Federated Learning With Privacy-Preserving Ensemble Attention Distillation
Federated Learning (FL) is a machine learning paradigm where many local nodes collaboratively train a central model while keeping the training data decentralized. This is particularly relevant for clinical applications since patient data are usually not allowed to be transferred out of medical facil...
Uložené v:
| Vydané v: | IEEE transactions on medical imaging Ročník 42; číslo 7; s. 2057 - 2067 |
|---|---|
| Hlavní autori: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0278-0062, 1558-254X, 1558-254X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Federated Learning (FL) is a machine learning paradigm where many local nodes collaboratively train a central model while keeping the training data decentralized. This is particularly relevant for clinical applications since patient data are usually not allowed to be transferred out of medical facilities, leading to the need for FL. Existing FL methods typically share model parameters or employ co-distillation to address the issue of unbalanced data distribution. However, they also require numerous rounds of synchronized communication and, more importantly, suffer from a privacy leakage risk. We propose a privacy-preserving FL framework leveraging unlabeled public data for one-way offline knowledge distillation in this work. The central model is learned from local knowledge via ensemble attention distillation. Our technique uses decentralized and heterogeneous local data like existing FL approaches, but more importantly, it significantly reduces the risk of privacy leakage. We demonstrate that our method achieves very competitive performance with more robust privacy preservation based on extensive experiments on image classification, segmentation, and reconstruction tasks. |
|---|---|
| AbstractList | Federated Learning (FL) is a machine learning paradigm where many local nodes collaboratively train a central model while keeping the training data decentralized. This is particularly relevant for clinical applications since patient data are usually not allowed to be transferred out of medical facilities, leading to the need for FL. Existing FL methods typically share model parameters or employ co-distillation to address the issue of unbalanced data distribution. However, they also require numerous rounds of synchronized communication and, more importantly, suffer from a privacy leakage risk. We propose a privacy-preserving FL framework leveraging unlabeled public data for one-way offline knowledge distillation in this work. The central model is learned from local knowledge via ensemble attention distillation. Our technique uses decentralized and heterogeneous local data like existing FL approaches, but more importantly, it significantly reduces the risk of privacy leakage. We demonstrate that our method achieves very competitive performance with more robust privacy preservation based on extensive experiments on image classification, segmentation, and reconstruction tasks. Federated Learning (FL) is a machine learning paradigm where many local nodes collaboratively train a central model while keeping the training data decentralized. This is particularly relevant for clinical applications since patient data are usually not allowed to be transferred out of medical facilities, leading to the need for FL. Existing FL methods typically share model parameters or employ co-distillation to address the issue of unbalanced data distribution. However, they also require numerous rounds of synchronized communication and, more importantly, suffer from a privacy leakage risk. We propose a privacy-preserving FL framework leveraging unlabeled public data for one-way offline knowledge distillation in this work. The central model is learned from local knowledge via ensemble attention distillation. Our technique uses decentralized and heterogeneous local data like existing FL approaches, but more importantly, it significantly reduces the risk of privacy leakage. We demonstrate that our method achieves very competitive performance with more robust privacy preservation based on extensive experiments on image classification, segmentation, and reconstruction tasks.Federated Learning (FL) is a machine learning paradigm where many local nodes collaboratively train a central model while keeping the training data decentralized. This is particularly relevant for clinical applications since patient data are usually not allowed to be transferred out of medical facilities, leading to the need for FL. Existing FL methods typically share model parameters or employ co-distillation to address the issue of unbalanced data distribution. However, they also require numerous rounds of synchronized communication and, more importantly, suffer from a privacy leakage risk. We propose a privacy-preserving FL framework leveraging unlabeled public data for one-way offline knowledge distillation in this work. The central model is learned from local knowledge via ensemble attention distillation. Our technique uses decentralized and heterogeneous local data like existing FL approaches, but more importantly, it significantly reduces the risk of privacy leakage. We demonstrate that our method achieves very competitive performance with more robust privacy preservation based on extensive experiments on image classification, segmentation, and reconstruction tasks. |
| Author | Gong, Xuan Vedula, Rishi Doermann, David Planche, Benjamin Innanje, Arun Sharma, Abhishek Zheng, Meng Song, Liangchen Chen, Terrence Wu, Ziyan Yuan, Junsong |
| Author_xml | – sequence: 1 givenname: Xuan orcidid: 0000-0001-8303-633X surname: Gong fullname: Gong, Xuan email: xuangong@buffalo.edu organization: United Imaging Intelligence, Cambridge, MA, USA – sequence: 2 givenname: Liangchen orcidid: 0000-0002-8366-5088 surname: Song fullname: Song, Liangchen email: lsong8@buffalo.edu organization: United Imaging Intelligence, Cambridge, MA, USA – sequence: 3 givenname: Rishi orcidid: 0000-0002-3205-3292 surname: Vedula fullname: Vedula, Rishi email: rishisat@buffalo.edu organization: Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY, USA – sequence: 4 givenname: Abhishek surname: Sharma fullname: Sharma, Abhishek email: abhishek.sharma@uii-ai.com organization: United Imaging Intelligence, Cambridge, MA, USA – sequence: 5 givenname: Meng surname: Zheng fullname: Zheng, Meng email: meng.zheng@uii-ai.com organization: United Imaging Intelligence, Cambridge, MA, USA – sequence: 6 givenname: Benjamin orcidid: 0000-0002-6110-6437 surname: Planche fullname: Planche, Benjamin email: benjamin.planche@uii-ai.com organization: United Imaging Intelligence, Cambridge, MA, USA – sequence: 7 givenname: Arun surname: Innanje fullname: Innanje, Arun email: arun.innanje@uii-ai.com organization: United Imaging Intelligence, Cambridge, MA, USA – sequence: 8 givenname: Terrence surname: Chen fullname: Chen, Terrence email: terrence.chen@uii-ai.com organization: United Imaging Intelligence, Cambridge, MA, USA – sequence: 9 givenname: Junsong orcidid: 0000-0002-7324-7034 surname: Yuan fullname: Yuan, Junsong email: jsyuan@buffalo.edu organization: Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY, USA – sequence: 10 givenname: David orcidid: 0000-0003-1639-4561 surname: Doermann fullname: Doermann, David email: doermann@buffalo.edu organization: Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY, USA – sequence: 11 givenname: Ziyan orcidid: 0000-0002-9774-7770 surname: Wu fullname: Wu, Ziyan email: ziyan.wu@uii-ai.com organization: United Imaging Intelligence, Cambridge, MA, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36215346$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kT1PHDEQhq2IKBwkfSQktFIamr3YY3vXWyICgehQKIiSzrK9s2C05wXbh8S_x5c7KCioRjN63vl698hOmAIS8pXROWO0-359eTEHCjDnwDgI8YHMmJSqBin-7ZAZhVbVlDawS_ZSuqOUCUm7T2SXN8AkF82M_DrDHqPJ2FcLNDH4cFP99fm2uor-0bin-ipiwvi4rp-GhEs7YnWcM4bsp1D98Cn7cTTr5DP5OJgx4Zdt3Cd_zk6vT87rxe-fFyfHi9px0ebaWjPQHlkPjR0kd7LDVnDRK1CopG0ds4pR16KynPU9t41rQYKRzgwFpHyfHG363sfpYYUp66VPDssWAadV0tACV-XSrinotzfo3bSKoWynQXEmqaIKCnW4pVZ2ib2-j35p4pN--VIB6AZwcUop4vCKMKrXRuhihF4bobdGFEnzRuJ8_v-mHI0f3xMebIQeEV_ndB2TolH8GXEak_k |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_1109_JIOT_2024_3416527 crossref_primary_10_1109_TMI_2025_3525581 crossref_primary_10_1007_s11227_024_06476_0 crossref_primary_10_2967_jnumed_124_268186 crossref_primary_10_1109_JBHI_2023_3319516 crossref_primary_10_1109_TMI_2024_3432388 crossref_primary_10_1109_TMC_2024_3517592 crossref_primary_10_1007_s11704_024_40065_x crossref_primary_10_1109_MWC_016_2300523 crossref_primary_10_1016_j_imavis_2024_105246 crossref_primary_10_1109_TCE_2025_3541553 crossref_primary_10_1109_TR_2024_3474710 crossref_primary_10_3390_bdcc8090099 crossref_primary_10_1109_TMM_2023_3339588 crossref_primary_10_1109_JIOT_2023_3325822 crossref_primary_10_1007_s10462_024_10774_7 crossref_primary_10_1109_ACCESS_2024_3458911 |
| Cites_doi | 10.1109/CVPR.2018.00960 10.1007/978-3-030-58607-2_5 10.1007/978-3-030-58558-7_15 10.1016/j.media.2021.101992 10.1109/ICCV48922.2021.01480 10.1145/3097983.3098135 10.1007/s10994-009-5152-4 10.1109/CVPR46437.2021.00245 10.1162/neco.1991.3.1.79 10.1109/CVPR.2019.00528 10.1158/1078-0432.CCR-18-1233 10.1162/089976699300016737 10.1109/ICCV.2017.74 10.1145/1015330.1015432 10.1609/aaai.v33i01.3301590 10.1109/CVPR.2018.00813 10.1109/TMI.2014.2377694 10.1109/CVPR42600.2020.00241 10.1109/MNET.2018.1700202 10.1109/CVPR.2019.00128 10.1016/S0004-3702(02)00190-X 10.1109/CVPR.2017.369 10.1016/j.media.2020.101765 10.1109/CVPR42600.2020.01103 10.1109/CVPR.2017.754 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/TMI.2022.3213244 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-254X |
| EndPage | 2067 |
| ExternalDocumentID | 36215346 10_1109_TMI_2022_3213244 9915468 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Amazon Catalyst; Amazon funderid: 10.13039/100016443 |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c347t-bbaf0de1d26bf53c59e7434d828e85b7c1b810c7e8b31dd3b6c7252a5caf74303 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001022138900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0062 1558-254X |
| IngestDate | Sun Sep 28 02:49:21 EDT 2025 Sun Nov 09 08:42:47 EST 2025 Mon Jul 21 05:27:34 EDT 2025 Sat Nov 29 05:14:10 EST 2025 Tue Nov 18 22:28:57 EST 2025 Wed Aug 27 02:29:09 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c347t-bbaf0de1d26bf53c59e7434d828e85b7c1b810c7e8b31dd3b6c7252a5caf74303 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8303-633X 0000-0002-8366-5088 0000-0003-1639-4561 0000-0002-3205-3292 0000-0002-6110-6437 0000-0002-7324-7034 0000-0002-9774-7770 |
| PMID | 36215346 |
| PQID | 2831508082 |
| PQPubID | 85460 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1109_TMI_2022_3213244 crossref_citationtrail_10_1109_TMI_2022_3213244 pubmed_primary_36215346 ieee_primary_9915468 proquest_miscellaneous_2723814596 proquest_journals_2831508082 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-01 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref12 ref56 ref14 bishop (ref31) 2012 ref52 guha (ref26) 2019 ref10 myronenko (ref63) 2018 bakas (ref61) 2018 of north america (ref58) 2018 chang (ref18) 2019 loshchilov (ref60) 2016 ye (ref59) 2020 jeong (ref19) 2018 ref51 lamontagne (ref69) 2018; 14 zhao (ref6) 2018 ref45 peng (ref55) 2020 ref47 ref41 li (ref5) 2018 ref44 zagoruyko (ref43) 2017 smith (ref3) 2017 hinton (ref33) 2015 zhu (ref40) 2018 asif (ref35) 2019 shin (ref25) 2020 romero (ref42) 2015 blitzer (ref53) 2007 zhou (ref24) 2020 karimireddy (ref8) 2020 wang (ref7) 2020 mcmahan (ref2) 2017 ref37 song (ref39) 2018 zbontar (ref65) 2018 ref36 li (ref13) 2019 ref30 ref32 ref1 shazeer (ref34) 2017 ref38 sheller (ref9) 2018 bakas (ref67) 2020 ronneberger (ref70) 2015 zhu (ref15) 2019 park (ref48) 2020 li (ref11) 2020 ref68 geiping (ref16) 2020 ref23 ref64 ref22 papernot (ref27) 2016 ref21 lin (ref20) 2020 london (ref66) 2022 ref28 planche (ref54) 2020 ref29 li (ref17) 2019 furlanello (ref49) 2018 harry hsu (ref4) 2019 ref62 liu (ref50) 2019 huang (ref46) 2017 |
| References_xml | – start-page: 1 year: 2019 ident: ref15 article-title: Deep leakage from gradients publication-title: Proc NeurIPS – volume: 14 start-page: 1097p year: 2018 ident: ref69 article-title: OASIS-3: Longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer's disease publication-title: Alzheimer's & Dementia – ident: ref51 doi: 10.1109/CVPR.2018.00960 – start-page: 1 year: 2020 ident: ref11 article-title: Fair resource allocation in federated learning publication-title: Proc ICLR – start-page: 1 year: 2020 ident: ref55 article-title: Federated adversarial domain adaptation publication-title: Proc ICLR – year: 2019 ident: ref4 article-title: Measuring the effects of non-identical data distribution for federated visual classification publication-title: arXiv 1909 06335 – year: 2018 ident: ref5 article-title: Federated optimization in heterogeneous networks publication-title: arXiv 1812 06127 – year: 2018 ident: ref6 article-title: Federated learning with non-IID data publication-title: arXiv 1806 00582 – ident: ref12 doi: 10.1007/978-3-030-58607-2_5 – start-page: 7517 year: 2018 ident: ref40 article-title: Knowledge distillation by on-the-fly native ensemble publication-title: Proc NeurIPS – year: 2018 ident: ref65 article-title: fastMRI: An open dataset and benchmarks for accelerated MRI publication-title: arXiv 1811 08839 – start-page: 133 year: 2019 ident: ref13 article-title: Privacy-preserving federated brain tumour segmentation publication-title: Proc Int Workshop Mach Learn Med Imag – ident: ref36 doi: 10.1007/978-3-030-58558-7_15 – start-page: 1 year: 2020 ident: ref20 article-title: Ensemble distillation for robust model fusion in federated learning publication-title: Proc NeurIPS – year: 2020 ident: ref54 publication-title: Bridging the realism gap for cad-based visual recognition – start-page: 92 year: 2018 ident: ref9 article-title: Multi-institutional deep learning modeling without sharing patient data: A feasibility study on brain tumor segmentation publication-title: Proc MICCAI BrainLesion Workshop – year: 2019 ident: ref18 article-title: Cronus: Robust and heterogeneous collaborative learning with black-box knowledge transfer publication-title: arXiv 1912 11279 – ident: ref10 doi: 10.1016/j.media.2021.101992 – ident: ref21 doi: 10.1109/ICCV48922.2021.01480 – ident: ref38 doi: 10.1145/3097983.3098135 – ident: ref52 doi: 10.1007/s10994-009-5152-4 – ident: ref64 doi: 10.1109/CVPR46437.2021.00245 – year: 2020 ident: ref67 article-title: Brats MICCAI Brain tumor dataset publication-title: IEEE Dataport – ident: ref32 doi: 10.1162/neco.1991.3.1.79 – ident: ref44 doi: 10.1109/CVPR.2019.00528 – start-page: 129 year: 2007 ident: ref53 article-title: Learning bounds for domain adaptation publication-title: Proc 20th Int Conf Neural Inf Process Syst (NIPS) – year: 2022 ident: ref66 publication-title: The IXI Dataset – year: 2019 ident: ref35 article-title: Ensemble knowledge distillation for learning improved and efficient networks publication-title: arXiv 1909 08097 – ident: ref68 doi: 10.1158/1078-0432.CCR-18-1233 – year: 2020 ident: ref25 article-title: XOR mixup: Privacy-preserving data augmentation for one-shot federated learning publication-title: arXiv 2006 05148 – ident: ref30 doi: 10.1162/089976699300016737 – ident: ref22 doi: 10.1109/ICCV.2017.74 – ident: ref29 doi: 10.1145/1015330.1015432 – year: 2012 ident: ref31 article-title: Bayesian hierarchical mixtures of experts publication-title: arXiv 1212 2447 – start-page: 1 year: 2018 ident: ref49 article-title: Born again neural networks publication-title: Proc PMLR – start-page: 234 year: 2015 ident: ref70 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: Proc MICCAI – ident: ref57 doi: 10.1609/aaai.v33i01.3301590 – ident: ref23 doi: 10.1109/CVPR.2018.00813 – start-page: 1 year: 2017 ident: ref43 article-title: Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer publication-title: ICLRE – ident: ref62 doi: 10.1109/TMI.2014.2377694 – year: 2019 ident: ref17 article-title: FedMD: Heterogenous federated learning via model distillation publication-title: arXiv 1910 03581 – start-page: 1 year: 2020 ident: ref7 article-title: Federated learning with matched averaging publication-title: Proc ICLR – year: 2017 ident: ref46 article-title: Like what you like: Knowledge distill via neuron selectivity transfer publication-title: arXiv 1707 01219 – start-page: 4424 year: 2017 ident: ref3 article-title: Federated multi-task learning publication-title: Proc NeurIPS – year: 2018 ident: ref19 article-title: Communication-efficient on-device machine learning: Federated distillation and augmentation under non-IID private data publication-title: arXiv 1811 11479 – ident: ref47 doi: 10.1109/CVPR42600.2020.00241 – year: 2016 ident: ref27 article-title: Semi-supervised knowledge transfer for deep learning from private training data publication-title: arXiv 1610 05755 – ident: ref1 doi: 10.1109/MNET.2018.1700202 – year: 2019 ident: ref26 article-title: One-shot federated learning publication-title: arXiv 1902 11175 – year: 2018 ident: ref61 article-title: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge publication-title: arXiv 1811 02629 – start-page: 1832 year: 2018 ident: ref39 article-title: Collaborative learning for deep neural networks publication-title: Proc NeurIPS – year: 2015 ident: ref33 article-title: Distilling the knowledge in a neural network publication-title: ArXiv 1503 02531 – start-page: 1 year: 2019 ident: ref50 article-title: Knowledge flow: Improve upon your teachers publication-title: ICLRE – start-page: 1 year: 2015 ident: ref42 article-title: FitNets: Hints for thin deep nets publication-title: Proc ICLR – ident: ref37 doi: 10.1109/CVPR.2019.00128 – start-page: 311 year: 2018 ident: ref63 article-title: 3D MRI brain tumor segmentation using autoencoder regularization publication-title: Proc MICCAI BrainLesion Workshop – ident: ref28 doi: 10.1016/S0004-3702(02)00190-X – start-page: 1 year: 2020 ident: ref16 article-title: Inverting gradients-How easy is it to break privacy in federated learning? publication-title: Proc Adv Neural Inf Process Syst – start-page: 1 year: 2020 ident: ref48 article-title: FEED: Feature-level ensemble for knowledge distillation publication-title: Proc AAAI – start-page: 1273 year: 2017 ident: ref2 article-title: Communication-efficient learning of deep networks from decentralized data publication-title: Proc 20th Int Conf Artif Intell Statist – ident: ref56 doi: 10.1109/CVPR.2017.369 – ident: ref14 doi: 10.1016/j.media.2020.101765 – year: 2020 ident: ref24 article-title: Distilled one-shot federated learning publication-title: arXiv 2009 07999 – year: 2016 ident: ref60 article-title: SGDR: Stochastic gradient descent with warm restarts publication-title: arXiv 1608 03983 – ident: ref41 doi: 10.1109/CVPR42600.2020.01103 – ident: ref45 doi: 10.1109/CVPR.2017.754 – year: 2020 ident: ref59 article-title: Weakly supervised lesion localization with probabilistic-cam pooling publication-title: arXiv 2005 14480 – start-page: 1 year: 2017 ident: ref34 article-title: Outrageously large neural networks: The sparsely-gated mixture-of-experts layer publication-title: Proc ICLR – start-page: 5132 year: 2020 ident: ref8 article-title: SCAFFOLD: Stochastic controlled averaging for on-device federated learning publication-title: Proc ICML – year: 2018 ident: ref58 publication-title: RSNA Pneumonia Detection Challenge Dataset |
| SSID | ssj0014509 |
| Score | 2.550992 |
| Snippet | Federated Learning (FL) is a machine learning paradigm where many local nodes collaboratively train a central model while keeping the training data... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2057 |
| SubjectTerms | Data models Distillation Federated learning Hospitals Humans Image classification Image processing Image reconstruction Image segmentation Leakage Machine Learning Privacy Risk reduction Servers Task analysis Training |
| Title | Federated Learning With Privacy-Preserving Ensemble Attention Distillation |
| URI | https://ieeexplore.ieee.org/document/9915468 https://www.ncbi.nlm.nih.gov/pubmed/36215346 https://www.proquest.com/docview/2831508082 https://www.proquest.com/docview/2723814596 |
| Volume | 42 |
| WOSCitedRecordID | wos001022138900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_aImIf_Gi1ptYSwRfB9Pb2I9k8Fu2hYksfqt5byO5O7ME1J3e5gv99Z5Jc6IMKvoSQTDZhZ3b3N5nZ3wC8zQTyhp4q0UYJOlR5UvoKE-sqNCUtuL6la_r-Nbu4sNNpfrkF74e9MIjYJp_hCZ-2sfyw8Gv-VTYiLGOo4W3YzrK026s1RAy06dI5JDPGilRuQpIiH12dfyZHUMoTJcn30lyKh6ZtGuqMeu-tRm15lb8jzXbFmTz5v299Co97ZBmfdqbwDLaw3oPde3yDe_DwvI-k78OXCbNIENAMcU-x-jP-MWuu48vl7Lb0vxPOzeB5hK6f1Su8cXOMT5umy46MP_LUMO_y6J7Dt8nZ1YdPSV9XIfFKZ03iXFmJgOMgU1cZ5U2OhCN0IOcLrXGZHzs7Fj5D69Q4BOVSn0kjS-PLigSFegE79aLGlxBb6TwhNKd1SDVa5aTSwuUhaFTBOhnBaNO_he9Jx7n2xbxonQ-RF6ScgpVT9MqJ4N3wxK-OcOMfsvvc8YNc3-cRHG1UWPQjclUQjGLqe0I8EbwZbtNY4gBJWeNiTTJcgY0sKU8jOOhUP7S9sZjDP7_zFTziQvRdIu8R7DTLNb6GB_62ma2Wx2SwU3vcGuwdqcDj6w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VgngceLQUDAWMxAWpbjb78ONYQaMWkqiHAL1Z3t0xREodlDiV-PfM2I7VAyBxsSx7vLZ2Zne_8cx-A_AuEcgbespIGyXoUGZR4UqMUluiKWjBdQ1d09dxMp2ml5fZxQ4c9XthELFJPsNjPm1i-X7pNvyrbEBYxlDDt-A2V87qdmv1MQNt2oQOyZyxIpbboKTIBrPJObmCUh4rSd6X5mI8NHHTYGfce2M9agqs_B1rNmvO6NH_fe1jeNhhy_CkNYYnsIPVHjy4wTi4B3cnXSx9Hz6NmEeCoKYPO5LV7-G3ef0jvFjNrwv3K-LsDJ5J6PpptcYru8DwpK7b_MjwI08OizaT7il8GZ3OPpxFXWWFyCmd1JG1RSk8Dr2MbWmUMxkSktCe3C9MjU3c0KZD4RJMrRp6r2zsEmlkYVxRkqBQB7BbLSt8DmEqrSOMZrX2scZUWam0sJn3GpVPrQxgsO3f3HW041z9YpE37ofIclJOzsrJO-UE8L5_4mdLufEP2X3u-F6u6_MADrcqzLsxuc4JSDH5PWGeAN72t2k0cYikqHC5IRmuwUaWlMUBPGtV37e9tZgXf37nG7h3NpuM8_H59PNLuM9l6du03kPYrVcbfAV33HU9X69eN2b7G1Jk5kw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+Learning+With+Privacy-Preserving+Ensemble+Attention+Distillation&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Gong%2C+Xuan&rft.au=Song%2C+Liangchen&rft.au=Vedula%2C+Rishi&rft.au=Sharma%2C+Abhishek&rft.date=2023-07-01&rft.issn=1558-254X&rft.eissn=1558-254X&rft.volume=42&rft.issue=7&rft.spage=2057&rft_id=info:doi/10.1109%2FTMI.2022.3213244&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |