Underwater Image Enhancement via Minimal Color Loss and Locally Adaptive Contrast Enhancement

Underwater images typically suffer from color deviations and low visibility due to the wavelength-dependent light absorption and scattering. To deal with these degradation issues, we propose an efficient and robust underwater image enhancement method, called MLLE. Specifically, we first locally adju...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on image processing Ročník 31; s. 3997 - 4010
Hlavní autoři: Zhang, Weidong, Zhuang, Peixian, Sun, Hai-Han, Li, Guohou, Kwong, Sam, Li, Chongyi
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1057-7149, 1941-0042, 1941-0042
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Underwater images typically suffer from color deviations and low visibility due to the wavelength-dependent light absorption and scattering. To deal with these degradation issues, we propose an efficient and robust underwater image enhancement method, called MLLE. Specifically, we first locally adjust the color and details of an input image according to a minimum color loss principle and a maximum attenuation map-guided fusion strategy. Afterward, we employ the integral and squared integral maps to compute the mean and variance of local image blocks, which are used to adaptively adjust the contrast of the input image. Meanwhile, a color balance strategy is introduced to balance the color differences between channel a and channel b in the CIELAB color space. Our enhanced results are characterized by vivid color, improved contrast, and enhanced details. Extensive experiments on three underwater image enhancement datasets demonstrate that our method outperforms the state-of-the-art methods. Our method is also appealing in its fast processing speed within 1s for processing an image of size <inline-formula> <tex-math notation="LaTeX">1024\times 1024 \times 3 </tex-math></inline-formula> on a single CPU. Experiments further suggest that our method can effectively improve the performance of underwater image segmentation, keypoint detection, and saliency detection. The project page is available at https://li-chongyi.github.io/proj
AbstractList Underwater images typically suffer from color deviations and low visibility due to the wavelength-dependent light absorption and scattering. To deal with these degradation issues, we propose an efficient and robust underwater image enhancement method, called MLLE. Specifically, we first locally adjust the color and details of an input image according to a minimum color loss principle and a maximum attenuation map-guided fusion strategy. Afterward, we employ the integral and squared integral maps to compute the mean and variance of local image blocks, which are used to adaptively adjust the contrast of the input image. Meanwhile, a color balance strategy is introduced to balance the color differences between channel a and channel b in the CIELAB color space. Our enhanced results are characterized by vivid color, improved contrast, and enhanced details. Extensive experiments on three underwater image enhancement datasets demonstrate that our method outperforms the state-of-the-art methods. Our method is also appealing in its fast processing speed within 1s for processing an image of size 1024×1024×3 on a single CPU. Experiments further suggest that our method can effectively improve the performance of underwater image segmentation, keypoint detection, and saliency detection. The project page is available at https://li-chongyi.github.io/proj_MMLE.html.
Underwater images typically suffer from color deviations and low visibility due to the wavelength-dependent light absorption and scattering. To deal with these degradation issues, we propose an efficient and robust underwater image enhancement method, called MLLE. Specifically, we first locally adjust the color and details of an input image according to a minimum color loss principle and a maximum attenuation map-guided fusion strategy. Afterward, we employ the integral and squared integral maps to compute the mean and variance of local image blocks, which are used to adaptively adjust the contrast of the input image. Meanwhile, a color balance strategy is introduced to balance the color differences between channel a and channel b in the CIELAB color space. Our enhanced results are characterized by vivid color, improved contrast, and enhanced details. Extensive experiments on three underwater image enhancement datasets demonstrate that our method outperforms the state-of-the-art methods. Our method is also appealing in its fast processing speed within 1s for processing an image of size 1024×1024×3 on a single CPU. Experiments further suggest that our method can effectively improve the performance of underwater image segmentation, keypoint detection, and saliency detection. The project page is available at https://li-chongyi.github.io/proj_MMLE.html.Underwater images typically suffer from color deviations and low visibility due to the wavelength-dependent light absorption and scattering. To deal with these degradation issues, we propose an efficient and robust underwater image enhancement method, called MLLE. Specifically, we first locally adjust the color and details of an input image according to a minimum color loss principle and a maximum attenuation map-guided fusion strategy. Afterward, we employ the integral and squared integral maps to compute the mean and variance of local image blocks, which are used to adaptively adjust the contrast of the input image. Meanwhile, a color balance strategy is introduced to balance the color differences between channel a and channel b in the CIELAB color space. Our enhanced results are characterized by vivid color, improved contrast, and enhanced details. Extensive experiments on three underwater image enhancement datasets demonstrate that our method outperforms the state-of-the-art methods. Our method is also appealing in its fast processing speed within 1s for processing an image of size 1024×1024×3 on a single CPU. Experiments further suggest that our method can effectively improve the performance of underwater image segmentation, keypoint detection, and saliency detection. The project page is available at https://li-chongyi.github.io/proj_MMLE.html.
Underwater images typically suffer from color deviations and low visibility due to the wavelength-dependent light absorption and scattering. To deal with these degradation issues, we propose an efficient and robust underwater image enhancement method, called MLLE. Specifically, we first locally adjust the color and details of an input image according to a minimum color loss principle and a maximum attenuation map-guided fusion strategy. Afterward, we employ the integral and squared integral maps to compute the mean and variance of local image blocks, which are used to adaptively adjust the contrast of the input image. Meanwhile, a color balance strategy is introduced to balance the color differences between channel a and channel b in the CIELAB color space. Our enhanced results are characterized by vivid color, improved contrast, and enhanced details. Extensive experiments on three underwater image enhancement datasets demonstrate that our method outperforms the state-of-the-art methods. Our method is also appealing in its fast processing speed within 1s for processing an image of size [Formula Omitted] on a single CPU. Experiments further suggest that our method can effectively improve the performance of underwater image segmentation, keypoint detection, and saliency detection. The project page is available at https://li-chongyi.github.io/proj
Underwater images typically suffer from color deviations and low visibility due to the wavelength-dependent light absorption and scattering. To deal with these degradation issues, we propose an efficient and robust underwater image enhancement method, called MLLE. Specifically, we first locally adjust the color and details of an input image according to a minimum color loss principle and a maximum attenuation map-guided fusion strategy. Afterward, we employ the integral and squared integral maps to compute the mean and variance of local image blocks, which are used to adaptively adjust the contrast of the input image. Meanwhile, a color balance strategy is introduced to balance the color differences between channel a and channel b in the CIELAB color space. Our enhanced results are characterized by vivid color, improved contrast, and enhanced details. Extensive experiments on three underwater image enhancement datasets demonstrate that our method outperforms the state-of-the-art methods. Our method is also appealing in its fast processing speed within 1s for processing an image of size <inline-formula> <tex-math notation="LaTeX">1024\times 1024 \times 3 </tex-math></inline-formula> on a single CPU. Experiments further suggest that our method can effectively improve the performance of underwater image segmentation, keypoint detection, and saliency detection. The project page is available at https://li-chongyi.github.io/proj
Author Sun, Hai-Han
Li, Guohou
Zhang, Weidong
Li, Chongyi
Kwong, Sam
Zhuang, Peixian
Author_xml – sequence: 1
  givenname: Weidong
  orcidid: 0000-0003-2495-4469
  surname: Zhang
  fullname: Zhang, Weidong
  email: zwd_wd@163.com
  organization: School of Information Engineering, Henan Institute of Science and Technology, Xinxiang, China
– sequence: 2
  givenname: Peixian
  orcidid: 0000-0002-7143-9569
  surname: Zhuang
  fullname: Zhuang, Peixian
  email: zhuangpeixian0624@163.com
  organization: Department of Automation, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Hai-Han
  orcidid: 0000-0003-2749-9916
  surname: Sun
  fullname: Sun, Hai-Han
  email: hannah.h.sun@outlook.com
  organization: School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
– sequence: 4
  givenname: Guohou
  surname: Li
  fullname: Li, Guohou
  email: liguohou6@163.com
  organization: School of Information Engineering, Henan Institute of Science and Technology, Xinxiang, China
– sequence: 5
  givenname: Sam
  orcidid: 0000-0001-7484-7261
  surname: Kwong
  fullname: Kwong, Sam
  email: cssamk@cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong, SAR, China
– sequence: 6
  givenname: Chongyi
  orcidid: 0000-0003-2609-2460
  surname: Li
  fullname: Li, Chongyi
  email: lichongyi25@gmail.com
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35657839$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1LKzEUxYP48HsvCDLgxs3UfEwmk6UU37NQeS50KSFN7mhkJlOTtOJ_b2qriAtX98L9ncPlnH207QcPCB0TPCIEy4u7ye2IYkpHjAhBqNxCe0RWpMS4ott5x1yUglRyF-3H-IwxqTipd9Au4zUXDZN76OHeWwivOkEoJr1-hOLKP2lvoAefiqXTxY3zrtddMR66IRTTIcZCe5sXo7vurbi0ep7cEvLdp6Bj-m5wiP60uotwtJkH6P7v1d34upz-_zcZX05LwyqRSm2aWgjDDdBZU2NsAbeNBdbOGGsY5xazGReCMiqkodJqoqkFW7dWsnwDdoDO177zMLwsICbVu2ig67SHYREVrQVjvBGUZvTsB_o8LILP360ojiuZQ8vU6YZazHqwah5yBuFNfQaXgXoNmJATCdAq45JO7iME1ymC1aohlRtSq4bUpqEsxD-En96_SE7WEgcAX7gUTcMZZ--P-JpX
CODEN IIPRE4
CitedBy_id crossref_primary_10_1016_j_jvcir_2024_104355
crossref_primary_10_3389_fmars_2024_1471014
crossref_primary_10_1016_j_optcom_2023_130064
crossref_primary_10_1109_TCYB_2023_3326165
crossref_primary_10_1007_s42452_025_07163_2
crossref_primary_10_1007_s11760_023_02591_2
crossref_primary_10_1016_j_engappai_2023_107219
crossref_primary_10_1109_LGRS_2023_3344630
crossref_primary_10_1016_j_engappai_2023_107462
crossref_primary_10_1007_s10846_024_02065_8
crossref_primary_10_1109_TIM_2024_3366583
crossref_primary_10_1016_j_eswa_2024_125350
crossref_primary_10_1016_j_knosys_2024_112049
crossref_primary_10_1109_TGRS_2024_3485030
crossref_primary_10_3389_fmars_2024_1457190
crossref_primary_10_1016_j_jvcir_2024_104240
crossref_primary_10_1016_j_optlaseng_2025_109241
crossref_primary_10_1109_JIOT_2025_3540033
crossref_primary_10_1016_j_eswa_2024_126314
crossref_primary_10_1016_j_optlaseng_2025_109363
crossref_primary_10_1016_j_patcog_2024_111198
crossref_primary_10_1109_TCSVT_2024_3508102
crossref_primary_10_1016_j_jvcir_2025_104500
crossref_primary_10_3390_jmse13061195
crossref_primary_10_1016_j_asoc_2025_112865
crossref_primary_10_1016_j_image_2024_117200
crossref_primary_10_1109_ACCESS_2022_3221407
crossref_primary_10_1109_TGRS_2023_3347745
crossref_primary_10_3390_jmse11122228
crossref_primary_10_3390_jmse13091820
crossref_primary_10_1016_j_procs_2025_04_302
crossref_primary_10_3390_jmse12071208
crossref_primary_10_1109_LSP_2024_3470752
crossref_primary_10_1007_s00034_025_03220_8
crossref_primary_10_1109_TCSVT_2024_3512600
crossref_primary_10_1016_j_neucom_2025_130845
crossref_primary_10_1109_JIOT_2023_3320739
crossref_primary_10_3389_fmars_2023_1163831
crossref_primary_10_1016_j_jvcir_2024_104131
crossref_primary_10_1049_ipr2_70037
crossref_primary_10_1109_TGRS_2023_3293912
crossref_primary_10_1007_s00530_024_01642_z
crossref_primary_10_3390_app15010090
crossref_primary_10_1007_s00371_025_03989_4
crossref_primary_10_1109_TCSVT_2025_3545595
crossref_primary_10_1109_JOE_2023_3310079
crossref_primary_10_1109_TMM_2023_3327613
crossref_primary_10_1016_j_displa_2025_103094
crossref_primary_10_1109_TCSVT_2023_3289566
crossref_primary_10_1016_j_inffus_2025_103177
crossref_primary_10_1016_j_knosys_2022_109997
crossref_primary_10_1016_j_jvcir_2024_104145
crossref_primary_10_1016_j_engappai_2023_107445
crossref_primary_10_1088_1361_6501_adce20
crossref_primary_10_1016_j_optlastec_2025_112616
crossref_primary_10_3390_s23104688
crossref_primary_10_1007_s13042_024_02379_x
crossref_primary_10_1016_j_knosys_2022_109751
crossref_primary_10_1007_s11760_025_04086_8
crossref_primary_10_1016_j_sigpro_2025_110165
crossref_primary_10_1016_j_imavis_2024_104995
crossref_primary_10_1109_TGRS_2024_3387722
crossref_primary_10_1016_j_asoc_2025_113811
crossref_primary_10_1080_19479832_2024_2423788
crossref_primary_10_3390_s23187763
crossref_primary_10_1016_j_optlaseng_2025_109102
crossref_primary_10_3390_electronics13010196
crossref_primary_10_3390_electronics13010199
crossref_primary_10_1016_j_engappai_2025_112203
crossref_primary_10_1109_TGRS_2023_3338611
crossref_primary_10_1109_TCI_2025_3544065
crossref_primary_10_1016_j_eswa_2024_125271
crossref_primary_10_1109_ACCESS_2024_3478788
crossref_primary_10_1016_j_neucom_2024_129274
crossref_primary_10_1016_j_knosys_2025_114420
crossref_primary_10_1109_TCSVT_2025_3533598
crossref_primary_10_1007_s44295_023_00015_y
crossref_primary_10_1016_j_eswa_2025_128959
crossref_primary_10_1016_j_engappai_2023_106457
crossref_primary_10_1016_j_patcog_2025_111411
crossref_primary_10_1109_LSP_2023_3255005
crossref_primary_10_3390_s24123794
crossref_primary_10_1016_j_displa_2024_102845
crossref_primary_10_1016_j_patrec_2024_11_007
crossref_primary_10_1016_j_compeleceng_2022_108177
crossref_primary_10_3390_s23073693
crossref_primary_10_1016_j_jvcir_2024_104051
crossref_primary_10_1016_j_optlaseng_2025_109321
crossref_primary_10_1109_TAI_2024_3508667
crossref_primary_10_1007_s00530_025_01811_8
crossref_primary_10_1088_1361_6501_ad9941
crossref_primary_10_1109_TCSVT_2023_3299314
crossref_primary_10_1016_j_patrec_2025_07_026
crossref_primary_10_1109_JOE_2023_3245760
crossref_primary_10_3390_electronics13245003
crossref_primary_10_1109_ACCESS_2024_3400533
crossref_primary_10_1016_j_image_2024_117154
crossref_primary_10_3390_s23187714
crossref_primary_10_1016_j_dsp_2024_104828
crossref_primary_10_1007_s10489_023_04624_2
crossref_primary_10_1109_LSP_2024_3405909
crossref_primary_10_1109_JOE_2024_3478315
crossref_primary_10_1007_s00371_024_03630_w
crossref_primary_10_1016_j_compeleceng_2025_110361
crossref_primary_10_3389_fmars_2023_1112310
crossref_primary_10_3389_fmars_2025_1555128
crossref_primary_10_3390_electronics12183876
crossref_primary_10_1049_ipr2_70184
crossref_primary_10_1109_TCSVT_2023_3328272
crossref_primary_10_1080_1206212X_2025_2466197
crossref_primary_10_1007_s12145_024_01620_z
crossref_primary_10_1109_ACCESS_2022_3227046
crossref_primary_10_1007_s12145_024_01226_5
crossref_primary_10_1364_AO_557280
crossref_primary_10_1109_TMM_2025_3535308
crossref_primary_10_1016_j_inffus_2025_103203
crossref_primary_10_1016_j_inffus_2025_103566
crossref_primary_10_1109_TIP_2025_3587578
crossref_primary_10_1109_LGRS_2024_3397866
crossref_primary_10_1109_TGRS_2025_3561927
crossref_primary_10_1109_TGRS_2023_3285228
crossref_primary_10_1016_j_image_2025_117332
crossref_primary_10_3389_fmars_2024_1321549
crossref_primary_10_1016_j_eswa_2025_126561
crossref_primary_10_1016_j_engappai_2025_111677
crossref_primary_10_1109_TGRS_2024_3477911
crossref_primary_10_3389_fpls_2023_1117478
crossref_primary_10_1016_j_engappai_2023_106532
crossref_primary_10_1002_rob_22525
crossref_primary_10_3390_app15020641
crossref_primary_10_1007_s00371_025_03866_0
crossref_primary_10_3390_photonics9090642
crossref_primary_10_1109_TGRS_2025_3526927
crossref_primary_10_1145_3578584
crossref_primary_10_1016_j_compeleceng_2025_110228
crossref_primary_10_1109_TCSVT_2024_3378252
crossref_primary_10_1109_TGRS_2025_3525962
crossref_primary_10_1109_TMM_2024_3414277
crossref_primary_10_1016_j_oceaneng_2025_120896
crossref_primary_10_1007_s11760_025_03874_6
crossref_primary_10_1007_s00371_023_03117_0
crossref_primary_10_1109_TCSVT_2025_3556203
crossref_primary_10_3390_app15031649
crossref_primary_10_1016_j_compeleceng_2025_110469
crossref_primary_10_1016_j_engappai_2023_106743
crossref_primary_10_1109_TETCI_2024_3369321
crossref_primary_10_1109_JSEN_2024_3409435
crossref_primary_10_1109_TCSVT_2025_3525593
crossref_primary_10_1007_s00371_025_03947_0
crossref_primary_10_1016_j_isprsjprs_2024_06_019
crossref_primary_10_1016_j_imavis_2025_105734
crossref_primary_10_1007_s00371_025_04053_x
crossref_primary_10_1016_j_imavis_2024_105217
crossref_primary_10_3389_fmars_2025_1544839
crossref_primary_10_1016_j_knosys_2022_110041
crossref_primary_10_1007_s10489_024_06224_0
crossref_primary_10_1109_TPAMI_2024_3403234
crossref_primary_10_3390_app13169419
crossref_primary_10_1016_j_dsp_2025_105048
crossref_primary_10_1016_j_jvcir_2024_104308
crossref_primary_10_1016_j_dsp_2025_105170
crossref_primary_10_1016_j_isprsjprs_2024_06_009
crossref_primary_10_3390_s24092684
crossref_primary_10_1080_13682199_2023_2260663
crossref_primary_10_1016_j_inffus_2025_103365
crossref_primary_10_1109_TCSVT_2024_3451553
crossref_primary_10_1016_j_neunet_2025_107660
crossref_primary_10_1016_j_optlaseng_2025_109171
crossref_primary_10_1016_j_neucom_2024_127926
crossref_primary_10_3390_sym17050725
crossref_primary_10_1007_s00530_025_01936_w
crossref_primary_10_1007_s11760_025_04014_w
crossref_primary_10_1007_s11760_022_02435_5
crossref_primary_10_1007_s12083_023_01480_2
crossref_primary_10_1016_j_image_2025_117370
crossref_primary_10_1364_OE_562111
crossref_primary_10_3390_app131810176
crossref_primary_10_1109_ACCESS_2023_3289591
crossref_primary_10_1016_j_jvcir_2023_104021
crossref_primary_10_1007_s11760_023_02562_7
crossref_primary_10_1016_j_engappai_2023_106731
crossref_primary_10_1109_TCE_2024_3476033
crossref_primary_10_1109_JOE_2024_3458348
crossref_primary_10_1109_JOE_2024_3458349
crossref_primary_10_1109_TGRS_2024_3373904
crossref_primary_10_1016_j_dsp_2025_105341
crossref_primary_10_1109_TCSVT_2023_3297524
crossref_primary_10_1109_JOE_2024_3458109
crossref_primary_10_1109_ACCESS_2023_3239816
crossref_primary_10_1109_TGRS_2024_3358892
crossref_primary_10_1016_j_image_2025_117266
crossref_primary_10_1016_j_image_2025_117264
crossref_primary_10_1109_TCSVT_2023_3253898
crossref_primary_10_1109_TCSVT_2024_3466925
crossref_primary_10_1109_LSP_2023_3310152
crossref_primary_10_1109_TIP_2024_3457246
crossref_primary_10_1016_j_eswa_2024_126075
crossref_primary_10_1080_01431161_2025_2555280
crossref_primary_10_3390_s25082574
crossref_primary_10_1016_j_compag_2022_107426
crossref_primary_10_1016_j_eswa_2023_122693
crossref_primary_10_1109_TGRS_2022_3227548
crossref_primary_10_1109_TIM_2024_3396850
crossref_primary_10_1109_TGRS_2024_3451471
crossref_primary_10_1016_j_patcog_2025_111840
crossref_primary_10_3390_s25175439
crossref_primary_10_1080_00051144_2024_2404365
crossref_primary_10_1088_1402_4896_ade29a
crossref_primary_10_1016_j_infrared_2023_104761
crossref_primary_10_1016_j_imavis_2024_105256
crossref_primary_10_1038_s41598_025_87965_x
crossref_primary_10_1016_j_eswa_2023_122546
crossref_primary_10_1016_j_image_2025_117271
crossref_primary_10_1109_TGRS_2024_3522685
crossref_primary_10_3390_s23156733
crossref_primary_10_1016_j_isprsjprs_2024_07_013
crossref_primary_10_3390_electronics14122411
crossref_primary_10_1007_s11760_023_02718_5
crossref_primary_10_1016_j_optlastec_2025_113195
crossref_primary_10_1007_s00138_024_01651_y
crossref_primary_10_1016_j_optlaseng_2025_109157
crossref_primary_10_3390_math12223553
crossref_primary_10_1109_ACCESS_2024_3435569
crossref_primary_10_3390_jmse13061092
crossref_primary_10_1016_j_jvcir_2024_104224
crossref_primary_10_3390_electronics13122313
crossref_primary_10_1111_coin_70095
crossref_primary_10_1016_j_sigpro_2024_109408
crossref_primary_10_3390_app15095200
crossref_primary_10_1016_j_cviu_2024_104251
crossref_primary_10_1016_j_dsp_2025_105372
crossref_primary_10_1038_s41598_024_82803_y
crossref_primary_10_3389_fmars_2025_1523729
crossref_primary_10_3390_math12091366
crossref_primary_10_1016_j_image_2025_117281
crossref_primary_10_1016_j_imavis_2024_105361
crossref_primary_10_1016_j_optlaseng_2025_109144
crossref_primary_10_1109_TCSVT_2022_3225376
crossref_primary_10_1371_journal_pone_0299110
crossref_primary_10_1016_j_engappai_2023_105952
crossref_primary_10_1007_s11263_024_01987_y
crossref_primary_10_1109_ACCESS_2023_3328171
crossref_primary_10_3390_rs15143623
crossref_primary_10_1109_TIM_2023_3298395
crossref_primary_10_1016_j_compeleceng_2024_109471
crossref_primary_10_1016_j_knosys_2023_110263
crossref_primary_10_3390_electronics14061203
crossref_primary_10_1016_j_eswa_2024_124932
crossref_primary_10_1109_ACCESS_2022_3213340
crossref_primary_10_1109_JOE_2024_3463840
crossref_primary_10_1109_TGRS_2023_3339216
crossref_primary_10_1080_14498596_2024_2383881
crossref_primary_10_1016_j_inffus_2025_102977
crossref_primary_10_3390_math13152535
crossref_primary_10_1007_s10489_024_05318_z
crossref_primary_10_1109_JOE_2023_3306591
crossref_primary_10_1016_j_optlaseng_2024_108575
crossref_primary_10_1049_ipr2_12750
crossref_primary_10_1051_epjconf_202532801027
crossref_primary_10_1109_ACCESS_2024_3370597
crossref_primary_10_1109_TIM_2025_3551931
crossref_primary_10_1109_TGRS_2025_3598353
crossref_primary_10_1016_j_optlaseng_2025_108826
crossref_primary_10_1109_JOE_2024_3458351
crossref_primary_10_3389_fmars_2023_1132500
crossref_primary_10_1007_s00034_025_03326_z
crossref_primary_10_1016_j_sigpro_2024_109690
crossref_primary_10_3390_app14020923
crossref_primary_10_1109_JOE_2024_3428624
crossref_primary_10_1109_ACCESS_2023_3335618
crossref_primary_10_1109_TCSVT_2024_3482548
crossref_primary_10_3389_fmars_2024_1301072
crossref_primary_10_1016_j_measurement_2025_117329
crossref_primary_10_1109_TETCI_2024_3462249
crossref_primary_10_1109_JOE_2024_3525150
crossref_primary_10_1007_s11042_024_18686_y
crossref_primary_10_1109_TCSVT_2024_3516781
crossref_primary_10_1016_j_engappai_2024_109006
crossref_primary_10_1007_s00530_023_01224_5
crossref_primary_10_1016_j_sigpro_2024_109569
crossref_primary_10_1016_j_engappai_2025_110651
crossref_primary_10_1007_s11554_024_01431_x
crossref_primary_10_1007_s10043_024_00941_0
crossref_primary_10_1016_j_eswa_2025_129226
crossref_primary_10_1109_TCSVT_2023_3305777
crossref_primary_10_1109_ACCESS_2023_3287559
crossref_primary_10_1016_j_neucom_2023_02_018
crossref_primary_10_1117_1_JEI_33_6_063023
crossref_primary_10_3390_biomimetics8030275
crossref_primary_10_1016_j_imavis_2023_104813
crossref_primary_10_1109_ACCESS_2024_3354169
crossref_primary_10_1016_j_engappai_2024_109437
crossref_primary_10_1016_j_optlastec_2024_111873
crossref_primary_10_1109_LGRS_2025_3545175
crossref_primary_10_3389_fmars_2024_1366815
crossref_primary_10_1109_TCSVT_2024_3412748
crossref_primary_10_1364_AO_553719
crossref_primary_10_1016_j_heliyon_2023_e22895
crossref_primary_10_1117_1_JEI_33_5_053053
crossref_primary_10_1016_j_optcom_2024_130942
crossref_primary_10_3390_app15147883
crossref_primary_10_1038_s41598_025_89109_7
crossref_primary_10_1016_j_knosys_2024_111672
crossref_primary_10_1109_TCSVT_2023_3264824
crossref_primary_10_1016_j_engappai_2024_108585
crossref_primary_10_1088_1402_4896_ad2d9c
crossref_primary_10_1109_ACCESS_2023_3240648
crossref_primary_10_1109_ACCESS_2024_3405559
crossref_primary_10_3390_jmse13081546
crossref_primary_10_1016_j_optlaseng_2024_108497
crossref_primary_10_1117_1_JEI_33_6_063018
crossref_primary_10_1016_j_knosys_2024_112651
crossref_primary_10_3390_rs17050759
crossref_primary_10_7717_peerj_cs_2392
crossref_primary_10_1007_s00138_025_01662_3
crossref_primary_10_1109_TNNLS_2024_3397886
crossref_primary_10_1016_j_knosys_2025_113902
crossref_primary_10_1109_TGRS_2025_3578662
crossref_primary_10_1109_JOE_2024_3501399
crossref_primary_10_1007_s00530_023_01246_z
crossref_primary_10_1016_j_isprsjprs_2022_12_007
crossref_primary_10_1109_JOE_2023_3297731
crossref_primary_10_3390_jmse13081531
crossref_primary_10_1016_j_optlaseng_2024_108265
crossref_primary_10_1109_JIOT_2025_3582051
crossref_primary_10_1109_TGRS_2024_3358828
crossref_primary_10_1109_TPAMI_2025_3584921
crossref_primary_10_1109_TIP_2025_3563775
crossref_primary_10_3390_s23218983
crossref_primary_10_1109_ACCESS_2023_3318258
crossref_primary_10_1016_j_imavis_2023_104810
crossref_primary_10_3390_electronics12132882
crossref_primary_10_1016_j_optlaseng_2024_108154
crossref_primary_10_3390_s23125698
crossref_primary_10_1016_j_ecoinf_2025_103185
crossref_primary_10_1109_LGRS_2023_3296620
crossref_primary_10_1016_j_neunet_2023_11_049
crossref_primary_10_1016_j_engappai_2024_109999
crossref_primary_10_1109_TETCI_2024_3359061
crossref_primary_10_1016_j_cogr_2022_08_002
crossref_primary_10_1016_j_oceaneng_2024_116794
crossref_primary_10_1109_TIP_2023_3276332
crossref_primary_10_1117_1_JEI_31_6_063039
crossref_primary_10_1016_j_neunet_2024_106809
crossref_primary_10_1109_TCSVT_2023_3290363
crossref_primary_10_3390_electronics12194064
crossref_primary_10_1109_TGRS_2023_3315772
crossref_primary_10_1109_JOE_2022_3226202
crossref_primary_10_1016_j_patcog_2024_110928
crossref_primary_10_1109_ACCESS_2024_3420888
crossref_primary_10_1007_s12145_024_01279_6
crossref_primary_10_1080_13682199_2025_2495497
crossref_primary_10_1109_JOE_2024_3429653
crossref_primary_10_1109_TGRS_2025_3603651
crossref_primary_10_1109_TIP_2023_3286263
crossref_primary_10_1088_1361_6501_ad70d3
crossref_primary_10_1002_itl2_70047
crossref_primary_10_3390_s23104986
crossref_primary_10_1109_TGRS_2023_3346384
crossref_primary_10_1007_s12145_024_01573_3
crossref_primary_10_1007_s44295_024_00021_8
crossref_primary_10_1109_ACCESS_2023_3287932
crossref_primary_10_3390_s24020356
crossref_primary_10_3390_horticulturae9091034
crossref_primary_10_1016_j_compeleceng_2023_108724
crossref_primary_10_1109_TMM_2024_3521739
crossref_primary_10_1007_s11760_024_03047_x
crossref_primary_10_1109_TCYB_2024_3365693
crossref_primary_10_1109_TBC_2025_3565888
crossref_primary_10_1007_s00530_025_01843_0
crossref_primary_10_1007_s12204_024_2735_y
crossref_primary_10_3390_rs17111906
crossref_primary_10_1016_j_oceaneng_2025_122069
crossref_primary_10_3390_app15148037
crossref_primary_10_1016_j_patrec_2024_10_013
crossref_primary_10_1016_j_ins_2024_120741
crossref_primary_10_1007_s12145_024_01462_9
crossref_primary_10_1016_j_imavis_2024_104909
crossref_primary_10_1109_LSP_2023_3281255
crossref_primary_10_1109_JOE_2024_3523372
crossref_primary_10_1109_ACCESS_2023_3339817
crossref_primary_10_1016_j_patrec_2025_05_007
crossref_primary_10_1016_j_engappai_2024_108561
crossref_primary_10_1109_ACCESS_2024_3465550
crossref_primary_10_3390_jmse11061124
crossref_primary_10_1007_s11227_024_06638_0
crossref_primary_10_1016_j_optlastec_2024_111464
crossref_primary_10_1016_j_optlastec_2025_113542
crossref_primary_10_1016_j_inffus_2024_102857
crossref_primary_10_1109_TGRS_2025_3578905
crossref_primary_10_1016_j_jvcir_2023_103863
crossref_primary_10_1109_ACCESS_2024_3428568
crossref_primary_10_1016_j_engappai_2025_112050
crossref_primary_10_1016_j_displa_2025_103023
crossref_primary_10_1109_TMM_2024_3374598
crossref_primary_10_1109_TMM_2024_3521710
crossref_primary_10_1016_j_displa_2025_103143
crossref_primary_10_54732_jeecs_v10i1_3
crossref_primary_10_1049_ipr2_12922
crossref_primary_10_1016_j_optlaseng_2024_108640
crossref_primary_10_1109_LCOMM_2025_3556673
crossref_primary_10_1016_j_neunet_2023_11_008
crossref_primary_10_1109_LSP_2023_3338055
crossref_primary_10_1109_TCSVT_2024_3455353
crossref_primary_10_1109_TGRS_2023_3281741
crossref_primary_10_1016_j_isprsjprs_2024_02_004
crossref_primary_10_1016_j_eswa_2024_125549
crossref_primary_10_1109_LGRS_2022_3225215
crossref_primary_10_3390_info16080627
crossref_primary_10_1109_JOE_2023_3334478
crossref_primary_10_1007_s00371_023_02880_4
crossref_primary_10_1016_j_compeleceng_2022_108570
crossref_primary_10_1016_j_compeleceng_2023_108990
crossref_primary_10_1007_s00138_024_01647_8
crossref_primary_10_1016_j_displa_2023_102505
crossref_primary_10_1016_j_inffus_2024_102770
crossref_primary_10_1109_JOE_2023_3302888
crossref_primary_10_1016_j_displa_2025_103047
crossref_primary_10_3390_su15021029
crossref_primary_10_1016_j_asoc_2024_112000
crossref_primary_10_1109_TGRS_2025_3553557
crossref_primary_10_3389_fmars_2022_1031549
crossref_primary_10_1016_j_engappai_2024_108411
crossref_primary_10_1109_JSEN_2024_3466397
crossref_primary_10_3390_math13132153
crossref_primary_10_1109_TII_2024_3383537
crossref_primary_10_3390_f15101783
crossref_primary_10_1080_13682199_2023_2239012
crossref_primary_10_1007_s00371_024_03611_z
crossref_primary_10_1109_TCSVT_2024_3504000
crossref_primary_10_1007_s12204_025_2838_0
crossref_primary_10_1016_j_optlastec_2025_113625
crossref_primary_10_1109_MNET_2025_3535810
crossref_primary_10_1109_ACCESS_2023_3276877
crossref_primary_10_1016_j_optlastec_2025_113868
crossref_primary_10_1016_j_displa_2024_102900
crossref_primary_10_1016_j_compeleceng_2023_108890
crossref_primary_10_1016_j_rineng_2025_104124
crossref_primary_10_1016_j_sigpro_2025_110241
crossref_primary_10_1016_j_compeleceng_2023_108896
crossref_primary_10_1038_s41598_024_73243_9
crossref_primary_10_3390_jmse12081383
crossref_primary_10_1016_j_patcog_2025_111395
crossref_primary_10_1109_TIP_2022_3216208
crossref_primary_10_3390_jmse11030604
Cites_doi 10.1109/CVPR46437.2021.01042
10.1109/TIP.2016.2612882
10.1109/TMM.2019.2933334
10.1016/j.neucom.2020.03.091
10.1016/j.compeleceng.2017.12.006
10.1016/j.image.2020.115978
10.1016/j.patrec.2017.05.023
10.1109/TCSVT.2018.2884615
10.1109/TIP.2020.2988203
10.1038/scientificamerican1277-108
10.1109/TIP.2018.2813092
10.1109/TPAMI.2020.2977624
10.1016/j.asoc.2019.105810
10.1109/LSP.2021.3072563
10.1109/TIM.2020.3028400
10.1109/LSP.2015.2487369
10.1016/j.patcog.2019.107038
10.1109/TGRS.2020.3033407
10.1016/j.optlaseng.2004.10.005
10.1016/j.compeleceng.2021.106981
10.1016/j.image.2020.115892
10.1016/j.image.2021.116250
10.1145/3474085.3475563
10.1109/LSP.2018.2792050
10.1109/TNNLS.2019.2926481
10.1109/TPAMI.2021.3063604
10.1109/TPAMI.2008.85
10.1109/TIP.2021.3076367
10.1016/j.compag.2021.106585
10.1109/TITS.2022.3145815
10.1109/TCSVT.2021.3114230
10.1109/LSP.2019.2932189
10.1109/TIP.2018.2887029
10.1109/TIP.2011.2179666
10.1109/TPAMI.2012.213
10.1016/j.optlaseng.2021.106777
10.1109/JOE.2019.2911447
10.1016/j.image.2020.116030
10.1016/j.compag.2020.105608
10.1016/j.engappai.2021.104171
10.1016/j.compag.2017.07.021
10.1109/TPAMI.2016.2613862
10.1109/48.50695
10.1016/j.optlastec.2018.05.034
10.1109/MCG.2016.26
10.1109/LRA.2017.2730363
10.1109/CVPR.2019.00178
10.1109/TIP.2019.2951304
10.1109/JOE.2015.2469915
10.1109/TIP.2019.2955241
10.1109/CVPR.2012.6247661
10.1023/B:VISI.0000029664.99615.94
10.1109/TIP.2019.2919947
10.1109/TNNLS.2020.2996498
10.1016/j.image.2022.116684
10.1109/LRA.2020.2974710
10.1109/TIE.2019.2893840
10.1109/TCSI.2017.2751671
10.1109/TIP.2017.2759252
10.1109/JOE.2022.3140563
10.1109/CVPRW.2017.136
10.1109/CVPR.2019.01051
10.1109/TCSVT.2019.2958950
10.1109/CVPR.2013.407
10.1109/TCSVT.2019.2963772
10.1109/TIP.2017.2663846
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2022.3177129
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 4010
ExternalDocumentID 35657839
10_1109_TIP_2022_3177129
9788535
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62171252; 61701245; 62071272; 61701247; 62001158
  funderid: 10.13039/501100001809
– fundername: China Postdoctoral Science Foundation
  grantid: 2019M660438
  funderid: 10.13039/501100002858
– fundername: Postdoctoral Science Foundation of China
  grantid: 2021M701903
  funderid: 10.13039/501100002858
– fundername: MindSpore, Compute Architecture for Neural Networks (CANN), and Ascend Artificial Intelligence (AI) Processor
– fundername: National Key Research and Development Program of China
  grantid: 2020AAA0130000
  funderid: 10.13039/501100012166
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c347t-ac8677c5ce2b8600de0f8de3fb338355d03b57723279c29da1a2ded6fd93d03e3
IEDL.DBID RIE
ISICitedReferencesCount 540
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000809404700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Sat Sep 27 18:35:15 EDT 2025
Mon Jun 30 10:14:40 EDT 2025
Mon Jul 21 05:44:15 EDT 2025
Sat Nov 29 08:06:30 EST 2025
Tue Nov 18 22:41:41 EST 2025
Wed Aug 27 02:04:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-ac8677c5ce2b8600de0f8de3fb338355d03b57723279c29da1a2ded6fd93d03e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2609-2460
0000-0002-7143-9569
0000-0003-2495-4469
0000-0001-7484-7261
0000-0003-2749-9916
PMID 35657839
PQID 2675049057
PQPubID 85429
PageCount 14
ParticipantIDs proquest_miscellaneous_2673358722
proquest_journals_2675049057
pubmed_primary_35657839
crossref_citationtrail_10_1109_TIP_2022_3177129
crossref_primary_10_1109_TIP_2022_3177129
ieee_primary_9788535
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref67
ref26
ref25
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref33
  doi: 10.1109/CVPR46437.2021.01042
– ident: ref27
  doi: 10.1109/TIP.2016.2612882
– ident: ref46
  doi: 10.1109/TMM.2019.2933334
– ident: ref57
  doi: 10.1016/j.neucom.2020.03.091
– ident: ref62
  doi: 10.1016/j.compeleceng.2017.12.006
– ident: ref53
  doi: 10.1016/j.image.2020.115978
– ident: ref20
  doi: 10.1016/j.patrec.2017.05.023
– ident: ref12
  doi: 10.1109/TCSVT.2018.2884615
– ident: ref67
  doi: 10.1109/TIP.2020.2988203
– ident: ref58
  doi: 10.1038/scientificamerican1277-108
– ident: ref30
  doi: 10.1109/TIP.2018.2813092
– ident: ref31
  doi: 10.1109/TPAMI.2020.2977624
– ident: ref37
  doi: 10.1016/j.asoc.2019.105810
– ident: ref21
  doi: 10.1109/LSP.2021.3072563
– ident: ref2
  doi: 10.1109/TIM.2020.3028400
– ident: ref60
  doi: 10.1109/LSP.2015.2487369
– ident: ref51
  doi: 10.1016/j.patcog.2019.107038
– ident: ref43
  doi: 10.1109/TGRS.2020.3033407
– ident: ref22
  doi: 10.1016/j.optlaseng.2004.10.005
– ident: ref38
  doi: 10.1016/j.compeleceng.2021.106981
– ident: ref8
  doi: 10.1016/j.image.2020.115892
– ident: ref17
  doi: 10.1016/j.image.2021.116250
– ident: ref3
  doi: 10.1145/3474085.3475563
– ident: ref4
  doi: 10.1109/LSP.2018.2792050
– ident: ref44
  doi: 10.1109/TNNLS.2019.2926481
– ident: ref45
  doi: 10.1109/TPAMI.2021.3063604
– ident: ref10
  doi: 10.1109/TPAMI.2008.85
– ident: ref52
  doi: 10.1109/TIP.2021.3076367
– ident: ref15
  doi: 10.1016/j.compag.2021.106585
– ident: ref18
  doi: 10.1109/TITS.2022.3145815
– ident: ref13
  doi: 10.1109/TCSVT.2021.3114230
– ident: ref55
  doi: 10.1109/LSP.2019.2932189
– ident: ref48
  doi: 10.1109/TIP.2018.2887029
– ident: ref25
  doi: 10.1109/TIP.2011.2179666
– ident: ref59
  doi: 10.1109/TPAMI.2012.213
– ident: ref23
  doi: 10.1016/j.optlaseng.2021.106777
– ident: ref65
  doi: 10.1109/CVPR46437.2021.01042
– ident: ref9
  doi: 10.1109/JOE.2019.2911447
– ident: ref14
  doi: 10.1016/j.image.2020.116030
– ident: ref41
  doi: 10.1016/j.compag.2020.105608
– ident: ref34
  doi: 10.1016/j.engappai.2021.104171
– ident: ref36
  doi: 10.1016/j.compag.2017.07.021
– ident: ref11
  doi: 10.1109/TPAMI.2016.2613862
– ident: ref19
  doi: 10.1109/48.50695
– ident: ref24
  doi: 10.1016/j.optlastec.2018.05.034
– ident: ref26
  doi: 10.1109/MCG.2016.26
– ident: ref49
  doi: 10.1109/LRA.2017.2730363
– ident: ref32
  doi: 10.1109/CVPR.2019.00178
– ident: ref56
  doi: 10.1109/TIP.2019.2951304
– ident: ref61
  doi: 10.1109/JOE.2015.2469915
– ident: ref7
  doi: 10.1109/TIP.2019.2955241
– ident: ref39
  doi: 10.1109/CVPR.2012.6247661
– ident: ref63
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: ref42
  doi: 10.1109/TIP.2019.2919947
– ident: ref47
  doi: 10.1109/TNNLS.2020.2996498
– ident: ref35
  doi: 10.1016/j.image.2022.116684
– ident: ref50
  doi: 10.1109/LRA.2020.2974710
– ident: ref1
  doi: 10.1109/TIE.2019.2893840
– ident: ref29
  doi: 10.1109/TCSI.2017.2751671
– ident: ref40
  doi: 10.1109/TIP.2017.2759252
– ident: ref5
  doi: 10.1109/JOE.2022.3140563
– ident: ref54
  doi: 10.1109/CVPRW.2017.136
– ident: ref66
  doi: 10.1109/CVPR.2019.01051
– ident: ref16
  doi: 10.1109/TCSVT.2019.2958950
– ident: ref64
  doi: 10.1109/CVPR.2013.407
– ident: ref6
  doi: 10.1109/TCSVT.2019.2963772
– ident: ref28
  doi: 10.1109/TIP.2017.2663846
SSID ssj0014516
Score 2.7346776
Snippet Underwater images typically suffer from color deviations and low visibility due to the wavelength-dependent light absorption and scattering. To deal with these...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3997
SubjectTerms Attenuation
Channel estimation
Color
color correction
contrast enhancement
Degradation
Electromagnetic absorption
Image color analysis
Image contrast
Image enhancement
Image segmentation
Imaging
Learning systems
light scattering
Low visibility
Underwater
Underwater image enhancement
underwater imaging
Title Underwater Image Enhancement via Minimal Color Loss and Locally Adaptive Contrast Enhancement
URI https://ieeexplore.ieee.org/document/9788535
https://www.ncbi.nlm.nih.gov/pubmed/35657839
https://www.proquest.com/docview/2675049057
https://www.proquest.com/docview/2673358722
Volume 31
WOSCitedRecordID wos000809404700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB9WOcR7OM-vs-cHEXw5uLrdZNs0jyKKCyo-KOzLUdIkxYXdrnR3Ff97Z9Ju2Qfv4N4KmU7TzmTym0xnBuCsJwppkqgIeaJs2EeiUFnZCxNrlCB8YRKfKHwr7-_T4VA9dOB3mwvjnPM_n7lzuvSxfDs1Czoqo2qwuLvEa7AmpaxztdqIATWc9ZHNWIYSYf8yJBmp7uPgAR1BztE_lRL3t03YEBTtS6lD-Mpu5Nur_B1p-h3neuv_5vodvjXIkl3UqrANHVfuwFaDMlmzhmc78HWlBOEu_PGNj94QcVZsMEHjwq7KZ9IEYs9eR5rdjcrRBBlfopms2C2-BtOlxQuU7vidXVj9QiaTUZ2rSs_mqwz24On66vHyJmxaLoRG9OU81Ibq25nYOJ6niIWsi4rUOlHk5MrGsY1EHiMgF1wqw5XVPc2ts0lhlcAxJ_ZhvZyW7gAYIaOcojwyKfp50aMc3kRrjRZWKhRQAN3lp89MU4-c2mKMM--XRCpDuWUkt6yRWwC_2jte6loc_6DdJZm0dI04AjhaSjdrFuss4wnVuFeoOQGctsO4zCh2oks3XXgaIeJUch7Aj1orWt5LZfr5-TMPYZNmVp_bHMH6vFq4Y_hiXuejWXWCujxMT7wufwATLuyl
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9wwDLYYoMEegMHYOmBk0l4mraNN2qZ5RAjEaceJh0PiZarSJNVOgh7q3THt389Oe9U9bJP2Vimum9aO8zmubYBPsaikyaIq5JmyYYJEobIyDjNrlCB8YTKfKDyUo1F-f69u1-BLnwvjnPM_n7mvdOlj-XZqFnRURtVgcXdJX8BGmiQ8brO1-pgBtZz1sc1UhhKB_zIoGamz8eAWXUHO0UOVEne4bXgpKN6XU4_wlf3IN1j5O9b0e87V7v_Ndg92OmzJzltleA1rrt6H3Q5nsm4Vz_bh1UoRwgP47lsf_UTM2bDBI5oXdln_IF0g9ux5otnNpJ48IuMLNJQNG-JrMF1bvED5Pvxi51Y_kdFkVOmq0bP5KoM3cHd1Ob64DrumC6ERiZyH2lCFO5Max8sc0ZB1UZVbJ6qSnNk0tZEoU4TkgktluLI61tw6m1VWCRxz4hDW62nt3gEjbFRSnEdmVVJWMWXxZlprtLFSoYACOFt--sJ0FcmpMcZD4T2TSBUot4LkVnRyC-Bzf8dTW43jH7QHJJOerhNHAMdL6Rbdcp0VPKMq9wo1J4CP_TAuNIqe6NpNF55GiDSXnAfwttWKnvdSmd7_-ZmnsHU9vhkWw8Ho2xFs0yzbU5xjWJ83C3cCm-Z5Ppk1H7xG_wb02e8E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Underwater+Image+Enhancement+via+Minimal+Color+Loss+and+Locally+Adaptive+Contrast+Enhancement&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Zhang%2C+Weidong&rft.au=Zhuang%2C+Peixian&rft.au=Sun%2C+Hai-Han&rft.au=Li%2C+Guohou&rft.date=2022-01-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=31&rft.spage=3997&rft.epage=4010&rft_id=info:doi/10.1109%2FTIP.2022.3177129&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2022_3177129
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon