Underwater Image Enhancement via Minimal Color Loss and Locally Adaptive Contrast Enhancement

Underwater images typically suffer from color deviations and low visibility due to the wavelength-dependent light absorption and scattering. To deal with these degradation issues, we propose an efficient and robust underwater image enhancement method, called MLLE. Specifically, we first locally adju...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing Jg. 31; S. 3997 - 4010
Hauptverfasser: Zhang, Weidong, Zhuang, Peixian, Sun, Hai-Han, Li, Guohou, Kwong, Sam, Li, Chongyi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1057-7149, 1941-0042, 1941-0042
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Underwater images typically suffer from color deviations and low visibility due to the wavelength-dependent light absorption and scattering. To deal with these degradation issues, we propose an efficient and robust underwater image enhancement method, called MLLE. Specifically, we first locally adjust the color and details of an input image according to a minimum color loss principle and a maximum attenuation map-guided fusion strategy. Afterward, we employ the integral and squared integral maps to compute the mean and variance of local image blocks, which are used to adaptively adjust the contrast of the input image. Meanwhile, a color balance strategy is introduced to balance the color differences between channel a and channel b in the CIELAB color space. Our enhanced results are characterized by vivid color, improved contrast, and enhanced details. Extensive experiments on three underwater image enhancement datasets demonstrate that our method outperforms the state-of-the-art methods. Our method is also appealing in its fast processing speed within 1s for processing an image of size <inline-formula> <tex-math notation="LaTeX">1024\times 1024 \times 3 </tex-math></inline-formula> on a single CPU. Experiments further suggest that our method can effectively improve the performance of underwater image segmentation, keypoint detection, and saliency detection. The project page is available at https://li-chongyi.github.io/proj
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1057-7149
1941-0042
1941-0042
DOI:10.1109/TIP.2022.3177129