Projectional Coderivatives and Calculus Rules

This paper is devoted to the study of a newly introduced tool, projectional coderivatives, and the corresponding calculus rules in finite dimensional spaces. We show that when the restricted set has some nice properties, more specifically, it is a smooth manifold, the projectional coderivative can b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Set-valued and variational analysis Jg. 31; H. 4; S. 36
Hauptverfasser: Yao, Wenfang, Meng, Kaiwen, Li, Minghua, Yang, Xiaoqi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.12.2023
Springer Nature B.V
Schlagworte:
ISSN:1877-0533, 1877-0541
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is devoted to the study of a newly introduced tool, projectional coderivatives, and the corresponding calculus rules in finite dimensional spaces. We show that when the restricted set has some nice properties, more specifically, it is a smooth manifold, the projectional coderivative can be refined as a fixed-point expression. We will also improve the generalized Mordukhovich criterion to give a complete characterization of the relative Lipschitz-like property under such a setting. Chain rules and sum rules are obtained to facilitate the application of the tool to a wider range of parametric problems.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1877-0533
1877-0541
DOI:10.1007/s11228-023-00698-9