Compact Representation of High-Dimensional Feature Vectors for Large-Scale Image Recognition and Retrieval

In large-scale visual recognition and image retrieval tasks, feature vectors, such as Fisher vector (FV) or the vector of locally aggregated descriptors (VLAD), have achieved state-of-the-art results. However, the combination of the large numbers of examples and high-dimensional vectors necessitates...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing Vol. 25; no. 5; pp. 2407 - 2419
Main Authors: Zhang, Yu, Wu, Jianxin, Cai, Jianfei
Format: Journal Article
Language:English
Published: United States IEEE 01.05.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1057-7149, 1941-0042, 1941-0042
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In large-scale visual recognition and image retrieval tasks, feature vectors, such as Fisher vector (FV) or the vector of locally aggregated descriptors (VLAD), have achieved state-of-the-art results. However, the combination of the large numbers of examples and high-dimensional vectors necessitates dimensionality reduction, in order to reduce its storage and CPU costs to a reasonable range. In spite of the popularity of various feature compression methods, this paper shows that the feature (dimension) selection is a better choice for high-dimensional FV/VLAD than the feature (dimension) compression methods, e.g., product quantization. We show that strong correlation among the feature dimensions in the FV and the VLAD may not exist, which renders feature selection a natural choice. We also show that, many dimensions in FV/VLAD are noise. Throwing them away using feature selection is better than compressing them and useful dimensions altogether using feature compression methods. To choose features, we propose an efficient importance sorting algorithm considering both the supervised and unsupervised cases, for visual recognition and image retrieval, respectively. Combining with the 1-bit quantization, feature selection has achieved both higher accuracy and less computational cost than feature compression methods, such as product quantization, on the FV and the VLAD image representations.
AbstractList In large-scale visual recognition and image retrieval tasks, feature vectors, such as Fisher vector (FV) or the vector of locally aggregated descriptors (VLAD), have achieved state-of-the-art results. However, the combination of the large numbers of examples and high-dimensional vectors necessitates dimensionality reduction, in order to reduce its storage and CPU costs to a reasonable range. In spite of the popularity of various feature compression methods, this paper shows that the feature (dimension) selection is a better choice for high-dimensional FV/VLAD than the feature (dimension) compression methods, e.g., product quantization. We show that strong correlation among the feature dimensions in the FV and the VLAD may not exist, which renders feature selection a natural choice. We also show that, many dimensions in FV/VLAD are noise. Throwing them away using feature selection is better than compressing them and useful dimensions altogether using feature compression methods. To choose features, we propose an efficient importance sorting algorithm considering both the supervised and unsupervised cases, for visual recognition and image retrieval, respectively. Combining with the 1-bit quantization, feature selection has achieved both higher accuracy and less computational cost than feature compression methods, such as product quantization, on the FV and the VLAD image representations.
In large-scale visual recognition and image retrieval tasks, feature vectors, such as Fisher vector (FV) or the vector of locally aggregated descriptors (VLAD), have achieved state-of-the-art results. However, the combination of the large numbers of examples and high-dimensional vectors necessitates dimensionality reduction, in order to reduce its storage and CPU costs to a reasonable range. In spite of the popularity of various feature compression methods, this paper shows that the feature (dimension) selection is a better choice for high-dimensional FV/VLAD than the feature (dimension) compression methods, e.g., product quantization. We show that strong correlation among the feature dimensions in the FV and the VLAD may not exist, which renders feature selection a natural choice. We also show that, many dimensions in FV/VLAD are noise. Throwing them away using feature selection is better than compressing them and useful dimensions altogether using feature compression methods. To choose features, we propose an efficient importance sorting algorithm considering both the supervised and unsupervised cases, for visual recognition and image retrieval, respectively. Combining with the 1-bit quantization, feature selection has achieved both higher accuracy and less computational cost than feature compression methods, such as product quantization, on the FV and the VLAD image representations.In large-scale visual recognition and image retrieval tasks, feature vectors, such as Fisher vector (FV) or the vector of locally aggregated descriptors (VLAD), have achieved state-of-the-art results. However, the combination of the large numbers of examples and high-dimensional vectors necessitates dimensionality reduction, in order to reduce its storage and CPU costs to a reasonable range. In spite of the popularity of various feature compression methods, this paper shows that the feature (dimension) selection is a better choice for high-dimensional FV/VLAD than the feature (dimension) compression methods, e.g., product quantization. We show that strong correlation among the feature dimensions in the FV and the VLAD may not exist, which renders feature selection a natural choice. We also show that, many dimensions in FV/VLAD are noise. Throwing them away using feature selection is better than compressing them and useful dimensions altogether using feature compression methods. To choose features, we propose an efficient importance sorting algorithm considering both the supervised and unsupervised cases, for visual recognition and image retrieval, respectively. Combining with the 1-bit quantization, feature selection has achieved both higher accuracy and less computational cost than feature compression methods, such as product quantization, on the FV and the VLAD image representations.
Author Yu Zhang
Jianxin Wu
Jianfei Cai
Author_xml – sequence: 1
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
– sequence: 2
  givenname: Jianxin
  surname: Wu
  fullname: Wu, Jianxin
– sequence: 3
  givenname: Jianfei
  surname: Cai
  fullname: Cai, Jianfei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27046897$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS1URNuBPRISisSmmwzXj8TxEk0pHWkkEBS20R3nZvAoiQfbQeLf12WGLrpg5Ye-c659ziU7m_xEjL3msOQczPu79ZelAF4vRaWMrOEZu-BG8RJAibO8h0qXmitzzi5j3ANwVfH6BTsXGlTdGH3B9is_HtCm4isdAkWaEibnp8L3xa3b_Syv3UhTzDc4FDeEaQ5U_CCbfIhF70OxwbCj8pvFgYr1iDvKRtbvJvfXBacun1Nw9BuHl-x5j0OkV6d1wb7ffLxb3Zabz5_Wqw-b0kqlU2kF1l1ltkaISjbcGCAr-8Y0UoHaIjXUoYVO6kpJJa2wHTY9IOkaK05bkAt2dfQ9BP9rppja0UVLw4AT-Tm2vAEttFaNyei7J-jezyH_NVO6yckpnh-xYG9P1LwdqWsPwY0Y_rT_UswAHAEbfIyB-keEQ_tQVJuLah-Kak9FZUn9RGLdMfoU0A3_E745Ch0RPc7RSlVCCnkPrv6e9A
CODEN IIPRE4
CitedBy_id crossref_primary_10_3233_JIFS_189319
crossref_primary_10_1111_exsy_12459
crossref_primary_10_1186_s13640_017_0176_3
crossref_primary_10_1145_3314051
crossref_primary_10_1109_ACCESS_2019_2894366
crossref_primary_10_1016_j_patcog_2022_108541
crossref_primary_10_3390_informatics10020051
crossref_primary_10_3390_math13111819
crossref_primary_10_1016_j_patcog_2019_107167
crossref_primary_10_1109_TCSVT_2017_2671899
crossref_primary_10_1007_s00500_019_04355_y
crossref_primary_10_1016_j_energy_2025_138466
crossref_primary_10_3390_info9020038
crossref_primary_10_1109_TIP_2023_3348992
crossref_primary_10_1109_TIP_2016_2605305
Cites_doi 10.1109/CVPR.2013.69
10.1109/CVPR.2012.6247943
10.1023/B:VISI.0000027790.02288.f2
10.1109/TKDE.2014.2320728
10.1109/CVPR.2013.388
10.1109/CVPR.2008.4587635
10.1109/CVPR.2007.383172
10.1017/CBO9780511809071
10.1109/CVPR.2006.68
10.1007/s11263-013-0636-x
10.1023/A:1025667309714
10.1109/TPAMI.2006.134
10.1109/TIP.2014.2344296
10.1109/CVPR.2013.207
10.1109/TPAMI.2010.57
10.1007/978-3-319-10584-0_26
10.1109/TIP.2016.2531289
10.1109/CVPR.2013.389
10.1109/CVPR.2010.5540009
10.1109/TPAMI.2005.159
10.1109/TIP.2014.2332396
10.1109/CVPR.2014.121
10.1109/CVPR.2012.6248090
10.1109/CVPR.2014.330
10.1109/TNNLS.2015.2458986
10.1109/TPAMI.2011.235
10.1109/CVPR.2010.5540039
10.1109/CVPR.2011.5995477
10.1109/CVPR.2011.5995504
10.1109/TPAMI.2015.2456899
10.1109/TIP.2008.2001050
10.1007/s11263-009-0285-2
10.1109/CVPR.2011.5995432
10.1109/TIP.2010.2093906
10.1109/CVPR.2013.379
10.1109/CVPR.2014.417
10.1109/JPROC.2012.2188013
10.1109/CVPR.2010.5539970
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2016.2549360
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 2419
ExternalDocumentID 4046914561
27046897
10_1109_TIP_2016_2549360
7445232
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Singapore Minister for Education through the Academic Research Funding Tier-1
  grantid: RG138/14
– fundername: National Natural Science Foundation of China
  grantid: 61422203
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
NPM
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c347t-c2a6d59b9225381990ec3f8983404bae8edac0d3754343c2cda8f0ae76a51eb03
IEDL.DBID RIE
ISICitedReferencesCount 1842
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000374889800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Sat Sep 27 16:40:10 EDT 2025
Mon Jun 30 10:25:49 EDT 2025
Mon Jul 21 06:01:45 EDT 2025
Tue Nov 18 21:52:55 EST 2025
Sat Nov 29 03:21:02 EST 2025
Tue Aug 26 16:43:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords large scale
Feature selection
image representation
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-c2a6d59b9225381990ec3f8983404bae8edac0d3754343c2cda8f0ae76a51eb03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 27046897
PQID 1787144125
PQPubID 85429
PageCount 13
ParticipantIDs proquest_miscellaneous_1807277489
proquest_journals_1787144125
pubmed_primary_27046897
crossref_citationtrail_10_1109_TIP_2016_2549360
crossref_primary_10_1109_TIP_2016_2549360
ieee_primary_7445232
PublicationCentury 2000
PublicationDate 2016-05-01
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
nie (ref54) 2010
ref14
ref52
ref55
ref11
ref10
ref17
ref16
qian (ref31) 2013
ref19
deng (ref1) 2009
monteiro (ref18) 2014
berg (ref46) 2015
ref51
ref50
ref48
ref47
ref41
ref43
ref49
ref8
chatfield (ref42) 2010
krizhevsky (ref7) 2012
ref9
ref4
ref3
ref6
ref5
ref40
weiss (ref21) 2008
tan (ref22) 2010
fan (ref44) 2008; 9
ref35
ref34
ref37
ref36
ref2
ref39
ref38
li (ref30) 2012
ref23
ref26
ref25
ref20
he (ref29) 2005
fleuret (ref24) 2004; 5
yang (ref33) 2011
gao (ref53) 2011
ref28
ref27
obozinski (ref32) 2006
everingham (ref45) 2015
References_xml – start-page: 248
  year: 2009
  ident: ref1
  article-title: ImageNet: A large-scale hierarchical image database
  publication-title: Proc IEEE Int Conf Comput Vis Pattern Recognit
– volume: 9
  start-page: 1871
  year: 2008
  ident: ref44
  article-title: LIBLINEAR: A library for large linear classification
  publication-title: J Mach Learn Res
– ident: ref15
  doi: 10.1109/CVPR.2013.69
– ident: ref11
  doi: 10.1109/CVPR.2012.6247943
– ident: ref48
  doi: 10.1023/B:VISI.0000027790.02288.f2
– ident: ref34
  doi: 10.1109/TKDE.2014.2320728
– ident: ref12
  doi: 10.1109/CVPR.2013.388
– ident: ref51
  doi: 10.1109/CVPR.2008.4587635
– start-page: 1813
  year: 2010
  ident: ref54
  article-title: Efficient and robust feature selection via joint $\ell _{2,1}$ -norms minimization
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref50
  doi: 10.1109/CVPR.2007.383172
– ident: ref36
  doi: 10.1017/CBO9780511809071
– ident: ref35
  doi: 10.1109/CVPR.2006.68
– ident: ref2
  doi: 10.1007/s11263-013-0636-x
– start-page: 1097
  year: 2012
  ident: ref7
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 1621
  year: 2013
  ident: ref31
  article-title: Robust unsupervised feature selection
  publication-title: Proc 23rd Int Joint Conf Artif Intell
– ident: ref28
  doi: 10.1023/A:1025667309714
– ident: ref6
  doi: 10.1109/TPAMI.2006.134
– ident: ref43
  doi: 10.1109/TIP.2014.2344296
– volume: 5
  start-page: 1531
  year: 2004
  ident: ref24
  article-title: Fast binary feature selection with conditional mutual information
  publication-title: J Mach Learn Res
– ident: ref4
  doi: 10.1109/CVPR.2013.207
– ident: ref10
  doi: 10.1109/TPAMI.2010.57
– start-page: 1753
  year: 2008
  ident: ref21
  article-title: Spectral hashing
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref8
  doi: 10.1007/978-3-319-10584-0_26
– ident: ref39
  doi: 10.1109/TIP.2016.2531289
– ident: ref16
  doi: 10.1109/CVPR.2013.389
– ident: ref37
  doi: 10.1109/CVPR.2010.5540009
– ident: ref23
  doi: 10.1109/TPAMI.2005.159
– ident: ref27
  doi: 10.1109/TIP.2014.2332396
– ident: ref19
  doi: 10.1109/CVPR.2014.121
– ident: ref40
  doi: 10.1109/CVPR.2012.6248090
– ident: ref38
  doi: 10.1109/CVPR.2014.330
– start-page: 1
  year: 2006
  ident: ref32
  article-title: Multi-task feature selection
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 1026
  year: 2012
  ident: ref30
  article-title: Unsupervised feature selection using nonnegative spectral analysis
  publication-title: Proc 26th AAAI Conf Artif Intell
– ident: ref17
  doi: 10.1109/TNNLS.2015.2458986
– year: 2015
  ident: ref45
  publication-title: The PASCAL Visual Object Classes Challenge 2007
– start-page: 1047
  year: 2010
  ident: ref22
  article-title: Learning sparse SVM for feature selection on very high dimensional datasets
  publication-title: Proc Int Conf Mach Learn
– ident: ref3
  doi: 10.1109/TPAMI.2011.235
– ident: ref20
  doi: 10.1109/CVPR.2010.5540039
– ident: ref52
  doi: 10.1109/CVPR.2011.5995477
– ident: ref9
  doi: 10.1109/CVPR.2011.5995504
– start-page: 76.1
  year: 2010
  ident: ref42
  article-title: The devil is in the details: An evaluation of recent feature encoding methods
  publication-title: Proc Brit Mach Vis Conf
– ident: ref5
  doi: 10.1109/TPAMI.2015.2456899
– ident: ref25
  doi: 10.1109/TIP.2008.2001050
– year: 2015
  ident: ref46
  publication-title: ImageNet Large Scale Visual Recognition Challenge 2010 (ILSVRC2010)
– ident: ref49
  doi: 10.1007/s11263-009-0285-2
– ident: ref14
  doi: 10.1109/CVPR.2011.5995432
– ident: ref26
  doi: 10.1109/TIP.2010.2093906
– start-page: 2072
  year: 2011
  ident: ref53
  article-title: Discriminative learning of relaxed hierarchy for large-scale visual recognition
  publication-title: Proc IEEE Int Conf Comput Vis
– ident: ref13
  doi: 10.1109/CVPR.2013.379
– start-page: 507
  year: 2005
  ident: ref29
  article-title: Laplacian score for feature selection
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref55
  doi: 10.1109/CVPR.2014.417
– start-page: 1589
  year: 2011
  ident: ref33
  article-title: $\ell _{2,1}$ -norm regularized discriminative feature selection for unsupervised learning
  publication-title: Proc 22nd Int Joint Conf Artif Intell
– ident: ref41
  doi: 10.1109/JPROC.2012.2188013
– start-page: 541
  year: 2014
  ident: ref18
  article-title: Coding mode decision algorithm for binary descriptor coding
  publication-title: Proc 22nd Eur Signal Process Conf (EUSIPCO)
– ident: ref47
  doi: 10.1109/CVPR.2010.5539970
SSID ssj0014516
Score 2.6879506
Snippet In large-scale visual recognition and image retrieval tasks, feature vectors, such as Fisher vector (FV) or the vector of locally aggregated descriptors...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2407
SubjectTerms Correlation
Digital imaging
feature selection
Image coding
Image recognition
image representation
Image retrieval
large scale
Quantization (signal)
Sorting
Visualization
Title Compact Representation of High-Dimensional Feature Vectors for Large-Scale Image Recognition and Retrieval
URI https://ieeexplore.ieee.org/document/7445232
https://www.ncbi.nlm.nih.gov/pubmed/27046897
https://www.proquest.com/docview/1787144125
https://www.proquest.com/docview/1807277489
Volume 25
WOSCitedRecordID wos000374889800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFD_M4YM-ON10VueI4ItgdnObtEkehzocyBhzyn0raZKCMnvlfvj3e06alj04wbeWpm3gfOScnJPfD-BNKVtJMGqcsFmIwqzkrZSWV2quQyl8V7cD2YS-uDCLhb3cgXfTWZgYY2o-iyd0mWr5Yem3tFU200ph3oQO957W9XBWa6oYEOFsqmxWmmsM-8eSpLCz6_NL6uGqTygZkjWRv5Ua80JDSE-3VqNEr3J3pJlWnLO9_5vrY3iUI0t2OqjCE9iJ_T7s5SiTZRte78PDWxCEB_AjOQS_YVepJTafROrZsmPUAsI_EPr_gNzBKFzcriL7lnb61wzjXfaZOsn5F5R0ZOc_0Tmxq7ElCb_i-oD3xNmFCv0Uvp59vH7_iWf-Be6l0hvuS1eHyrYWbZ4SOyuil52xRiqhWhdNDM6LQCS6Uklf-uBMJ1zUtavmsRXyGez2yz4-B-a0Qcv3Qc6rqJRWbdlhLoqpeVCi7WxdwGyUQ-MzODlxZNw0KUkRtkEhNiTEJguxgLfTG78GYI5_jD0gAU3jsmwKOBpF3WTLXTdz9GCUZJZVAa-nx2hzVEhxfVxucYwRGPYRbk8Bh4OKTN8eNevF3__5Eh7QzIaWySPY3ay28RXc978339erY1TshTlOiv0H9jLwOg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VBQk4UGgpBAoYiQsS7nptJ06OCKi6YllVZUG9RY7tSCDIon3w-5lxnKgHQOKWKE5iaR6e8Yy_D-ClVI0iGDVO2CxEYSZ5o1TFcz01XgrXFk1PNmEWi_LqqrrYg9fjWZgQQmw-C6d0GWv5fuV2tFU2MVpj3oQO90autRT9aa2xZkCUs7G2mRtuMPAfipKimixnF9TFVZxSOqQKon-TBjPDkrCerq1HkWDl77FmXHPODv5vtvfgboot2ZteGe7DXugO4SDFmSxZ8eYQ7lwDITyCb9EluC27jE2x6SxSx1YtoyYQ_o7w_3vsDkYB424d2Je4179hGPGyOfWS808o68BmP9A9scuhKQm_YjuP98TahSr9AD6fvV--PeeJgYE7pc2WO2kLn1dNhVZPqV0lglNtWZVKC93YUAZvnfBEo6u0ctJ5W7bCBlPYfBoaoY5hv1t14REwa0q0fefVNA9aG93IFrNRTM69Fk1bFRlMBjnULsGTE0vG9zqmKaKqUYg1CbFOQszg1fjGzx6a4x9jj0hA47gkmwxOBlHXyXY39RR9GKWZMs_gxfgYrY5KKbYLqx2OKQUGfoTck8HDXkXGbw-a9fjP_3wOt86XH-f1fLb48ARu0yz7BsoT2N-ud-Ep3HS_tl8362dRvX8D70nymQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compact+Representation+of+High-Dimensional+Feature+Vectors+for+Large-Scale+Image+Recognition+and+Retrieval&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Yu+Zhang&rft.au=Jianxin+Wu&rft.au=Jianfei+Cai&rft.date=2016-05-01&rft.pub=IEEE&rft.issn=1057-7149&rft.volume=25&rft.issue=5&rft.spage=2407&rft.epage=2419&rft_id=info:doi/10.1109%2FTIP.2016.2549360&rft_id=info%3Apmid%2F27046897&rft.externalDocID=7445232
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon