General notes on ductility in timber structures

The paper discusses the implications of ductility in design of timber structures under static and dynamic loading including earthquakes. Timber is a material inherently brittle in bending and in tension, unless reinforced adequately. However connections between timber members can exhibit significant...

Full description

Saved in:
Bibliographic Details
Published in:Engineering structures Vol. 33; no. 11; pp. 2987 - 2997
Main Authors: Jorissen, André, Fragiacomo, Massimo
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.11.2011
Subjects:
ISSN:0141-0296, 1873-7323
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The paper discusses the implications of ductility in design of timber structures under static and dynamic loading including earthquakes. Timber is a material inherently brittle in bending and in tension, unless reinforced adequately. However connections between timber members can exhibit significant ductility, if designed and detailed properly to avoid splitting. Hence it is possible to construct statically indeterminate systems made of brittle timber members connected with ductile connections that behave in a ductile fashion. The brittle members, however, must be designed for the overstrength related to the strength of the ductile connections to ensure the ductile failure mechanism will take place before the failure of the brittle members. The overstrength ratio, defined as the ratio between the 95th percentile of the connection strength distribution and the analytical prediction of the characteristic connection strength, was calculated for multiple doweled connections loaded parallel to the grain based on the results of an extensive experimental programme carried out on timber splice connections with 10.65 and 11.75 mm diameter steel dowels grade 4.6. In this particular case the overstrength ratio was found to range from 1.2 to 2.1, and a value of 1.6 is recommended for ductile design. The paper illustrates the use of the elastic–perfectly plastic analysis with ductility control for a simple statically indeterminate structure and compares this approach to the fully non-linear analysis and with the more traditional linear elastic analysis. It is highlighted that plastic design should not be used for timber bridges since fatigue may lead to significant damage accumulation in the connections if plastic deformations have developed. The paper also shows that the current relative definitions of ductility, as a ratio between an ultimate deformation/displacement and the corresponding yield quantity, should be replaced by absolute definitions of ductility, for example the ultimate deformation/displacement, as the latter ones better represent the ductile structural behavior. ► Ductility in timber structures can be achieved mainly by designing ductile connections. ► Timber members, however, must be designed for the overstrength of the connections. ► Overstrength is the ratio between the 95th percentile and the analytical design strength. ► An overstrength ratio of 1.6 is recommended for doweled timber splice connections. ► Absolute definitions like the ultimate deformation should be used to measure ductility.
AbstractList The paper discusses the implications of ductility in design of timber structures under static and dynamic loading including earthquakes. Timber is a material inherently brittle in bending and in tension, unless reinforced adequately. However connections between timber members can exhibit significant ductility, if designed and detailed properly to avoid splitting. Hence it is possible to construct statically indeterminate systems made of brittle timber members connected with ductile connections that behave in a ductile fashion. The brittle members, however, must be designed for the overstrength related to the strength of the ductile connections to ensure the ductile failure mechanism will take place before the failure of the brittle members. The overstrength ratio, defined as the ratio between the 95th percentile of the connection strength distribution and the analytical prediction of the characteristic connection strength, was calculated for multiple doweled connections loaded parallel to the grain based on the results of an extensive experimental programme carried out on timber splice connections with 10.65 and 11.75 mm diameter steel dowels grade 4.6. In this particular case the overstrength ratio was found to range from 1.2 to 2.1, and a value of 1.6 is recommended for ductile design. The paper illustrates the use of the elastic–perfectly plastic analysis with ductility control for a simple statically indeterminate structure and compares this approach to the fully non-linear analysis and with the more traditional linear elastic analysis. It is highlighted that plastic design should not be used for timber bridges since fatigue may lead to significant damage accumulation in the connections if plastic deformations have developed. The paper also shows that the current relative definitions of ductility, as a ratio between an ultimate deformation/displacement and the corresponding yield quantity, should be replaced by absolute definitions of ductility, for example the ultimate deformation/displacement, as the latter ones better represent the ductile structural behavior. ► Ductility in timber structures can be achieved mainly by designing ductile connections. ► Timber members, however, must be designed for the overstrength of the connections. ► Overstrength is the ratio between the 95th percentile and the analytical design strength. ► An overstrength ratio of 1.6 is recommended for doweled timber splice connections. ► Absolute definitions like the ultimate deformation should be used to measure ductility.
The paper discusses the implications of ductility in design of timber structures under static and dynamic loading including earthquakes. Timber is a material inherently brittle in bending and in tension, unless reinforced adequately. However connections between timber members can exhibit significant ductility, if designed and detailed properly to avoid splitting. Hence it is possible to construct statically indeterminate systems made of brittle timber members connected with ductile connections that behave in a ductile fashion. The brittle members, however, must be designed for the overstrength related to the strength of the ductile connections to ensure the ductile failure mechanism will take place before the failure of the brittle members. The overstrength ratio, defined as the ratio between the 95th percentile of the connection strength distribution and the analytical prediction of the characteristic connection strength, was calculated for multiple doweled connections loaded parallel to the grain based on the results of an extensive experimental programme carried out on timber splice connections with 10.65 and 11.75 mm diameter steel dowels grade 4.6. In this particular case the overstrength ratio was found to range from 1.2 to 2.1, and a value of 1.6 is recommended for ductile design. The paper illustrates the use of the elastic-perfectly plastic analysis with ductility control for a simple statically indeterminate structure and compares this approach to the fully non-linear analysis and with the more traditional linear elastic analysis. It is highlighted that plastic design should not be used for timber bridges since fatigue may lead to significant damage accumulation in the connections if plastic deformations have developed. The paper also shows that the current relative definitions of ductility, as a ratio between an ultimate deformation/displacement and the corresponding yield quantity, should be replaced by absolute definitions of ductility, for example the ultimate deformation/displacement, as the latter ones better represent the ductile structural behavior.
Author Jorissen, André
Fragiacomo, Massimo
Author_xml – sequence: 1
  givenname: André
  surname: Jorissen
  fullname: Jorissen, André
  email: A.J.M.Jorissen@bwk.tue.nl
  organization: University of Technology, Eindhoven and SHR, Wageningen, The Netherlands
– sequence: 2
  givenname: Massimo
  surname: Fragiacomo
  fullname: Fragiacomo, Massimo
  email: fragiacomo@uniss.it
  organization: Department of Architecture, Design and Urban Planning, University of Sassari, Palazzo del Pou Salit, Piazza Duomo 6, 07041 Alghero, Italy
BookMark eNqNkL1OwzAURi1UJNrCM5CNKant_NgeGKoKClIlFpgt5-YGuUqdYjtIfXtSBTGwwPQt3znDWZCZ6x0ScstoxiirVvsM3XuIfoCYccpYRkVGeXFB5kyKPBU5z2dkTlnBUspVdUUWIewppVxKOierLTr0pktcHzEkvUuaUWQ7G0-JdUm0hxp9MukHj-GaXLamC3jzvUvy9vjwunlKdy_b5816l0JeiJgaANUyZkpQlapBAm9AGNbIGg0oLisBTcmhogWDtixzqqBU0tSGGVOyQuVLcjd5j77_GDBEfbABsOuMw34IWirFCiE4H59ieoLvQ_DY6qO3B-NPmlF9LqT3-qeQPhfSVOix0Eje_yLBRhNt76I3tvsHv554HEN8WvQ6gEUH2FiP47fp7Z-OL2gLizY
CitedBy_id crossref_primary_10_1080_17480272_2024_2358145
crossref_primary_10_1016_j_engstruct_2020_111302
crossref_primary_10_1016_j_engstruct_2020_111547
crossref_primary_10_1080_13467581_2024_2373829
crossref_primary_10_1016_j_conbuildmat_2015_03_086
crossref_primary_10_1016_j_engstruct_2020_111425
crossref_primary_10_1016_j_conbuildmat_2016_11_127
crossref_primary_10_1016_j_compstruct_2018_05_104
crossref_primary_10_1016_j_engstruct_2016_10_043
crossref_primary_10_1016_j_engstruct_2020_111791
crossref_primary_10_1080_17480272_2021_1983870
crossref_primary_10_1016_j_conbuildmat_2025_143006
crossref_primary_10_1016_j_engstruct_2018_10_048
crossref_primary_10_1016_j_cscm_2024_e03695
crossref_primary_10_1016_j_engstruct_2025_120653
crossref_primary_10_1016_j_conbuildmat_2022_127158
crossref_primary_10_1016_j_engstruct_2021_112346
crossref_primary_10_1016_j_compstruct_2024_117987
crossref_primary_10_1007_s10853_021_06194_5
crossref_primary_10_1016_j_engstruct_2020_111560
crossref_primary_10_1061_JSENDH_STENG_12710
crossref_primary_10_1061_JSENDH_STENG_11623
crossref_primary_10_3390_buildings15173173
crossref_primary_10_1016_j_conbuildmat_2021_122450
crossref_primary_10_1007_s00107_019_01484_x
crossref_primary_10_1016_j_engstruct_2018_01_021
crossref_primary_10_1016_j_engstruct_2018_09_058
crossref_primary_10_1061_JSENDH_STENG_14340
crossref_primary_10_1016_j_istruc_2024_106745
crossref_primary_10_1088_2631_8695_ad476c
crossref_primary_10_1016_j_engstruct_2016_02_024
crossref_primary_10_1080_17480272_2021_1955297
crossref_primary_10_1007_s10518_019_00659_4
crossref_primary_10_1016_j_conbuildmat_2021_124621
crossref_primary_10_1016_j_conbuildmat_2024_138285
crossref_primary_10_1016_j_engstruct_2019_109916
crossref_primary_10_1016_j_conbuildmat_2017_12_215
crossref_primary_10_1016_j_indcrop_2023_117780
crossref_primary_10_1016_j_jobe_2022_105373
crossref_primary_10_1016_j_engstruct_2024_118654
crossref_primary_10_1016_j_conbuildmat_2022_130243
crossref_primary_10_1016_j_engstruct_2021_111918
crossref_primary_10_1016_j_engstruct_2019_109467
crossref_primary_10_1080_13632469_2024_2330590
crossref_primary_10_1016_j_engstruct_2020_110246
crossref_primary_10_1061__ASCE_ST_1943_541X_0001344
crossref_primary_10_1007_s10518_018_00536_6
crossref_primary_10_1016_j_engstruct_2021_112450
crossref_primary_10_3390_app132212249
crossref_primary_10_1016_j_conbuildmat_2018_12_198
crossref_primary_10_1016_j_compstruc_2024_107278
crossref_primary_10_3390_buildings13092342
crossref_primary_10_1016_j_engstruct_2025_120987
crossref_primary_10_1016_j_conbuildmat_2019_117026
crossref_primary_10_1016_j_engstruct_2025_120741
crossref_primary_10_1061__ASCE_MT_1943_5533_0001167
crossref_primary_10_1016_j_jobe_2023_108379
crossref_primary_10_1080_17480272_2022_2154168
crossref_primary_10_1016_j_engstruct_2024_117575
crossref_primary_10_1016_j_conbuildmat_2022_126670
crossref_primary_10_1016_j_conbuildmat_2023_130656
crossref_primary_10_1007_s00107_014_0877_6
crossref_primary_10_1016_j_engstruct_2021_113132
crossref_primary_10_1016_j_conbuildmat_2024_136003
crossref_primary_10_1016_j_conbuildmat_2019_02_112
crossref_primary_10_1016_j_engstruct_2025_120739
crossref_primary_10_1007_s10518_022_01553_2
crossref_primary_10_1016_j_tws_2021_107719
crossref_primary_10_1016_j_engstruct_2020_110543
crossref_primary_10_1016_j_engstruct_2020_110667
crossref_primary_10_1061__ASCE_ST_1943_541X_0003464
crossref_primary_10_1016_j_jobe_2022_104695
crossref_primary_10_1016_j_cscm_2021_e00552
crossref_primary_10_1016_j_engstruct_2025_120964
crossref_primary_10_1007_s13349_014_0095_2
crossref_primary_10_1007_s00107_024_02063_5
crossref_primary_10_1016_j_conbuildmat_2019_08_048
crossref_primary_10_1016_j_engstruct_2024_117474
crossref_primary_10_1016_j_engstruct_2025_121252
crossref_primary_10_1016_j_engstruct_2024_118689
crossref_primary_10_1080_17480272_2025_2509102
crossref_primary_10_1016_j_jobe_2023_107140
crossref_primary_10_1016_j_engstruct_2020_111766
crossref_primary_10_1007_s00107_025_02330_z
crossref_primary_10_1016_j_engstruct_2020_110562
crossref_primary_10_1061__ASCE_CF_1943_5509_0000594
crossref_primary_10_1007_s10518_017_0221_8
crossref_primary_10_1016_j_engstruct_2020_110329
crossref_primary_10_1016_j_engstruct_2019_03_100
crossref_primary_10_1016_j_istruc_2023_01_020
crossref_primary_10_1016_j_conbuildmat_2020_121152
crossref_primary_10_1080_17480272_2018_1446052
crossref_primary_10_1016_j_engstruct_2021_112497
crossref_primary_10_1016_j_tws_2022_110512
crossref_primary_10_1016_j_engstruct_2021_112496
crossref_primary_10_1016_j_engstruct_2025_121238
crossref_primary_10_1016_j_conbuildmat_2020_120856
crossref_primary_10_1016_j_engstruct_2020_111825
crossref_primary_10_3390_su152014857
crossref_primary_10_3390_app11062460
crossref_primary_10_1016_j_conbuildmat_2023_131422
crossref_primary_10_3390_buildings14010043
crossref_primary_10_1177_20414196221092466
crossref_primary_10_1061__ASCE_ST_1943_541X_0001751
crossref_primary_10_1016_j_conbuildmat_2019_117509
crossref_primary_10_1016_j_conbuildmat_2020_119821
crossref_primary_10_1016_j_compstruct_2022_116486
crossref_primary_10_1016_j_tws_2017_10_001
crossref_primary_10_1016_j_engstruct_2020_111155
crossref_primary_10_1007_s10518_022_01607_5
crossref_primary_10_1061_JSENDH_STENG_11579
crossref_primary_10_1016_j_engstruct_2021_113294
crossref_primary_10_1680_jstbu_20_00030
crossref_primary_10_1016_j_conbuildmat_2018_03_078
crossref_primary_10_1016_j_compositesb_2018_01_003
crossref_primary_10_1016_j_istruc_2025_109672
crossref_primary_10_1061__ASCE_CF_1943_5509_0001693
crossref_primary_10_1016_j_engstruct_2024_118114
crossref_primary_10_1080_13632469_2020_1781711
crossref_primary_10_1016_j_engstruct_2022_114427
crossref_primary_10_1061__ASCE_ST_1943_541X_0003266
crossref_primary_10_1080_15583058_2018_1501116
crossref_primary_10_1016_j_engstruct_2021_113165
crossref_primary_10_1016_j_engstruct_2022_114556
crossref_primary_10_1061__ASCE_ST_1943_541X_0002975
crossref_primary_10_3390_f14010146
crossref_primary_10_1007_s10518_025_02206_w
crossref_primary_10_1016_j_compstruct_2017_03_049
crossref_primary_10_3390_buildings14082438
crossref_primary_10_1016_j_engstruct_2024_118366
crossref_primary_10_1007_s00107_016_1058_6
crossref_primary_10_1007_s00107_019_01389_9
crossref_primary_10_1061__ASCE_SC_1943_5576_0000290
crossref_primary_10_3390_buildings12050583
crossref_primary_10_1016_j_engstruct_2020_111053
crossref_primary_10_1016_j_engstruct_2012_06_008
crossref_primary_10_1016_j_jobe_2025_113991
crossref_primary_10_1016_j_jobe_2018_06_008
crossref_primary_10_1061_JSENDH_STENG_14744
crossref_primary_10_1016_j_conbuildmat_2020_121595
crossref_primary_10_1016_j_conbuildmat_2021_124468
crossref_primary_10_1016_j_conbuildmat_2022_126449
crossref_primary_10_1016_j_conbuildmat_2021_124469
crossref_primary_10_1016_j_jobe_2022_104786
crossref_primary_10_1016_j_engstruct_2015_06_057
crossref_primary_10_1016_j_engstruct_2024_118493
crossref_primary_10_1108_JSFE_02_2022_0007
crossref_primary_10_1007_s10518_017_0247_y
crossref_primary_10_1080_17480272_2022_2101940
crossref_primary_10_1016_j_istruc_2024_105920
crossref_primary_10_1080_17480272_2022_2035433
crossref_primary_10_1016_j_engstruct_2019_01_034
crossref_primary_10_1016_j_engstruct_2018_12_024
crossref_primary_10_1016_j_conbuildmat_2021_122973
crossref_primary_10_1016_j_engstruct_2018_05_060
crossref_primary_10_29244_jsil_7_2_129_146
crossref_primary_10_3390_f13091480
crossref_primary_10_1016_j_engstruct_2018_05_063
crossref_primary_10_1016_j_istruc_2024_106767
crossref_primary_10_1016_j_engstruct_2023_116923
crossref_primary_10_1016_j_engstruct_2023_115710
crossref_primary_10_1007_s00107_023_02014_6
crossref_primary_10_1155_2021_6612886
crossref_primary_10_1617_s11527_014_0278_7
crossref_primary_10_1061_JSENDH_STENG_12508
crossref_primary_10_3390_buildings13020505
crossref_primary_10_1016_j_conbuildmat_2014_08_095
crossref_primary_10_1016_j_jobe_2019_100983
crossref_primary_10_3390_ma13235525
crossref_primary_10_1016_j_istruc_2025_109631
crossref_primary_10_3390_buildings13112693
crossref_primary_10_1080_15732479_2022_2053551
crossref_primary_10_1016_j_engstruct_2018_09_002
crossref_primary_10_1080_17480272_2025_2509076
crossref_primary_10_1016_j_conbuildmat_2025_140842
crossref_primary_10_1016_j_engstruct_2020_110839
crossref_primary_10_3390_fib10020021
crossref_primary_10_1061__ASCE_ST_1943_541X_0002982
crossref_primary_10_3390_buildings14010025
crossref_primary_10_1007_s10518_019_00578_4
crossref_primary_10_1016_j_conbuildmat_2016_05_036
crossref_primary_10_1016_j_conbuildmat_2019_04_100
crossref_primary_10_1016_j_conbuildmat_2016_06_072
crossref_primary_10_1002_cepa_1497
crossref_primary_10_1016_j_conbuildmat_2025_142493
crossref_primary_10_1177_1369433220940814
crossref_primary_10_3390_ma15082720
crossref_primary_10_1016_j_istruc_2025_110083
crossref_primary_10_1061__ASCE_ST_1943_541X_0002995
crossref_primary_10_1007_s00521_025_11556_0
crossref_primary_10_1016_j_engstruct_2024_117519
crossref_primary_10_11648_j_eas_20251003_14
crossref_primary_10_1061_JSENDH_STENG_12898
Cites_doi 10.1016/j.engstruct.2011.03.011
10.1007/BF02609174
10.1007/BF02479541
10.1002/(SICI)1096-9845(199909)28:9<979::AID-EQE850>3.0.CO;2-1
10.1061/(ASCE)0733-9445(1986)112:12(2592)
10.1016/j.engstruct.2011.05.020
10.1002/eqe.4290230504
ContentType Journal Article
Copyright 2011 Elsevier Ltd
Copyright_xml – notice: 2011 Elsevier Ltd
DBID AAYXX
CITATION
7T2
C1K
DOI 10.1016/j.engstruct.2011.07.024
DatabaseName CrossRef
Health and Safety Science Abstracts (Full archive)
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
Health & Safety Science Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Health & Safety Science Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7323
EndPage 2997
ExternalDocumentID 10_1016_j_engstruct_2011_07_024
S0141029611002951
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSE
SST
SSZ
T5K
TN5
UAO
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7T2
C1K
ID FETCH-LOGICAL-c347t-acc9f11a5c969bc8c2dc7a1d8beac92867cd52c6041cf55309c598aba1aa51493
ISICitedReferencesCount 213
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000296176000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0141-0296
IngestDate Tue Oct 07 09:34:15 EDT 2025
Tue Nov 18 21:51:40 EST 2025
Sat Nov 29 04:27:55 EST 2025
Fri Feb 23 02:27:32 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Connections
Wood
Yielding
Ductility
Non-linear analysis
Timber
Plasticity
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c347t-acc9f11a5c969bc8c2dc7a1d8beac92867cd52c6041cf55309c598aba1aa51493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 899147722
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_899147722
crossref_primary_10_1016_j_engstruct_2011_07_024
crossref_citationtrail_10_1016_j_engstruct_2011_07_024
elsevier_sciencedirect_doi_10_1016_j_engstruct_2011_07_024
PublicationCentury 2000
PublicationDate 2011-11-01
PublicationDateYYYYMMDD 2011-11-01
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Engineering structures
PublicationYear 2011
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References EN 14358—timber structures—calculation of characteristic 5-percentile values and acceptance criteria for a sample, rue de Stassart, 36 B-1050. Brussels (Belgium): Published by Comité Européen de Normalisation, CEN; 2006.
Federal Emergency Management Agency. NEHRP recommended seismic provisions for new buildings and other structures. 2009 ed. Washington (DC, USA).
EN 12512—ISO/DIS 16670. European standard = ISO standard. Timber structures. Test methods. Cyclic testing of joints made with mechanical fasteners. Brussels: Comité Européen de Normalisation, CEN; 2001.
Brühl F, Kuhlmann U, Jorissen A. Consideration of plasticity within the design of timber structures due to connection ductility. Eng Struct [this special issue] [accepted, in print].
Stehn L, Björnfot A. Comparison of different ductility measurements for a nailed steel-to-timber connection. In: Proceedings of the 7th world conference on timber engineering WCTE. 2002.
Buchanan (br000075) 1984; 112
Italian Ministry for the Infrastructures. Commentary to the new technical regulation for construction. Circular 2 February 2009 No. 617 CSLLPP, Rome, Italy.
Johansen (br000095) 1949; 9
Fragiacomo M, Dujic B, Sustersic I. Elastic and ductile design of multi-storey crosslam massive wooden buildings under seismic actions. Eng Struct [this special issue] published online
EN 1993-1-8. Eurocode 3-design of steel structures-part 1–8: design of joints. Brussels (Belgium): Comité Européen de Normalisation, CEN; 2005.
Yasumura M, Kawai N. Estimating seismic performance of wood-framed structures. In: Proceedings of 1998 IWEC Switzerland. vol. 2. p. 564–71.
NEN 6760. Design of timber structures. PO Box 5059, 2600 GB, Delft (the Netherlands): Published by NEN; 2005.
EN 338. Structural timber—strength classes, rue de Stassart, 36 B-1050. Brussels (Belgium): Published by Comité Européen de Normalisation, CEN; 2008.
Steiger, Fontana (br000080) 2005; 38
Priestley MJN. Performance based seismic design. In: Proceedings of the 12th world conference on earthquake engineering. 2000.
of timber buildings. In: Proceedings of the 10th world conference on timber engineering. 2010.
SIA 265. Swiss code for timber structures. PO Box, CH-8027, Zürich (Switzerland): Published by Swiss Society of Engineers and Architects; 2003.
Vidic, Faifar, Fischinger (br000120) 1994; 23
Pauley, Priestley (br000090) 1992
EN 1998-1. Design of structures for earthquake resistance—part 1: General rules, seismic actions and rules for buildings. Brussels (Belgium): Comité Européen de Normalisation, CEN; 2004.
EN 1990. Eurocode—basis of structural design. Brussels (Belgium): Comité Européen de Normalisation, CEN; 2004.
Blass HJ. Design of columns. In: Proceedings of the 1991 international timber engineering conference. vol. 1. 1991. p. 1.75–.81.
.
Kirkegaard PH, Sorensen JD, Čizmar D, Rajcic V. System reliability of timber structures with ductile behaviour. Eng Struct [this special issue] published online
Karacabeyli, Ceccotti (br000050) 1998
Fajfar (br000160) 1999; 28
Foliente GC. Issues in seismic performance testing and evaluation of timber structural systems. In: Proceedings of the 1996 international timber engineering conference. vol. 1. p. 1.29–.36.
Jorissen A. Double shear timber connections with dowel-type fasteners. Ph.D. thesis. The Netherlands: Delft University of Technology, 1998.
EN 1995-1-1. Eurocode 5—design of timber structures—part 1–1: general—common rules and rules for buildings. Brussels (Belgium): Comité Européen de Normalisation, CEN; 2004.
Smith I, Asiz A. Transition from design of timber components to design of systems. In: IABSE-fib conference. 2010.
AF&PA. National Design Specification (NDS) for wood construction—commentary. 2005 ed. Washington (DC, USA): American Forest & Paper Association.
Meyer (br000100) 1957; 15
Ceccotti A, Sandhaas C. A proposal for a standard procedure to establish the seismic behaviour factor
Foschi, Bonac (br000070) 1977; 9
Muñoz W, Mohammad M, Salenikovich A, Quenneville P. Need for a harmonized approach for calculations of ductility of timber assemblies. In: Proceedings of the meeting 41 of the working commission W18-timber structures. CIB. 2008.
10.1016/j.engstruct.2011.07.024_br000125
10.1016/j.engstruct.2011.07.024_br000025
10.1016/j.engstruct.2011.07.024_br000145
10.1016/j.engstruct.2011.07.024_br000045
Johansen (10.1016/j.engstruct.2011.07.024_br000095) 1949; 9
10.1016/j.engstruct.2011.07.024_br000105
10.1016/j.engstruct.2011.07.024_br000005
Fajfar (10.1016/j.engstruct.2011.07.024_br000160) 1999; 28
Foschi (10.1016/j.engstruct.2011.07.024_br000070) 1977; 9
10.1016/j.engstruct.2011.07.024_br000040
10.1016/j.engstruct.2011.07.024_br000060
Vidic (10.1016/j.engstruct.2011.07.024_br000120) 1994; 23
10.1016/j.engstruct.2011.07.024_br000165
10.1016/j.engstruct.2011.07.024_br000065
10.1016/j.engstruct.2011.07.024_br000020
10.1016/j.engstruct.2011.07.024_br000085
10.1016/j.engstruct.2011.07.024_br000140
10.1016/j.engstruct.2011.07.024_br000015
Meyer (10.1016/j.engstruct.2011.07.024_br000100) 1957; 15
10.1016/j.engstruct.2011.07.024_br000135
10.1016/j.engstruct.2011.07.024_br000035
Karacabeyli (10.1016/j.engstruct.2011.07.024_br000050) 1998
10.1016/j.engstruct.2011.07.024_br000155
10.1016/j.engstruct.2011.07.024_br000115
Steiger (10.1016/j.engstruct.2011.07.024_br000080) 2005; 38
Pauley (10.1016/j.engstruct.2011.07.024_br000090) 1992
10.1016/j.engstruct.2011.07.024_br000150
Buchanan (10.1016/j.engstruct.2011.07.024_br000075) 1984; 112
10.1016/j.engstruct.2011.07.024_br000055
10.1016/j.engstruct.2011.07.024_br000110
10.1016/j.engstruct.2011.07.024_br000010
10.1016/j.engstruct.2011.07.024_br000130
10.1016/j.engstruct.2011.07.024_br000030
References_xml – reference: EN 338. Structural timber—strength classes, rue de Stassart, 36 B-1050. Brussels (Belgium): Published by Comité Européen de Normalisation, CEN; 2008.
– reference: Muñoz W, Mohammad M, Salenikovich A, Quenneville P. Need for a harmonized approach for calculations of ductility of timber assemblies. In: Proceedings of the meeting 41 of the working commission W18-timber structures. CIB. 2008.
– reference: Ceccotti A, Sandhaas C. A proposal for a standard procedure to establish the seismic behaviour factor
– reference: Yasumura M, Kawai N. Estimating seismic performance of wood-framed structures. In: Proceedings of 1998 IWEC Switzerland. vol. 2. p. 564–71.
– volume: 9
  start-page: 118
  year: 1977
  end-page: 123
  ident: br000070
  article-title: Load-slip characteristics for connections with common nails
  publication-title: Wood Sci Technol
– volume: 28
  start-page: 979
  year: 1999
  end-page: 993
  ident: br000160
  article-title: Capacity spectrum method based on inelastic demand spectra
  publication-title: Earthq Eng Struct Dyn
– reference: Smith I, Asiz A. Transition from design of timber components to design of systems. In: IABSE-fib conference. 2010.
– reference: Jorissen A. Double shear timber connections with dowel-type fasteners. Ph.D. thesis. The Netherlands: Delft University of Technology, 1998.
– reference: Foliente GC. Issues in seismic performance testing and evaluation of timber structural systems. In: Proceedings of the 1996 international timber engineering conference. vol. 1. p. 1.29–.36.
– reference: EN 1993-1-8. Eurocode 3-design of steel structures-part 1–8: design of joints. Brussels (Belgium): Comité Européen de Normalisation, CEN; 2005.
– reference: SIA 265. Swiss code for timber structures. PO Box, CH-8027, Zürich (Switzerland): Published by Swiss Society of Engineers and Architects; 2003.
– reference: NEN 6760. Design of timber structures. PO Box 5059, 2600 GB, Delft (the Netherlands): Published by NEN; 2005.
– reference: Stehn L, Björnfot A. Comparison of different ductility measurements for a nailed steel-to-timber connection. In: Proceedings of the 7th world conference on timber engineering WCTE. 2002.
– reference: Brühl F, Kuhlmann U, Jorissen A. Consideration of plasticity within the design of timber structures due to connection ductility. Eng Struct [this special issue] [accepted, in print].
– reference: of timber buildings. In: Proceedings of the 10th world conference on timber engineering. 2010.
– year: 1998
  ident: br000050
  article-title: Nailed wood-frame shear walls for seismic loads: Test results and design considerations
  publication-title: Struct Eng World Wide
– volume: 9
  start-page: 249
  year: 1949
  end-page: 262
  ident: br000095
  article-title: Theory of timber connections
  publication-title: International Association of Bridge and Structural Engineering
– reference: Priestley MJN. Performance based seismic design. In: Proceedings of the 12th world conference on earthquake engineering. 2000.
– year: 1992
  ident: br000090
  article-title: Seismic design of reinforced concrete and masonry buildings
– reference: Federal Emergency Management Agency. NEHRP recommended seismic provisions for new buildings and other structures. 2009 ed. Washington (DC, USA).
– reference: EN 14358—timber structures—calculation of characteristic 5-percentile values and acceptance criteria for a sample, rue de Stassart, 36 B-1050. Brussels (Belgium): Published by Comité Européen de Normalisation, CEN; 2006.
– reference: Kirkegaard PH, Sorensen JD, Čizmar D, Rajcic V. System reliability of timber structures with ductile behaviour. Eng Struct [this special issue] published online,
– reference: EN 1990. Eurocode—basis of structural design. Brussels (Belgium): Comité Européen de Normalisation, CEN; 2004.
– reference: EN 1998-1. Design of structures for earthquake resistance—part 1: General rules, seismic actions and rules for buildings. Brussels (Belgium): Comité Européen de Normalisation, CEN; 2004.
– reference: Blass HJ. Design of columns. In: Proceedings of the 1991 international timber engineering conference. vol. 1. 1991. p. 1.75–.81.
– volume: 15
  start-page: 96
  year: 1957
  end-page: 109
  ident: br000100
  article-title: Die Tragfähigkeit von Nagelverbindungen bei statischer Belastung
  publication-title: Holz als Roh- Werkstoff
– reference: Italian Ministry for the Infrastructures. Commentary to the new technical regulation for construction. Circular 2 February 2009 No. 617 CSLLPP, Rome, Italy.
– reference: EN 1995-1-1. Eurocode 5—design of timber structures—part 1–1: general—common rules and rules for buildings. Brussels (Belgium): Comité Européen de Normalisation, CEN; 2004.
– volume: 112
  start-page: 2592
  year: 1984
  end-page: 2609
  ident: br000075
  article-title: Combined bending and axial loading in lumber
  publication-title: J Struct Eng, ASCE
– reference: Fragiacomo M, Dujic B, Sustersic I. Elastic and ductile design of multi-storey crosslam massive wooden buildings under seismic actions. Eng Struct [this special issue] published online,
– volume: 23
  start-page: 507
  year: 1994
  end-page: 521
  ident: br000120
  article-title: Consistent inelastic design spectra: Strength and displacement
  publication-title: Earthq Eng Struct Dyn
– reference: EN 12512—ISO/DIS 16670. European standard = ISO standard. Timber structures. Test methods. Cyclic testing of joints made with mechanical fasteners. Brussels: Comité Européen de Normalisation, CEN; 2001.
– reference: AF&PA. National Design Specification (NDS) for wood construction—commentary. 2005 ed. Washington (DC, USA): American Forest & Paper Association.
– reference: .
– volume: 38
  start-page: 507
  year: 2005
  end-page: 513
  ident: br000080
  article-title: Bending moments and axial force interacting on solid timber beams
  publication-title: RILEM Mater Struct
– ident: 10.1016/j.engstruct.2011.07.024_br000055
– ident: 10.1016/j.engstruct.2011.07.024_br000040
– ident: 10.1016/j.engstruct.2011.07.024_br000135
– volume: 9
  start-page: 249
  year: 1949
  ident: 10.1016/j.engstruct.2011.07.024_br000095
  article-title: Theory of timber connections
  publication-title: International Association of Bridge and Structural Engineering
– ident: 10.1016/j.engstruct.2011.07.024_br000110
– ident: 10.1016/j.engstruct.2011.07.024_br000005
– ident: 10.1016/j.engstruct.2011.07.024_br000045
– ident: 10.1016/j.engstruct.2011.07.024_br000025
  doi: 10.1016/j.engstruct.2011.03.011
– volume: 15
  start-page: 96
  issue: 2
  year: 1957
  ident: 10.1016/j.engstruct.2011.07.024_br000100
  article-title: Die Tragfähigkeit von Nagelverbindungen bei statischer Belastung
  publication-title: Holz als Roh- Werkstoff
  doi: 10.1007/BF02609174
– ident: 10.1016/j.engstruct.2011.07.024_br000140
– ident: 10.1016/j.engstruct.2011.07.024_br000010
– volume: 38
  start-page: 507
  issue: 5
  year: 2005
  ident: 10.1016/j.engstruct.2011.07.024_br000080
  article-title: Bending moments and axial force interacting on solid timber beams
  publication-title: RILEM Mater Struct
  doi: 10.1007/BF02479541
– ident: 10.1016/j.engstruct.2011.07.024_br000125
– ident: 10.1016/j.engstruct.2011.07.024_br000165
– ident: 10.1016/j.engstruct.2011.07.024_br000035
– ident: 10.1016/j.engstruct.2011.07.024_br000060
– ident: 10.1016/j.engstruct.2011.07.024_br000085
– volume: 28
  start-page: 979
  issue: 9
  year: 1999
  ident: 10.1016/j.engstruct.2011.07.024_br000160
  article-title: Capacity spectrum method based on inelastic demand spectra
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/(SICI)1096-9845(199909)28:9<979::AID-EQE850>3.0.CO;2-1
– ident: 10.1016/j.engstruct.2011.07.024_br000155
– ident: 10.1016/j.engstruct.2011.07.024_br000020
– ident: 10.1016/j.engstruct.2011.07.024_br000115
– ident: 10.1016/j.engstruct.2011.07.024_br000150
– volume: 9
  start-page: 118
  issue: 3
  year: 1977
  ident: 10.1016/j.engstruct.2011.07.024_br000070
  article-title: Load-slip characteristics for connections with common nails
  publication-title: Wood Sci Technol
– volume: 112
  start-page: 2592
  issue: 12
  year: 1984
  ident: 10.1016/j.engstruct.2011.07.024_br000075
  article-title: Combined bending and axial loading in lumber
  publication-title: J Struct Eng, ASCE
  doi: 10.1061/(ASCE)0733-9445(1986)112:12(2592)
– ident: 10.1016/j.engstruct.2011.07.024_br000105
– ident: 10.1016/j.engstruct.2011.07.024_br000130
  doi: 10.1016/j.engstruct.2011.05.020
– ident: 10.1016/j.engstruct.2011.07.024_br000065
– year: 1998
  ident: 10.1016/j.engstruct.2011.07.024_br000050
  article-title: Nailed wood-frame shear walls for seismic loads: Test results and design considerations
  publication-title: Struct Eng World Wide
– ident: 10.1016/j.engstruct.2011.07.024_br000015
– year: 1992
  ident: 10.1016/j.engstruct.2011.07.024_br000090
– ident: 10.1016/j.engstruct.2011.07.024_br000030
– ident: 10.1016/j.engstruct.2011.07.024_br000145
– volume: 23
  start-page: 507
  issue: 5
  year: 1994
  ident: 10.1016/j.engstruct.2011.07.024_br000120
  article-title: Consistent inelastic design spectra: Strength and displacement
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.4290230504
SSID ssj0002880
Score 2.450835
Snippet The paper discusses the implications of ductility in design of timber structures under static and dynamic loading including earthquakes. Timber is a material...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2987
SubjectTerms Connections
Ductility
Non-linear analysis
Plasticity
Timber
Wood
Yielding
Title General notes on ductility in timber structures
URI https://dx.doi.org/10.1016/j.engstruct.2011.07.024
https://www.proquest.com/docview/899147722
Volume 33
WOSCitedRecordID wos000296176000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLag4wAHxE8xGMgHxGXKqFMnjrlNU6eBqsKhk3qz_HPKxJzSbmh_Ps-xk3YbqHDgEjVWnDTvc-zn5-fvQ-i9kYArJSTTlJqMllZnyhmVFZIayhSxTrWqJRM2nVbzOf-WhMZXrZwA8766vuaL_wo1lAHYYevsP8Dd3xQK4DeADkeAHY5_BXwikt73TQipAriB0bVuve2Q01gHBZD9SBt7tUwZhF1ofk1OePuKNslmGRbvfZ8H2WO_lGc19KwXTdz9A5_ZRbMZTgj5bH04oYswQkEeZWa7LjJyVXRNgWx2eDyNlzadxmzbOx1zjBGcH1h_Fv9_Yk9lB8O4h_omFfb0qzg-nUzEbDyffVj8yIJKWFhNT5Ip99FOzgpeDdDO4efx_Es_9uZVq5XXv8SNjL7fPvtP_sitkbl1N2ZP0OM0T8CHEd-n6J71z9CjDYCeo48JadwijRuPe6Rx7XFEGq9xfIFOj8ezo5Ms6V9kekTZZSa15o4QWWhecqUrnRvNJDGVgtGS51XJtClyXQ4p0S7IP3ENNpFKEinBD-ajl2jgG29fIQyzamNNIAvM4dYjxwujR4VyuXOqZI7sorKzgtCJHD5olHwXXRbguejNJ4L5xJAJMN8uGvYVF5EfZXuVT52ZRXLzovsmoLFsr4w7YAR0hGF1S3rbXK0EvCKhMFfMX2-_5A16uG77e2gAj7Fv0QP987JeLd-lRvULHLGD9A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=General+notes+on+ductility+in+timber+structures&rft.jtitle=Engineering+structures&rft.au=Jorissen%2C+Andre&rft.au=Fragiacomo%2C+Massimo&rft.date=2011-11-01&rft.issn=0141-0296&rft.volume=33&rft.issue=11&rft.spage=2987&rft.epage=2997&rft_id=info:doi/10.1016%2Fj.engstruct.2011.07.024&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon