Dense Dilated Network With Probability Regularized Walk for Vessel Detection

The detection of retinal vessel is of great importance in the diagnosis and treatment of many ocular diseases. Many methods have been proposed for vessel detection. However, most of the algorithms neglect the connectivity of the vessels, which plays an important role in the diagnosis. In this paper,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging Jg. 39; H. 5; S. 1392 - 1403
Hauptverfasser: Mou, Lei, Chen, Li, Cheng, Jun, Gu, Zaiwang, Zhao, Yitian, Liu, Jiang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.05.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0278-0062, 1558-254X, 1558-254X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The detection of retinal vessel is of great importance in the diagnosis and treatment of many ocular diseases. Many methods have been proposed for vessel detection. However, most of the algorithms neglect the connectivity of the vessels, which plays an important role in the diagnosis. In this paper, we propose a novel method for retinal vessel detection. The proposed method includes a dense dilated network to get an initial detection of the vessels and a probability regularized walk algorithm to address the fracture issue in the initial detection. The dense dilated network integrates newly proposed dense dilated feature extraction blocks into an encoder-decoder structure to extract and accumulate features at different scales. A multi-scale Dice loss function is adopted to train the network. To improve the connectivity of the segmented vessels, we also introduce a probability regularized walk algorithm to connect the broken vessels. The proposed method has been applied on three public data sets: DRIVE, STARE and CHASE_DB1. The results show that the proposed method outperforms the state-of-the-art methods in accuracy, sensitivity, specificity and also area under receiver operating characteristic curve.
AbstractList The detection of retinal vessel is of great importance in the diagnosis and treatment of many ocular diseases. Many methods have been proposed for vessel detection. However, most of the algorithms neglect the connectivity of the vessels, which plays an important role in the diagnosis. In this paper, we propose a novel method for retinal vessel detection. The proposed method includes a dense dilated network to get an initial detection of the vessels and a probability regularized walk algorithm to address the fracture issue in the initial detection. The dense dilated network integrates newly proposed dense dilated feature extraction blocks into an encoder-decoder structure to extract and accumulate features at different scales. A multi-scale Dice loss function is adopted to train the network. To improve the connectivity of the segmented vessels, we also introduce a probability regularized walk algorithm to connect the broken vessels. The proposed method has been applied on three public data sets: DRIVE, STARE and CHASE_DB1. The results show that the proposed method outperforms the state-of-the-art methods in accuracy, sensitivity, specificity and also area under receiver operating characteristic curve.
The detection of retinal vessel is of great importance in the diagnosis and treatment of many ocular diseases. Many methods have been proposed for vessel detection. However, most of the algorithms neglect the connectivity of the vessels, which plays an important role in the diagnosis. In this paper, we propose a novel method for retinal vessel detection. The proposed method includes a dense dilated network to get an initial detection of the vessels and a probability regularized walk algorithm to address the fracture issue in the initial detection. The dense dilated network integrates newly proposed dense dilated feature extraction blocks into an encoder-decoder structure to extract and accumulate features at different scales. A multi-scale Dice loss function is adopted to train the network. To improve the connectivity of the segmented vessels, we also introduce a probability regularized walk algorithm to connect the broken vessels. The proposed method has been applied on three public data sets: DRIVE, STARE and CHASE_DB1. The results show that the proposed method outperforms the state-of-the-art methods in accuracy, sensitivity, specificity and also area under receiver operating characteristic curve.The detection of retinal vessel is of great importance in the diagnosis and treatment of many ocular diseases. Many methods have been proposed for vessel detection. However, most of the algorithms neglect the connectivity of the vessels, which plays an important role in the diagnosis. In this paper, we propose a novel method for retinal vessel detection. The proposed method includes a dense dilated network to get an initial detection of the vessels and a probability regularized walk algorithm to address the fracture issue in the initial detection. The dense dilated network integrates newly proposed dense dilated feature extraction blocks into an encoder-decoder structure to extract and accumulate features at different scales. A multi-scale Dice loss function is adopted to train the network. To improve the connectivity of the segmented vessels, we also introduce a probability regularized walk algorithm to connect the broken vessels. The proposed method has been applied on three public data sets: DRIVE, STARE and CHASE_DB1. The results show that the proposed method outperforms the state-of-the-art methods in accuracy, sensitivity, specificity and also area under receiver operating characteristic curve.
Author Mou, Lei
Chen, Li
Liu, Jiang
Cheng, Jun
Gu, Zaiwang
Zhao, Yitian
Author_xml – sequence: 1
  givenname: Lei
  surname: Mou
  fullname: Mou, Lei
  email: moulei@nimte.ac.cn
  organization: School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, China
– sequence: 2
  givenname: Li
  surname: Chen
  fullname: Chen, Li
  email: chenli@wust.edu.cn
  organization: Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan University of Science and Technology, Wuhan, China
– sequence: 3
  givenname: Jun
  orcidid: 0000-0003-1786-6188
  surname: Cheng
  fullname: Cheng, Jun
  email: sam.j.cheng@gmail.com
  organization: Chinese Academy of Sciences, Cixi Institute of Biomedical Engineering, Ningbo, China
– sequence: 4
  givenname: Zaiwang
  orcidid: 0000-0001-8764-0622
  surname: Gu
  fullname: Gu, Zaiwang
  email: guzaiwang@gmail.com
  organization: Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
– sequence: 5
  givenname: Yitian
  orcidid: 0000-0003-4357-4592
  surname: Zhao
  fullname: Zhao, Yitian
  email: yitian.zhao@nimte.ac.cn
  organization: Chinese Academy of Sciences, Cixi Institute of Biomedical Engineering, Ningbo Institute of Industrial Technology, Ningbo, China
– sequence: 6
  givenname: Jiang
  orcidid: 0000-0001-6281-6505
  surname: Liu
  fullname: Liu, Jiang
  email: liuj@sustech.edu.cn
  organization: Chinese Academy of Sciences, Cixi Institute of Biomedical Engineering, Ningbo, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31675323$$D View this record in MEDLINE/PubMed
BookMark eNp90c9PFDEUB_CGYGBB7iYmZBIvXmZtpz-mPRoWhGQVYlC4NW3njRS6U2w7MfjXM5tdPHDw1Mvn-_Jevwdod4gDIPSO4DkhWH26_noxbzBR80ZxjDnZQTPCuawbzm530Qw3rawxFs0-Osj5HmPCOFZ7aJ8S0XLa0BlaLmDIUC18MAW66huUPzE9VDe-3FVXKVpjffDlqfoOv8Zgkv87oRsTHqo-puon5AyhWkABV3wc3qI3vQkZjrbvIfpxdnp9cl4vL79cnHxe1o6yttRGKuectZ1rpOCqY9B3zHKFAVphLJGKGeUYcYoDxU5aIpS1hgE2nLW9oofo42buY4q_R8hFr3x2EIIZII5ZN5QQwYWgYqIfXtH7OKZh2m5SqlUEM0kndbxVo11Bpx-TX5n0pF_-aQJiA1yKOSfotfPFrG8uyfigCdbrQvRUiF4XoreFTEH8Kvgy-z-R95uIB4B_XEopmJD0Ga2TlLk
CODEN ITMID4
CitedBy_id crossref_primary_10_1109_TMI_2020_3027665
crossref_primary_10_1016_j_compmedimag_2025_102631
crossref_primary_10_1109_TIM_2025_3569005
crossref_primary_10_3390_app13053255
crossref_primary_10_1016_j_cmpb_2020_105769
crossref_primary_10_1016_j_bspc_2023_104669
crossref_primary_10_1111_micc_12854
crossref_primary_10_1109_JBHI_2024_3397047
crossref_primary_10_1016_j_bspc_2024_106849
crossref_primary_10_1016_j_eswa_2022_116526
crossref_primary_10_3389_fmed_2024_1377479
crossref_primary_10_1016_j_bspc_2024_107150
crossref_primary_10_1007_s11277_024_10968_w
crossref_primary_10_1016_j_cmpbup_2023_100114
crossref_primary_10_1016_j_neucom_2023_126626
crossref_primary_10_3389_fcell_2021_659941
crossref_primary_10_3390_rs13234840
crossref_primary_10_1016_j_knosys_2023_111185
crossref_primary_10_3390_photonics10070722
crossref_primary_10_1016_j_dcmed_2022_12_008
crossref_primary_10_1049_ipr2_12597
crossref_primary_10_3389_fpubh_2022_858327
crossref_primary_10_1109_TIM_2023_3277946
crossref_primary_10_1002_ima_23045
crossref_primary_10_1016_j_compbiomed_2024_108047
crossref_primary_10_1007_s11831_022_09862_0
crossref_primary_10_1016_j_compbiomed_2024_108602
crossref_primary_10_1002_ima_70073
crossref_primary_10_1016_j_compbiomed_2022_106416
crossref_primary_10_1038_s41598_024_84255_w
crossref_primary_10_1109_TMI_2022_3161681
crossref_primary_10_1145_3471190
crossref_primary_10_1016_j_cmpb_2021_106070
crossref_primary_10_1109_TAI_2023_3296687
crossref_primary_10_3390_app12073676
crossref_primary_10_1016_j_bspc_2025_108520
crossref_primary_10_1016_j_neucom_2021_11_075
crossref_primary_10_1109_TMI_2021_3111679
crossref_primary_10_1016_j_csbj_2024_03_003
crossref_primary_10_1016_j_cmpb_2022_107114
crossref_primary_10_1002_mp_15627
crossref_primary_10_1016_j_eij_2025_100702
crossref_primary_10_1109_ACCESS_2021_3102176
crossref_primary_10_1109_TMI_2022_3233648
crossref_primary_10_1007_s40123_022_00641_5
crossref_primary_10_1016_j_neucom_2024_128055
crossref_primary_10_1002_mp_17090
crossref_primary_10_1016_j_irbm_2022_03_001
crossref_primary_10_1007_s00371_024_03666_y
crossref_primary_10_1007_s00521_022_07086_8
crossref_primary_10_1016_j_compmedimag_2023_102271
crossref_primary_10_1038_s41598_022_09675_y
crossref_primary_10_1007_s00521_022_07481_1
crossref_primary_10_1109_JBHI_2023_3237704
crossref_primary_10_1109_JSEN_2021_3067608
crossref_primary_10_1109_TMI_2022_3151666
crossref_primary_10_1038_s41598_021_89686_3
crossref_primary_10_1109_LSP_2023_3348664
crossref_primary_10_1002_mp_15546
crossref_primary_10_1371_journal_pone_0329533
crossref_primary_10_1016_j_compbiomed_2022_106277
crossref_primary_10_1016_j_neucom_2022_03_061
crossref_primary_10_1007_s11390_023_3066_4
crossref_primary_10_1109_TMI_2022_3143371
crossref_primary_10_3389_fnins_2023_1249331
crossref_primary_10_1016_j_neucom_2022_12_039
crossref_primary_10_1109_TAI_2021_3064913
crossref_primary_10_1016_j_compbiomed_2022_105972
crossref_primary_10_1016_j_asoc_2025_113518
crossref_primary_10_1109_TMI_2025_3538336
crossref_primary_10_1016_j_eswa_2023_122851
crossref_primary_10_1109_LSP_2024_3358078
crossref_primary_10_1109_TMI_2025_3540886
crossref_primary_10_1371_journal_pone_0330641
crossref_primary_10_1109_ACCESS_2024_3383848
crossref_primary_10_1109_ACCESS_2023_3347196
crossref_primary_10_1016_j_bspc_2024_106595
crossref_primary_10_1016_j_heliyon_2023_e13081
crossref_primary_10_3390_math12020264
crossref_primary_10_1109_ACCESS_2022_3163247
crossref_primary_10_1016_j_bspc_2023_105666
crossref_primary_10_1016_j_compbiomed_2020_104119
crossref_primary_10_1109_JBHI_2023_3274789
crossref_primary_10_1016_j_measurement_2025_118695
crossref_primary_10_1016_j_compbiomed_2023_107269
crossref_primary_10_1109_ACCESS_2022_3173732
crossref_primary_10_1109_TMI_2022_3193150
crossref_primary_10_1109_JBHI_2022_3182471
crossref_primary_10_1109_JBHI_2020_2977224
crossref_primary_10_1002_jim4_15
crossref_primary_10_1038_s41598_025_94039_5
crossref_primary_10_3390_electronics11203262
crossref_primary_10_1016_j_media_2023_102929
crossref_primary_10_1002_ima_22945
crossref_primary_10_1109_TCYB_2022_3194099
crossref_primary_10_1007_s12204_024_2748_6
crossref_primary_10_1016_j_matpr_2022_02_162
Cites_doi 10.1109/ICCV.2015.164
10.1016/j.neucom.2016.07.077
10.1109/TMI.2016.2550102
10.1007/978-3-319-10404-1_79
10.1109/CVPR.2017.353
10.1109/WACV.2018.00163
10.1007/978-3-030-00934-2_7
10.1109/TMI.2010.2064333
10.1109/ISBI.2013.6556625
10.1109/CVPR.2017.549
10.1136/bjo.83.8.902
10.1109/TIP.2015.2505184
10.1109/TBME.2017.2787025
10.1109/TMI.2015.2409024
10.1109/CVPR.2016.90
10.1109/TSMC.1979.4310076
10.1109/TBME.2015.2403295
10.24963/ijcai.2017/305
10.1109/TMI.2019.2903562
10.1109/TMI.2016.2546227
10.1109/CVPRW.2018.00034
10.1007/978-3-642-40763-5_68
10.1109/TMI.2016.2587062
10.1109/ICCV.2015.178
10.1109/TMI.2004.825627
10.1109/TMI.2006.879967
10.1109/CVPR.2018.00388
10.1109/TPAMI.2016.2644615
10.1016/j.patrec.2009.09.020
10.1109/TMI.2017.2756073
10.1016/S0010-4825(03)00055-6
10.1007/978-3-030-32239-7_49
10.1371/journal.pone.0032435
10.1109/CISP.2015.7407917
10.1109/TPAMI.2006.233
10.1016/j.cmpb.2017.06.016
10.1137/1.9781611970104
10.1007/978-3-030-32239-7_88
10.1109/TMI.2019.2926492
10.1109/TMI.2007.898551
10.1109/CVPR.2017.660
10.1109/TMI.2018.2791488
10.1201/9781420037005
10.1007/978-3-319-46723-8_16
10.1109/TPAMI.2017.2699184
10.1111/j.1549-8719.2010.00045.x
10.1016/S1350-9462(02)00008-3
10.1109/42.845178
10.1007/978-3-319-67558-9_28
10.1007/s10851-016-0640-1
10.1109/3DV.2016.79
10.1007/978-3-030-32251-9_85
10.1109/CVPR.2018.00690
10.1007/978-3-030-00934-2_14
10.1007/s11222-009-9153-8
10.1016/j.eswa.2018.06.034
10.1016/j.patcog.2012.08.009
10.1109/ACCESS.2018.2844861
10.1007/978-3-030-01219-9_25
10.1109/TBME.2012.2205687
10.1016/j.media.2014.08.002
10.1109/CVPR.2017.634
10.1109/TPAMI.2010.138
10.1109/CVPR.2015.7298594
10.1109/LGRS.2018.2802944
10.1109/CVPR.2017.75
10.1093/brain/awh688
10.1007/s11548-017-1619-0
10.1007/978-3-030-00934-2_10
10.1109/CVPR.2017.243
10.1109/ISBI.2011.5872665
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2019.2950051
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 1403
ExternalDocumentID 31675323
10_1109_TMI_2019_2950051
8886468
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61773297; 61601029
  funderid: 10.13039/501100001809
– fundername: Zhejiang Provincial Natural Science Foundation
  grantid: LZ19F010001
  funderid: 10.13039/501100004731
– fundername: Grant of Ningbo 3315 Innovation Team
– fundername: Open Fund of Hubei Province Key Laboratory of Intelligent Information Processing and Real-Time Industrial System
  grantid: 2016ZNSS01A
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c347t-a89cccbbdc28659d4efd4b590ee76ab1894a9c41c95e30c8b169bba4e0a547f93
IEDL.DBID RIE
ISICitedReferencesCount 113
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000532214700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0062
1558-254X
IngestDate Thu Oct 02 09:41:28 EDT 2025
Sun Nov 09 06:37:47 EST 2025
Thu Apr 03 06:59:08 EDT 2025
Sat Nov 29 05:14:07 EST 2025
Tue Nov 18 22:11:20 EST 2025
Wed Aug 27 02:43:24 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-a89cccbbdc28659d4efd4b590ee76ab1894a9c41c95e30c8b169bba4e0a547f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8764-0622
0000-0003-1786-6188
0000-0003-4357-4592
0000-0001-6281-6505
PMID 31675323
PQID 2397910483
PQPubID 85460
PageCount 12
ParticipantIDs proquest_journals_2397910483
crossref_primary_10_1109_TMI_2019_2950051
pubmed_primary_31675323
ieee_primary_8886468
crossref_citationtrail_10_1109_TMI_2019_2950051
proquest_miscellaneous_2311656636
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref52
ref55
ref11
ref54
ref10
ref17
chen (ref68) 2018
ref16
ref19
ref18
meila (ref60) 2001
ref51
ref50
yu (ref33) 2015
ronneberger (ref22) 2015
ref46
ref45
ref48
ref47
ref42
maninis (ref53) 2016; 9901
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref80
ref79
ref35
ref78
ref37
ref36
ref75
ref31
ref74
ref30
ref77
ref76
ref32
ref2
ref1
sudre (ref71) 2017; 10553
ref39
ref70
ref73
chen (ref34) 2017
ref24
ref67
ref23
ref26
ref69
ref25
ref64
ref20
ref63
szegedy (ref66) 2017; 4
ref65
ref21
ref28
ref27
ref29
lovász (ref72) 1993; 2
ref62
ref61
simonyan (ref38) 2014
References_xml – ident: ref67
  doi: 10.1109/ICCV.2015.164
– start-page: 234
  year: 2015
  ident: ref22
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
– ident: ref14
  doi: 10.1016/j.neucom.2016.07.077
– ident: ref48
  doi: 10.1109/TMI.2016.2550102
– ident: ref46
  doi: 10.1007/978-3-319-10404-1_79
– ident: ref43
  doi: 10.1109/CVPR.2017.353
– ident: ref35
  doi: 10.1109/WACV.2018.00163
– ident: ref6
  doi: 10.1007/978-3-030-00934-2_7
– ident: ref45
  doi: 10.1109/TMI.2010.2064333
– ident: ref63
  doi: 10.1109/ISBI.2013.6556625
– ident: ref24
  doi: 10.1109/CVPR.2017.549
– volume: 9901
  start-page: 140
  year: 2016
  ident: ref53
  article-title: Deep retinal image understanding
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
– ident: ref5
  doi: 10.1136/bjo.83.8.902
– ident: ref73
  doi: 10.1109/TIP.2015.2505184
– ident: ref59
  doi: 10.1109/TBME.2017.2787025
– ident: ref15
  doi: 10.1109/TMI.2015.2409024
– ident: ref27
  doi: 10.1109/CVPR.2016.90
– ident: ref79
  doi: 10.1109/TSMC.1979.4310076
– ident: ref80
  doi: 10.1109/TBME.2015.2403295
– ident: ref69
  doi: 10.24963/ijcai.2017/305
– ident: ref19
  doi: 10.1109/TMI.2019.2903562
– volume: 2
  start-page: 1
  year: 1993
  ident: ref72
  article-title: Random walks on graphs: A survey
  publication-title: Combinatorics Paul Erdos Is Eighty
– ident: ref18
  doi: 10.1109/TMI.2016.2546227
– ident: ref42
  doi: 10.1109/CVPRW.2018.00034
– ident: ref64
  doi: 10.1007/978-3-642-40763-5_68
– ident: ref52
  doi: 10.1109/TMI.2016.2587062
– ident: ref44
  doi: 10.1109/ICCV.2015.178
– ident: ref50
  doi: 10.1109/TMI.2004.825627
– ident: ref12
  doi: 10.1109/TMI.2006.879967
– ident: ref26
  doi: 10.1109/CVPR.2018.00388
– start-page: 801
  year: 2018
  ident: ref68
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– ident: ref23
  doi: 10.1109/TPAMI.2016.2644615
– year: 2015
  ident: ref33
  article-title: Multi-scale context aggregation by dilated convolutions
  publication-title: arXiv 1511 07122
– ident: ref13
  doi: 10.1016/j.patrec.2009.09.020
– ident: ref16
  doi: 10.1109/TMI.2017.2756073
– ident: ref3
  doi: 10.1016/S0010-4825(03)00055-6
– ident: ref20
  doi: 10.1007/978-3-030-32239-7_49
– ident: ref11
  doi: 10.1371/journal.pone.0032435
– year: 2014
  ident: ref38
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv 1409 1556
– ident: ref8
  doi: 10.1109/CISP.2015.7407917
– ident: ref61
  doi: 10.1109/TPAMI.2006.233
– ident: ref51
  doi: 10.1016/j.cmpb.2017.06.016
– ident: ref10
  doi: 10.1137/1.9781611970104
– ident: ref21
  doi: 10.1007/978-3-030-32239-7_88
– ident: ref7
  doi: 10.1109/TMI.2019.2926492
– ident: ref47
  doi: 10.1109/TMI.2007.898551
– ident: ref41
  doi: 10.1109/CVPR.2017.660
– ident: ref31
  doi: 10.1109/TMI.2018.2791488
– ident: ref4
  doi: 10.1201/9781420037005
– ident: ref17
  doi: 10.1007/978-3-319-46723-8_16
– ident: ref32
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref1
  doi: 10.1111/j.1549-8719.2010.00045.x
– volume: 4
  start-page: 12
  year: 2017
  ident: ref66
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning
  publication-title: Proc AAAI
– ident: ref2
  doi: 10.1016/S1350-9462(02)00008-3
– ident: ref74
  doi: 10.1109/42.845178
– volume: 10553
  start-page: 240
  year: 2017
  ident: ref71
  article-title: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations
  publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support DLMIA ML-CDS
  doi: 10.1007/978-3-319-67558-9_28
– ident: ref57
  doi: 10.1007/s10851-016-0640-1
– ident: ref70
  doi: 10.1109/3DV.2016.79
– ident: ref36
  doi: 10.1007/978-3-030-32251-9_85
– ident: ref25
  doi: 10.1109/CVPR.2018.00690
– ident: ref56
  doi: 10.1007/978-3-030-00934-2_14
– ident: ref76
  doi: 10.1007/s11222-009-9153-8
– ident: ref55
  doi: 10.1016/j.eswa.2018.06.034
– year: 2017
  ident: ref34
  article-title: Rethinking atrous convolution for semantic image segmentation
  publication-title: arXiv 1706 05587
– ident: ref9
  doi: 10.1016/j.patcog.2012.08.009
– start-page: 873
  year: 2001
  ident: ref60
  article-title: Learning segmentation by random walks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref78
  doi: 10.1109/ACCESS.2018.2844861
– ident: ref30
  doi: 10.1007/978-3-030-01219-9_25
– ident: ref75
  doi: 10.1109/TBME.2012.2205687
– ident: ref49
  doi: 10.1016/j.media.2014.08.002
– ident: ref28
  doi: 10.1109/CVPR.2017.634
– ident: ref62
  doi: 10.1109/TPAMI.2010.138
– ident: ref39
  doi: 10.1109/CVPR.2015.7298594
– ident: ref65
  doi: 10.1109/LGRS.2018.2802944
– ident: ref40
  doi: 10.1109/CVPR.2017.75
– ident: ref37
  doi: 10.1093/brain/awh688
– ident: ref77
  doi: 10.1007/s11548-017-1619-0
– ident: ref54
  doi: 10.1007/978-3-030-00934-2_10
– ident: ref29
  doi: 10.1109/CVPR.2017.243
– ident: ref58
  doi: 10.1109/ISBI.2011.5872665
SSID ssj0014509
Score 2.6401763
Snippet The detection of retinal vessel is of great importance in the diagnosis and treatment of many ocular diseases. Many methods have been proposed for vessel...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1392
SubjectTerms Algorithms
Biomedical imaging
Blood vessels
Coders
Deep learning
Diagnosis
Diseases
encoder-decoder
Encoders-Decoders
Eye diseases
Feature extraction
Image segmentation
Medical treatment
regularized walk
Retina
Retinal vessels
vessel reconnection
Vessel segmentation
Title Dense Dilated Network With Probability Regularized Walk for Vessel Detection
URI https://ieeexplore.ieee.org/document/8886468
https://www.ncbi.nlm.nih.gov/pubmed/31675323
https://www.proquest.com/docview/2397910483
https://www.proquest.com/docview/2311656636
Volume 39
WOSCitedRecordID wos000532214700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB9URPShfraNX6zgi9B4uc0m2X0UT1HQQ4qt9xZ2J3P06JGTu1yh_eu7u8mFClrwJQQy-WB_O-xvMrO_ATi1LmMsb5WhZatJKAqUoY7sgWIuI0xJCON1Zu-yfl8OBuphCb60e2GIyBef0bk79bn8YoJz96usY6O1VKRyGZazLKv3arUZA5HU5RzcKcZGKV-kJCPVeby_dTVc6pyrxE3CF0uQ76nyNr30y8z15vs-cAs-NHSSXdT4b8MSlTuw8Y_I4A6s3Tfp812469mglVhvNLYMs2D9ugScPY2qH-xhaj3bV8r-Zl99g_rp6I81etLjn8wyW_bdqYyPWY8qX71V7sG366vHy5uwaacQYiyyKtRSIaIxBbrdqKoQNCyESVRElKXadKUSWqHookootniZbqqM0YIinYhsqOKPsFJOSvoMDPnQMhGFUhWJ0MXQ6AxjJIlk7HrPowA6ixHOsdEady0vxrmPOSKVW0xyh0neYBLAWXvHc62z8R_bXTf0rV0z6gEcLkDMG0ec5dzlLbtONz-Ak_aydSGXF9ElTebOxmsQpXEawKca_PbZTiggiXm8__o7D2CduwDcV0Aewko1ndMRrOKvajSbHtt5OpDHfp7-BYTU46Y
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qFasPfvTDRquu4ItgeslmN9l9FM_S4t1R5LR9C7uTOTx65OSaE-pf7-4mFxRU8CUEMvlgZ4f9Tea3vwF47ULGOtyqYodWZSwqVLFJ3IEyrhLMSQgbdGZHxWSiLi_1-Ra87ffCEFEgn9GxPw21_GqJa_-rbOCytVzk6hbclkLwtN2t1dcMhGwJHdxrxiY53xQlEz2Yjs88i0sfcy39NPxtEQpdVf4OMMNCc_Lw_z7xETzoACV7186Ax7BF9S7c_0VmcBfujrsC-h6Mhi5tJTacLxzGrNikJYGzi3nzlZ2vXGwHruwN-xRa1K_mP5zRhVlcMYdt2RevM75gQ2oCf6veh88nH6bvT-OuoUKMmSia2CiNiNZW6Pej6krQrBJW6oSoyI1NlRZGo0hRS8qcx2yaa2uNoMRIUcx0dgDb9bKmQ2DIZw6LaFS6ksJUM2sKzJAUknUrPk8iGGxGuMRObdw3vViUIetIdOl8UnqflJ1PInjT3_GtVdr4h-2eH_rerhv1CI42Tiy7ULwuua9cpl45P4JX_WUXRL4yYmparr1NUCHKszyCJ63z-2d7qQCZ8ezpn9_5EnZOp-NROTqbfHwG97hPxwMf8gi2m9WansMd_N7Mr1cvwmz9CSNg5gU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dense+Dilated+Network+With+Probability+Regularized+Walk+for+Vessel+Detection&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Mou%2C+Lei&rft.au=Chen%2C+Li&rft.au=Cheng%2C+Jun&rft.au=Gu%2C+Zaiwang&rft.date=2020-05-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=39&rft.issue=5&rft.spage=1392&rft.epage=1403&rft_id=info:doi/10.1109%2FTMI.2019.2950051&rft.externalDocID=8886468
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon