Projectional Coderivatives and Calculus Rules

This paper is devoted to the study of a newly introduced tool, projectional coderivatives, and the corresponding calculus rules in finite dimensional spaces. We show that when the restricted set has some nice properties, more specifically, it is a smooth manifold, the projectional coderivative can b...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Set-valued and variational analysis Ročník 31; číslo 4; s. 36
Hlavní autoři: Yao, Wenfang, Meng, Kaiwen, Li, Minghua, Yang, Xiaoqi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.12.2023
Springer Nature B.V
Témata:
ISSN:1877-0533, 1877-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper is devoted to the study of a newly introduced tool, projectional coderivatives, and the corresponding calculus rules in finite dimensional spaces. We show that when the restricted set has some nice properties, more specifically, it is a smooth manifold, the projectional coderivative can be refined as a fixed-point expression. We will also improve the generalized Mordukhovich criterion to give a complete characterization of the relative Lipschitz-like property under such a setting. Chain rules and sum rules are obtained to facilitate the application of the tool to a wider range of parametric problems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1877-0533
1877-0541
DOI:10.1007/s11228-023-00698-9