optlastec_2023_110061
crossref_primary_10_1016_j_sigpro_2023_109191
crossref_primary_10_1016_j_phycom_2023_102231
crossref_primary_10_1049_ipr2_12982
crossref_primary_10_1016_j_patcog_2025_111697
crossref_primary_10_1049_ipr2_12583
crossref_primary_10_1186_s13634_021_00798_4
crossref_primary_10_3390_s23062888
crossref_primary_10_1016_j_sigpro_2022_108896
crossref_primary_10_1109_JSTARS_2023_3244069
crossref_primary_10_3390_rs14194797
crossref_primary_10_1016_j_sigpro_2023_109284
crossref_primary_10_1016_j_jvcir_2022_103723
crossref_primary_10_1016_j_sigpro_2022_108690
crossref_primary_10_1109_JSTARS_2023_3301149
crossref_primary_10_1007_s10489_022_03259_z
crossref_primary_10_1016_j_sigpro_2025_110220
crossref_primary_10_1117_1_JEI_31_4_043012
crossref_primary_10_1016_j_ins_2023_04_010
crossref_primary_10_1016_j_sigpro_2022_108650
crossref_primary_10_1109_TIP_2022_3176220
crossref_primary_10_1007_s11045_023_00867_x
crossref_primary_10_3390_s22051893
crossref_primary_10_1016_j_dsp_2022_103694
crossref_primary_10_1016_j_patcog_2022_109040
crossref_primary_10_1016_j_sigpro_2022_108926
crossref_primary_10_1109_TAI_2023_3323628
crossref_primary_10_1109_TSIPN_2022_3169633
crossref_primary_10_1007_s00371_023_02786_1
crossref_primary_10_1109_LSP_2023_3241847
crossref_primary_10_1109_TCYB_2023_3251730
crossref_primary_10_1016_j_dsp_2023_104029
crossref_primary_10_1109_TCI_2024_3384812
crossref_primary_10_1109_TIP_2023_3242589
crossref_primary_10_1109_TMM_2023_3324490
crossref_primary_10_1016_j_sigpro_2024_109536
crossref_primary_10_1109_TIFS_2023_3337717
crossref_primary_10_1016_j_knosys_2022_108590
crossref_primary_10_1007_s11465_023_0762_2
crossref_primary_10_1109_JSEN_2023_3306769
crossref_primary_10_3390_math12091412
crossref_primary_10_1016_j_optlaseng_2022_107413
crossref_primary_10_1109_TCSVT_2023_3306811
crossref_primary_10_1016_j_imavis_2024_105210
crossref_primary_10_1109_TCYB_2021_3084931
crossref_primary_10_1016_j_inffus_2025_103013
crossref_primary_10_1016_j_cviu_2024_104216
crossref_primary_10_1007_s41965_024_00173_w
crossref_primary_10_1109_TCSVT_2022_3165587
crossref_primary_10_1016_j_cam_2025_116695
crossref_primary_10_1016_j_dsp_2025_105169
crossref_primary_10_1109_ACCESS_2024_3442373
crossref_primary_10_1109_TCSVT_2022_3233589
crossref_primary_10_1007_s11042_023_16636_8
crossref_primary_10_1016_j_asoc_2023_110861
crossref_primary_10_3390_electronics14020353
crossref_primary_10_1088_1361_6420_ad0c42
Cites_doi 10.1007/s101070100280
10.1109/CVPR.2016.55
10.1007/978-3-030-01261-8_27
10.1109/TVCG.2017.2702738
10.1109/TPAMI.2010.161
10.1109/CVPR.2005.38
10.1109/JETCAS.2012.2220391
10.1109/TIP.2018.2875569
10.1109/TIP.2013.2274386
10.1109/TIP.2020.3005515
10.1109/TIP.2017.2651400
10.1109/TIP.2012.2221729
10.1109/ALLERTON.2015.7447163
10.1109/TIP.2016.2627807
10.1109/TIP.2011.2160072
10.1109/TIP.2016.2515985
10.1109/TIP.2014.2323127
10.1007/s11263-014-0761-1
10.1109/ICCV.2015.36
10.1109/TPAMI.2016.2596743
10.1109/ICME.2017.8019334
10.1109/TIP.2020.3015545
10.1137/100817206
10.1007/s00371-016-1318-9
10.1109/TCSVT.2014.2302380
10.1109/TIP.2003.819861
10.1109/TSP.2012.2226445
10.1137/040605412
10.1109/TIP.2016.2562563
10.1109/TIP.2013.2257813
10.1109/TMM.2016.2614427
10.1109/TIP.2007.901238
10.1109/TIP.2017.2662206
10.1109/CVPR.2017.411
10.1109/TNNLS.2021.3057439
10.1109/ICIP40778.2020.9190707
10.1109/LSP.2017.2731791
10.1109/CVPR42600.2020.00196
10.1109/TIP.2010.2076294
10.1109/TIP.2018.2862357
10.1109/18.382009
10.1109/ICCV.2019.00259
10.1109/CVPR.2018.00984
10.1007/978-3-030-58542-6_15
10.1109/ICCV.2009.5459452
10.1109/TIP.2018.2839891
10.1007/s11263-016-0930-5
10.1109/TIP.2015.2446943
10.1109/TIP.2018.2867943
10.1109/83.862633
10.1007/s11263-015-0808-y
10.1016/0167-2789(92)90242-F
10.1109/TCSVT.2016.2556498
10.1109/CVPR.2017.300
10.1109/TCSVT.2016.2580399
10.1109/CVPR.2014.366
10.1109/TIP.2020.3021291
10.1109/TIP.2012.2235847
10.1109/TIP.2020.2972109
10.1109/ICCV.2011.6126278
10.1109/CVPR.2018.00196
10.1109/ICCV.2015.73
10.1109/ICME46284.2020.9102930
10.1109/MSP.2020.3023869
10.1109/TIP.2016.2590318
10.1137/080738970
10.1109/TIP.2019.2928136
10.1109/TBME.2012.2217493
10.1109/TIP.2019.2958309
10.1109/TIP.2006.881969
10.1109/TIP.2007.891788
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2021.3078329
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 5238
ExternalDocumentID 34010133
10_1109_TIP_2021_3078329
9435965
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Ministry of Education, Republic of Singapore, under its Academic Research Fund Tier 1 Project RG137/20 and the Start-Up Grant
– fundername: Rapid-Rich Object Search (ROSE) Laboratory, Nanyang Technological University, Singapore
  funderid: 10.13039/501100001475
– fundername: Macau Science and Technology Development Fund, Macau SAR
  grantid: 077/2018/A2; 0060/2019/A1
– fundername: National Natural Science Foundation of China
  grantid: 62020106011; U19A2052; 61971476
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
NPM
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c347t-c36c20293986287d49bb94d9490837aa28dc3cfa6a29fbe2e30ca0801b801e63
IEDL.DBID RIE
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000655246800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Sat Sep 27 18:19:08 EDT 2025
Mon Jun 30 10:19:57 EDT 2025
Wed Feb 19 02:28:22 EST 2025
Sat Nov 29 03:21:14 EST 2025
Tue Nov 18 22:41:40 EST 2025
Wed Aug 27 02:51:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-c36c20293986287d49bb94d9490837aa28dc3cfa6a29fbe2e30ca0801b801e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6015-2618
0000-0002-6874-6453
0000-0002-5515-5339
0000-0002-8311-7524
0000-0001-7607-707X
PMID 34010133
PQID 2532301351
PQPubID 85429
PageCount 16
ParticipantIDs pubmed_primary_34010133
proquest_journals_2532301351
crossref_primary_10_1109_TIP_2021_3078329
ieee_primary_9435965
proquest_miscellaneous_2529927854
crossref_citationtrail_10_1109_TIP_2021_3078329
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
zeyde (ref80) 2010
ref56
ref12
ref59
ref15
zhang (ref72) 2013
ref58
ref14
ref53
ref52
ref55
ref54
ref10
ref17
ref16
ref19
ref18
shi (ref77) 2020; 29
liu (ref8) 2018
ren (ref57) 2013
ref51
ref50
ref46
ref48
ref47
ref42
ref41
ref44
wang (ref24) 2012
ref49
mastan (ref9) 2021
ref7
ref4
ref3
ref6
ref5
ref81
ref40
wen (ref31) 2020
ref79
ref35
ref78
ref34
ref37
ref36
ref75
ref74
ref30
ref33
ref76
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref68
ref67
ref23
ref26
ref69
ref25
ref64
ref20
ref63
boyd (ref43) 2011
ref66
ref22
ref65
ref21
avriel (ref45) 2003
ref28
ref27
ref29
ref60
mataev (ref11) 2019
ref62
ref61
References_xml – ident: ref44
  doi: 10.1007/s101070100280
– ident: ref38
  doi: 10.1109/CVPR.2016.55
– start-page: 2836
  year: 2013
  ident: ref72
  article-title: Improved total variation based image compressive sensing recovery by nonlocal regularization
  publication-title: Proc IEEE Int Symp Circuits Syst (ISCAS)
– ident: ref63
  doi: 10.1007/978-3-030-01261-8_27
– ident: ref69
  doi: 10.1109/TVCG.2017.2702738
– ident: ref51
  doi: 10.1109/TPAMI.2010.161
– ident: ref15
  doi: 10.1109/CVPR.2005.38
– ident: ref73
  doi: 10.1109/JETCAS.2012.2220391
– ident: ref71
  doi: 10.1109/TIP.2018.2875569
– ident: ref56
  doi: 10.1109/TIP.2013.2274386
– ident: ref35
  doi: 10.1109/TIP.2020.3005515
– ident: ref48
  doi: 10.1109/TIP.2017.2651400
– ident: ref6
  doi: 10.1109/TIP.2012.2221729
– start-page: 2897
  year: 2021
  ident: ref9
  article-title: DeepCFL: Deep contextual features learning from a single image
  publication-title: Proc IEEE/CVF Winter Conf Appl Comput Vis
– year: 2003
  ident: ref45
  publication-title: Nonlinear Programming Analysis and Methods
– ident: ref75
  doi: 10.1109/ALLERTON.2015.7447163
– start-page: 711
  year: 2010
  ident: ref80
  article-title: On single image scale-up using sparse-representations
  publication-title: Proc Int Conf Curves Surf
– ident: ref79
  doi: 10.1109/TIP.2016.2627807
– ident: ref37
  doi: 10.1109/TIP.2011.2160072
– ident: ref30
  doi: 10.1109/TIP.2016.2515985
– ident: ref12
  doi: 10.1109/TIP.2014.2323127
– ident: ref4
  doi: 10.1007/s11263-014-0761-1
– ident: ref21
  doi: 10.1109/ICCV.2015.36
– ident: ref54
  doi: 10.1109/TPAMI.2016.2596743
– ident: ref33
  doi: 10.1109/ICME.2017.8019334
– ident: ref17
  doi: 10.1109/TIP.2020.3015545
– ident: ref5
  doi: 10.1137/100817206
– ident: ref39
  doi: 10.1007/s00371-016-1318-9
– year: 2020
  ident: ref31
  article-title: A set-theoretic study of the relationships of image models and priors for restoration problems
  publication-title: arXiv 2003 12985
– ident: ref66
  doi: 10.1109/TCSVT.2014.2302380
– ident: ref53
  doi: 10.1109/TIP.2003.819861
– ident: ref14
  doi: 10.1109/TSP.2012.2226445
– ident: ref2
  doi: 10.1137/040605412
– ident: ref74
  doi: 10.1109/TIP.2016.2562563
– start-page: 1
  year: 2019
  ident: ref11
  article-title: DeepRED: Deep image prior powered by red
  publication-title: Proc IEEE/CVF Int Conf Comput Vis Workshops
– ident: ref81
  doi: 10.1109/TIP.2013.2257813
– ident: ref20
  doi: 10.1109/TMM.2016.2614427
– ident: ref19
  doi: 10.1109/TIP.2007.901238
– ident: ref78
  doi: 10.1109/TIP.2017.2662206
– ident: ref29
  doi: 10.1109/CVPR.2017.411
– ident: ref23
  doi: 10.1109/TNNLS.2021.3057439
– ident: ref10
  doi: 10.1109/ICIP40778.2020.9190707
– ident: ref18
  doi: 10.1109/LSP.2017.2731791
– ident: ref55
  doi: 10.1109/CVPR42600.2020.00196
– ident: ref65
  doi: 10.1109/TIP.2010.2076294
– ident: ref49
  doi: 10.1109/TIP.2018.2862357
– ident: ref42
  doi: 10.1109/18.382009
– ident: ref64
  doi: 10.1109/ICCV.2019.00259
– ident: ref70
  doi: 10.1109/CVPR.2018.00984
– ident: ref28
  doi: 10.1007/978-3-030-58542-6_15
– ident: ref16
  doi: 10.1109/ICCV.2009.5459452
– ident: ref62
  doi: 10.1109/TIP.2018.2839891
– start-page: 516
  year: 2013
  ident: ref57
  article-title: Image blocking artifacts reduction via patch clustering and low-rank minimization
  publication-title: Proc Data Compress Conf
– ident: ref25
  doi: 10.1007/s11263-016-0930-5
– ident: ref67
  doi: 10.1109/TIP.2015.2446943
– ident: ref59
  doi: 10.1109/TIP.2018.2867943
– ident: ref52
  doi: 10.1109/83.862633
– ident: ref22
  doi: 10.1007/s11263-015-0808-y
– start-page: 1673
  year: 2018
  ident: ref8
  article-title: Non-local recurrent network for image restoration
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref1
  doi: 10.1016/0167-2789(92)90242-F
– start-page: 231
  year: 2012
  ident: ref24
  article-title: Nonlocal spectral prior model for low-level vision
  publication-title: Proc Asian Conf Comput Vis
– ident: ref68
  doi: 10.1109/TCSVT.2016.2556498
– ident: ref61
  doi: 10.1109/CVPR.2017.300
– ident: ref58
  doi: 10.1109/TCSVT.2016.2580399
– ident: ref7
  doi: 10.1109/CVPR.2014.366
– year: 2011
  ident: ref43
  publication-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
– ident: ref50
  doi: 10.1109/TIP.2020.3021291
– ident: ref36
  doi: 10.1109/TIP.2012.2235847
– ident: ref13
  doi: 10.1109/TIP.2020.2972109
– ident: ref46
  doi: 10.1109/ICCV.2011.6126278
– ident: ref76
  doi: 10.1109/CVPR.2018.00196
– ident: ref60
  doi: 10.1109/ICCV.2015.73
– ident: ref32
  doi: 10.1109/ICME46284.2020.9102930
– ident: ref40
  doi: 10.1109/MSP.2020.3023869
– ident: ref47
  doi: 10.1109/TIP.2016.2590318
– ident: ref34
  doi: 10.1137/080738970
– volume: 29
  start-page: 375
  year: 2020
  ident: ref77
  article-title: Image compressed sensing using convolutional neural network
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2019.2928136
– ident: ref27
  doi: 10.1109/TBME.2012.2217493
– ident: ref26
  doi: 10.1109/TIP.2019.2958309
– ident: ref3
  doi: 10.1109/TIP.2006.881969
– ident: ref41
  doi: 10.1109/TIP.2007.891788
SSID ssj0014516
Score 2.5841334
Snippet Image nonlocal self-similarity (NSS) property has been widely exploited via various sparsity models such as joint sparsity (JS) and group sparse coding (GSC)....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5223
SubjectTerms Adaptation models
adaptive parameter adjustment
Algorithms
alternating minimization
Coding
Dictionaries
Group sparse coding
Image coding
Image denoising
Image restoration
low-rank regularized group sparse coding
Mathematical models
Minimization
Noise reduction
Optimization
Self-similarity
Sparse matrices
Sparsity
Title Image Restoration via Reconciliation of Group Sparsity and Low-Rank Models
URI https://ieeexplore.ieee.org/document/9435965
https://www.ncbi.nlm.nih.gov/pubmed/34010133
https://www.proquest.com/docview/2532301351
https://www.proquest.com/docview/2529927854
Volume 30
WOSCitedRecordID wos000655246800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB508aAH17f1RQQvgnVrkybNUURRERHdw95KnrC4tuLu6t83SbtFQQUPLYWmbZiZdGbyJfMBHFGdS40pjbm2WUwYZrHkJokN59ZKF5EwG-rM3rH7-3ww4A9zcNLuhTHGhMVn5tRfBixfV2rqp8p63Pl2TrN5mGeM1nu1WsTAE84GZDNjMXNh_wySTHivf_PgEsH07BR7zCr1hUIx8bXVMP7mjQK9yu-RZvA4V93_9XUFlpvIEp3XprAKc6Zcg24TZaJmDI_XYOlLCcJ1uL15cX8U9BgIZoKW0PtQIJ-Vlmo4qhWHKovCJBV6ehVhFQcSpUZ31Uf8KMpn5AnVRuMN6F9d9i-u44ZfIVaYsIk7U-XkwjF3aU3ONOFScqK5xwIxEyLNtcLKCipSbqVJDU6UcBHmmXSHoXgTOmVVmm1A2LKMS5uk0miCVS4SQwShxoWDOs8yFkFvJuZCNbXHPQXGqAg5SMILp6PC66hodBTBcfvEa11344-2617-bbtG9BHszTRZNANzXKQZdkmXpyWM4LC97YaUx0lEaaqpb-N8dMryjESwVVtA--6Z4ez8_M1dWPQ9q-do9qAzeZuafVhQ75Ph-O3A2e0gPwh2-wlpROVN
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RitT2AOXRNi0FI_WCRNjgRxwfqwrE0mWFYA_cIj-lVbcJ2lf_fm0nG4FEK3FIFClOYs2MMzP-7PkAvuWmUIbkeSqMYynlhKdK2Cy1QjinfETCXawzO-DDYXF_L27W4KTbC2OtjYvP7Gm4jFi-qfUiTJX1hPftImev4DWjFGfNbq0OMwiUsxHbZDzlPvBfgZKZ6I36Nz4VxGenJKBWOJQKJTRUVyPkiT-KBCv_jjWjz7nYellv38NmG1ui740xbMOarXZgq40zUTuKZzvw7lERwl246v_2_xR0Gylmop7QcixRyEsrPZ40qkO1Q3GaCt09yLiOA8nKoEH9J72V1S8UKNUmsz0YXZyPflymLcNCqgnlc3_OtZeLIMInNgU3VCglqBEBDSRcSlwYTbSTucTCKYstybT0MeaZ8ofNyQdYr-rKfgJEHGdCuQwrayjRhcwslTS3PiA0BWM8gd5KzKVuq48HEoxJGbOQTJReR2XQUdnqKIHj7omHpvLGf9ruBvl37VrRJ7C_0mTZDs1ZiRnxaVcgJkzgqLvtB1VASmRl60Vo47005gWjCXxsLKB798pwPj__zUN4czm6HpSD_vDnF3gbetnM2OzD-ny6sF9hQy_n49n0IFrvXxgG56w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Restoration+via+Reconciliation+of+Group+Sparsity+and+Low-Rank+Models&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Zha%2C+Zhiyuan&rft.au=Wen%2C+Bihan&rft.au=Yuan%2C+Xin&rft.au=Zhou%2C+Jiantao&rft.date=2021-01-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=30&rft.spage=5223&rft.epage=5238&rft_id=info:doi/10.1109%2FTIP.2021.3078329&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2021_3078329
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon