Dense Dilated Network With Probability Regularized Walk for Vessel Detection
The detection of retinal vessel is of great importance in the diagnosis and treatment of many ocular diseases. Many methods have been proposed for vessel detection. However, most of the algorithms neglect the connectivity of the vessels, which plays an important role in the diagnosis. In this paper,...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on medical imaging Jg. 39; H. 5; S. 1392 - 1403 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.05.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0278-0062, 1558-254X, 1558-254X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The detection of retinal vessel is of great importance in the diagnosis and treatment of many ocular diseases. Many methods have been proposed for vessel detection. However, most of the algorithms neglect the connectivity of the vessels, which plays an important role in the diagnosis. In this paper, we propose a novel method for retinal vessel detection. The proposed method includes a dense dilated network to get an initial detection of the vessels and a probability regularized walk algorithm to address the fracture issue in the initial detection. The dense dilated network integrates newly proposed dense dilated feature extraction blocks into an encoder-decoder structure to extract and accumulate features at different scales. A multi-scale Dice loss function is adopted to train the network. To improve the connectivity of the segmented vessels, we also introduce a probability regularized walk algorithm to connect the broken vessels. The proposed method has been applied on three public data sets: DRIVE, STARE and CHASE_DB1. The results show that the proposed method outperforms the state-of-the-art methods in accuracy, sensitivity, specificity and also area under receiver operating characteristic curve. |
|---|---|
| AbstractList | The detection of retinal vessel is of great importance in the diagnosis and treatment of many ocular diseases. Many methods have been proposed for vessel detection. However, most of the algorithms neglect the connectivity of the vessels, which plays an important role in the diagnosis. In this paper, we propose a novel method for retinal vessel detection. The proposed method includes a dense dilated network to get an initial detection of the vessels and a probability regularized walk algorithm to address the fracture issue in the initial detection. The dense dilated network integrates newly proposed dense dilated feature extraction blocks into an encoder-decoder structure to extract and accumulate features at different scales. A multi-scale Dice loss function is adopted to train the network. To improve the connectivity of the segmented vessels, we also introduce a probability regularized walk algorithm to connect the broken vessels. The proposed method has been applied on three public data sets: DRIVE, STARE and CHASE_DB1. The results show that the proposed method outperforms the state-of-the-art methods in accuracy, sensitivity, specificity and also area under receiver operating characteristic curve. The detection of retinal vessel is of great importance in the diagnosis and treatment of many ocular diseases. Many methods have been proposed for vessel detection. However, most of the algorithms neglect the connectivity of the vessels, which plays an important role in the diagnosis. In this paper, we propose a novel method for retinal vessel detection. The proposed method includes a dense dilated network to get an initial detection of the vessels and a probability regularized walk algorithm to address the fracture issue in the initial detection. The dense dilated network integrates newly proposed dense dilated feature extraction blocks into an encoder-decoder structure to extract and accumulate features at different scales. A multi-scale Dice loss function is adopted to train the network. To improve the connectivity of the segmented vessels, we also introduce a probability regularized walk algorithm to connect the broken vessels. The proposed method has been applied on three public data sets: DRIVE, STARE and CHASE_DB1. The results show that the proposed method outperforms the state-of-the-art methods in accuracy, sensitivity, specificity and also area under receiver operating characteristic curve.The detection of retinal vessel is of great importance in the diagnosis and treatment of many ocular diseases. Many methods have been proposed for vessel detection. However, most of the algorithms neglect the connectivity of the vessels, which plays an important role in the diagnosis. In this paper, we propose a novel method for retinal vessel detection. The proposed method includes a dense dilated network to get an initial detection of the vessels and a probability regularized walk algorithm to address the fracture issue in the initial detection. The dense dilated network integrates newly proposed dense dilated feature extraction blocks into an encoder-decoder structure to extract and accumulate features at different scales. A multi-scale Dice loss function is adopted to train the network. To improve the connectivity of the segmented vessels, we also introduce a probability regularized walk algorithm to connect the broken vessels. The proposed method has been applied on three public data sets: DRIVE, STARE and CHASE_DB1. The results show that the proposed method outperforms the state-of-the-art methods in accuracy, sensitivity, specificity and also area under receiver operating characteristic curve. |
| Author | Mou, Lei Chen, Li Liu, Jiang Cheng, Jun Gu, Zaiwang Zhao, Yitian |
| Author_xml | – sequence: 1 givenname: Lei surname: Mou fullname: Mou, Lei email: moulei@nimte.ac.cn organization: School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, China – sequence: 2 givenname: Li surname: Chen fullname: Chen, Li email: chenli@wust.edu.cn organization: Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan University of Science and Technology, Wuhan, China – sequence: 3 givenname: Jun orcidid: 0000-0003-1786-6188 surname: Cheng fullname: Cheng, Jun email: sam.j.cheng@gmail.com organization: Chinese Academy of Sciences, Cixi Institute of Biomedical Engineering, Ningbo, China – sequence: 4 givenname: Zaiwang orcidid: 0000-0001-8764-0622 surname: Gu fullname: Gu, Zaiwang email: guzaiwang@gmail.com organization: Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China – sequence: 5 givenname: Yitian orcidid: 0000-0003-4357-4592 surname: Zhao fullname: Zhao, Yitian email: yitian.zhao@nimte.ac.cn organization: Chinese Academy of Sciences, Cixi Institute of Biomedical Engineering, Ningbo Institute of Industrial Technology, Ningbo, China – sequence: 6 givenname: Jiang orcidid: 0000-0001-6281-6505 surname: Liu fullname: Liu, Jiang email: liuj@sustech.edu.cn organization: Chinese Academy of Sciences, Cixi Institute of Biomedical Engineering, Ningbo, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31675323$$D View this record in MEDLINE/PubMed |
| BookMark | eNp90c9PFDEUB_CGYGBB7iYmZBIvXmZtpz-mPRoWhGQVYlC4NW3njRS6U2w7MfjXM5tdPHDw1Mvn-_Jevwdod4gDIPSO4DkhWH26_noxbzBR80ZxjDnZQTPCuawbzm530Qw3rawxFs0-Osj5HmPCOFZ7aJ8S0XLa0BlaLmDIUC18MAW66huUPzE9VDe-3FVXKVpjffDlqfoOv8Zgkv87oRsTHqo-puon5AyhWkABV3wc3qI3vQkZjrbvIfpxdnp9cl4vL79cnHxe1o6yttRGKuectZ1rpOCqY9B3zHKFAVphLJGKGeUYcYoDxU5aIpS1hgE2nLW9oofo42buY4q_R8hFr3x2EIIZII5ZN5QQwYWgYqIfXtH7OKZh2m5SqlUEM0kndbxVo11Bpx-TX5n0pF_-aQJiA1yKOSfotfPFrG8uyfigCdbrQvRUiF4XoreFTEH8Kvgy-z-R95uIB4B_XEopmJD0Ga2TlLk |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_1109_TMI_2020_3027665 crossref_primary_10_1016_j_compmedimag_2025_102631 crossref_primary_10_1109_TIM_2025_3569005 crossref_primary_10_3390_app13053255 crossref_primary_10_1016_j_cmpb_2020_105769 crossref_primary_10_1016_j_bspc_2023_104669 crossref_primary_10_1111_micc_12854 crossref_primary_10_1109_JBHI_2024_3397047 crossref_primary_10_1016_j_bspc_2024_106849 crossref_primary_10_1016_j_eswa_2022_116526 crossref_primary_10_3389_fmed_2024_1377479 crossref_primary_10_1016_j_bspc_2024_107150 crossref_primary_10_1007_s11277_024_10968_w crossref_primary_10_1016_j_cmpbup_2023_100114 crossref_primary_10_1016_j_neucom_2023_126626 crossref_primary_10_3389_fcell_2021_659941 crossref_primary_10_3390_rs13234840 crossref_primary_10_1016_j_knosys_2023_111185 crossref_primary_10_3390_photonics10070722 crossref_primary_10_1016_j_dcmed_2022_12_008 crossref_primary_10_1049_ipr2_12597 crossref_primary_10_3389_fpubh_2022_858327 crossref_primary_10_1109_TIM_2023_3277946 crossref_primary_10_1002_ima_23045 crossref_primary_10_1016_j_compbiomed_2024_108047 crossref_primary_10_1007_s11831_022_09862_0 crossref_primary_10_1016_j_compbiomed_2024_108602 crossref_primary_10_1002_ima_70073 crossref_primary_10_1016_j_compbiomed_2022_106416 crossref_primary_10_1038_s41598_024_84255_w crossref_primary_10_1109_TMI_2022_3161681 crossref_primary_10_1145_3471190 crossref_primary_10_1016_j_cmpb_2021_106070 crossref_primary_10_1109_TAI_2023_3296687 crossref_primary_10_3390_app12073676 crossref_primary_10_1016_j_bspc_2025_108520 crossref_primary_10_1016_j_neucom_2021_11_075 crossref_primary_10_1109_TMI_2021_3111679 crossref_primary_10_1016_j_csbj_2024_03_003 crossref_primary_10_1016_j_cmpb_2022_107114 crossref_primary_10_1002_mp_15627 crossref_primary_10_1016_j_eij_2025_100702 crossref_primary_10_1109_ACCESS_2021_3102176 crossref_primary_10_1109_TMI_2022_3233648 crossref_primary_10_1007_s40123_022_00641_5 crossref_primary_10_1016_j_neucom_2024_128055 crossref_primary_10_1002_mp_17090 crossref_primary_10_1016_j_irbm_2022_03_001 crossref_primary_10_1007_s00371_024_03666_y crossref_primary_10_1007_s00521_022_07086_8 crossref_primary_10_1016_j_compmedimag_2023_102271 crossref_primary_10_1038_s41598_022_09675_y crossref_primary_10_1007_s00521_022_07481_1 crossref_primary_10_1109_JBHI_2023_3237704 crossref_primary_10_1109_JSEN_2021_3067608 crossref_primary_10_1109_TMI_2022_3151666 crossref_primary_10_1038_s41598_021_89686_3 crossref_primary_10_1109_LSP_2023_3348664 crossref_primary_10_1002_mp_15546 crossref_primary_10_1371_journal_pone_0329533 crossref_primary_10_1016_j_compbiomed_2022_106277 crossref_primary_10_1016_j_neucom_2022_03_061 crossref_primary_10_1007_s11390_023_3066_4 crossref_primary_10_1109_TMI_2022_3143371 crossref_primary_10_3389_fnins_2023_1249331 crossref_primary_10_1016_j_neucom_2022_12_039 crossref_primary_10_1109_TAI_2021_3064913 crossref_primary_10_1016_j_compbiomed_2022_105972 crossref_primary_10_1016_j_asoc_2025_113518 crossref_primary_10_1109_TMI_2025_3538336 crossref_primary_10_1016_j_eswa_2023_122851 crossref_primary_10_1109_LSP_2024_3358078 crossref_primary_10_1109_TMI_2025_3540886 crossref_primary_10_1371_journal_pone_0330641 crossref_primary_10_1109_ACCESS_2024_3383848 crossref_primary_10_1109_ACCESS_2023_3347196 crossref_primary_10_1016_j_bspc_2024_106595 crossref_primary_10_1016_j_heliyon_2023_e13081 crossref_primary_10_3390_math12020264 crossref_primary_10_1109_ACCESS_2022_3163247 crossref_primary_10_1016_j_bspc_2023_105666 crossref_primary_10_1016_j_compbiomed_2020_104119 crossref_primary_10_1109_JBHI_2023_3274789 crossref_primary_10_1016_j_measurement_2025_118695 crossref_primary_10_1016_j_compbiomed_2023_107269 crossref_primary_10_1109_ACCESS_2022_3173732 crossref_primary_10_1109_TMI_2022_3193150 crossref_primary_10_1109_JBHI_2022_3182471 crossref_primary_10_1109_JBHI_2020_2977224 crossref_primary_10_1002_jim4_15 crossref_primary_10_1038_s41598_025_94039_5 crossref_primary_10_3390_electronics11203262 crossref_primary_10_1016_j_media_2023_102929 crossref_primary_10_1002_ima_22945 crossref_primary_10_1109_TCYB_2022_3194099 crossref_primary_10_1007_s12204_024_2748_6 crossref_primary_10_1016_j_matpr_2022_02_162 |
| Cites_doi | 10.1109/ICCV.2015.164 10.1016/j.neucom.2016.07.077 10.1109/TMI.2016.2550102 10.1007/978-3-319-10404-1_79 10.1109/CVPR.2017.353 10.1109/WACV.2018.00163 10.1007/978-3-030-00934-2_7 10.1109/TMI.2010.2064333 10.1109/ISBI.2013.6556625 10.1109/CVPR.2017.549 10.1136/bjo.83.8.902 10.1109/TIP.2015.2505184 10.1109/TBME.2017.2787025 10.1109/TMI.2015.2409024 10.1109/CVPR.2016.90 10.1109/TSMC.1979.4310076 10.1109/TBME.2015.2403295 10.24963/ijcai.2017/305 10.1109/TMI.2019.2903562 10.1109/TMI.2016.2546227 10.1109/CVPRW.2018.00034 10.1007/978-3-642-40763-5_68 10.1109/TMI.2016.2587062 10.1109/ICCV.2015.178 10.1109/TMI.2004.825627 10.1109/TMI.2006.879967 10.1109/CVPR.2018.00388 10.1109/TPAMI.2016.2644615 10.1016/j.patrec.2009.09.020 10.1109/TMI.2017.2756073 10.1016/S0010-4825(03)00055-6 10.1007/978-3-030-32239-7_49 10.1371/journal.pone.0032435 10.1109/CISP.2015.7407917 10.1109/TPAMI.2006.233 10.1016/j.cmpb.2017.06.016 10.1137/1.9781611970104 10.1007/978-3-030-32239-7_88 10.1109/TMI.2019.2926492 10.1109/TMI.2007.898551 10.1109/CVPR.2017.660 10.1109/TMI.2018.2791488 10.1201/9781420037005 10.1007/978-3-319-46723-8_16 10.1109/TPAMI.2017.2699184 10.1111/j.1549-8719.2010.00045.x 10.1016/S1350-9462(02)00008-3 10.1109/42.845178 10.1007/978-3-319-67558-9_28 10.1007/s10851-016-0640-1 10.1109/3DV.2016.79 10.1007/978-3-030-32251-9_85 10.1109/CVPR.2018.00690 10.1007/978-3-030-00934-2_14 10.1007/s11222-009-9153-8 10.1016/j.eswa.2018.06.034 10.1016/j.patcog.2012.08.009 10.1109/ACCESS.2018.2844861 10.1007/978-3-030-01219-9_25 10.1109/TBME.2012.2205687 10.1016/j.media.2014.08.002 10.1109/CVPR.2017.634 10.1109/TPAMI.2010.138 10.1109/CVPR.2015.7298594 10.1109/LGRS.2018.2802944 10.1109/CVPR.2017.75 10.1093/brain/awh688 10.1007/s11548-017-1619-0 10.1007/978-3-030-00934-2_10 10.1109/CVPR.2017.243 10.1109/ISBI.2011.5872665 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/TMI.2019.2950051 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-254X |
| EndPage | 1403 |
| ExternalDocumentID | 31675323 10_1109_TMI_2019_2950051 8886468 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61773297; 61601029 funderid: 10.13039/501100001809 – fundername: Zhejiang Provincial Natural Science Foundation grantid: LZ19F010001 funderid: 10.13039/501100004731 – fundername: Grant of Ningbo 3315 Innovation Team – fundername: Open Fund of Hubei Province Key Laboratory of Intelligent Information Processing and Real-Time Industrial System grantid: 2016ZNSS01A |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION AAYOK NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c347t-a89cccbbdc28659d4efd4b590ee76ab1894a9c41c95e30c8b169bba4e0a547f93 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 113 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000532214700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0062 1558-254X |
| IngestDate | Thu Oct 02 09:41:28 EDT 2025 Sun Nov 09 06:37:47 EST 2025 Thu Apr 03 06:59:08 EDT 2025 Sat Nov 29 05:14:07 EST 2025 Tue Nov 18 22:11:20 EST 2025 Wed Aug 27 02:43:24 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c347t-a89cccbbdc28659d4efd4b590ee76ab1894a9c41c95e30c8b169bba4e0a547f93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8764-0622 0000-0003-1786-6188 0000-0003-4357-4592 0000-0001-6281-6505 |
| PMID | 31675323 |
| PQID | 2397910483 |
| PQPubID | 85460 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2397910483 crossref_primary_10_1109_TMI_2019_2950051 pubmed_primary_31675323 ieee_primary_8886468 crossref_citationtrail_10_1109_TMI_2019_2950051 proquest_miscellaneous_2311656636 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-05-01 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref52 ref55 ref11 ref54 ref10 ref17 chen (ref68) 2018 ref16 ref19 ref18 meila (ref60) 2001 ref51 ref50 yu (ref33) 2015 ronneberger (ref22) 2015 ref46 ref45 ref48 ref47 ref42 maninis (ref53) 2016; 9901 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref80 ref79 ref35 ref78 ref37 ref36 ref75 ref31 ref74 ref30 ref77 ref76 ref32 ref2 ref1 sudre (ref71) 2017; 10553 ref39 ref70 ref73 chen (ref34) 2017 ref24 ref67 ref23 ref26 ref69 ref25 ref64 ref20 ref63 szegedy (ref66) 2017; 4 ref65 ref21 ref28 ref27 ref29 lovász (ref72) 1993; 2 ref62 ref61 simonyan (ref38) 2014 |
| References_xml | – ident: ref67 doi: 10.1109/ICCV.2015.164 – start-page: 234 year: 2015 ident: ref22 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent – ident: ref14 doi: 10.1016/j.neucom.2016.07.077 – ident: ref48 doi: 10.1109/TMI.2016.2550102 – ident: ref46 doi: 10.1007/978-3-319-10404-1_79 – ident: ref43 doi: 10.1109/CVPR.2017.353 – ident: ref35 doi: 10.1109/WACV.2018.00163 – ident: ref6 doi: 10.1007/978-3-030-00934-2_7 – ident: ref45 doi: 10.1109/TMI.2010.2064333 – ident: ref63 doi: 10.1109/ISBI.2013.6556625 – ident: ref24 doi: 10.1109/CVPR.2017.549 – volume: 9901 start-page: 140 year: 2016 ident: ref53 article-title: Deep retinal image understanding publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent – ident: ref5 doi: 10.1136/bjo.83.8.902 – ident: ref73 doi: 10.1109/TIP.2015.2505184 – ident: ref59 doi: 10.1109/TBME.2017.2787025 – ident: ref15 doi: 10.1109/TMI.2015.2409024 – ident: ref27 doi: 10.1109/CVPR.2016.90 – ident: ref79 doi: 10.1109/TSMC.1979.4310076 – ident: ref80 doi: 10.1109/TBME.2015.2403295 – ident: ref69 doi: 10.24963/ijcai.2017/305 – ident: ref19 doi: 10.1109/TMI.2019.2903562 – volume: 2 start-page: 1 year: 1993 ident: ref72 article-title: Random walks on graphs: A survey publication-title: Combinatorics Paul Erdos Is Eighty – ident: ref18 doi: 10.1109/TMI.2016.2546227 – ident: ref42 doi: 10.1109/CVPRW.2018.00034 – ident: ref64 doi: 10.1007/978-3-642-40763-5_68 – ident: ref52 doi: 10.1109/TMI.2016.2587062 – ident: ref44 doi: 10.1109/ICCV.2015.178 – ident: ref50 doi: 10.1109/TMI.2004.825627 – ident: ref12 doi: 10.1109/TMI.2006.879967 – ident: ref26 doi: 10.1109/CVPR.2018.00388 – start-page: 801 year: 2018 ident: ref68 article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation publication-title: Proc Eur Conf Comput Vis (ECCV) – ident: ref23 doi: 10.1109/TPAMI.2016.2644615 – year: 2015 ident: ref33 article-title: Multi-scale context aggregation by dilated convolutions publication-title: arXiv 1511 07122 – ident: ref13 doi: 10.1016/j.patrec.2009.09.020 – ident: ref16 doi: 10.1109/TMI.2017.2756073 – ident: ref3 doi: 10.1016/S0010-4825(03)00055-6 – ident: ref20 doi: 10.1007/978-3-030-32239-7_49 – ident: ref11 doi: 10.1371/journal.pone.0032435 – year: 2014 ident: ref38 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv 1409 1556 – ident: ref8 doi: 10.1109/CISP.2015.7407917 – ident: ref61 doi: 10.1109/TPAMI.2006.233 – ident: ref51 doi: 10.1016/j.cmpb.2017.06.016 – ident: ref10 doi: 10.1137/1.9781611970104 – ident: ref21 doi: 10.1007/978-3-030-32239-7_88 – ident: ref7 doi: 10.1109/TMI.2019.2926492 – ident: ref47 doi: 10.1109/TMI.2007.898551 – ident: ref41 doi: 10.1109/CVPR.2017.660 – ident: ref31 doi: 10.1109/TMI.2018.2791488 – ident: ref4 doi: 10.1201/9781420037005 – ident: ref17 doi: 10.1007/978-3-319-46723-8_16 – ident: ref32 doi: 10.1109/TPAMI.2017.2699184 – ident: ref1 doi: 10.1111/j.1549-8719.2010.00045.x – volume: 4 start-page: 12 year: 2017 ident: ref66 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning publication-title: Proc AAAI – ident: ref2 doi: 10.1016/S1350-9462(02)00008-3 – ident: ref74 doi: 10.1109/42.845178 – volume: 10553 start-page: 240 year: 2017 ident: ref71 article-title: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support DLMIA ML-CDS doi: 10.1007/978-3-319-67558-9_28 – ident: ref57 doi: 10.1007/s10851-016-0640-1 – ident: ref70 doi: 10.1109/3DV.2016.79 – ident: ref36 doi: 10.1007/978-3-030-32251-9_85 – ident: ref25 doi: 10.1109/CVPR.2018.00690 – ident: ref56 doi: 10.1007/978-3-030-00934-2_14 – ident: ref76 doi: 10.1007/s11222-009-9153-8 – ident: ref55 doi: 10.1016/j.eswa.2018.06.034 – year: 2017 ident: ref34 article-title: Rethinking atrous convolution for semantic image segmentation publication-title: arXiv 1706 05587 – ident: ref9 doi: 10.1016/j.patcog.2012.08.009 – start-page: 873 year: 2001 ident: ref60 article-title: Learning segmentation by random walks publication-title: Proc Adv Neural Inf Process Syst – ident: ref78 doi: 10.1109/ACCESS.2018.2844861 – ident: ref30 doi: 10.1007/978-3-030-01219-9_25 – ident: ref75 doi: 10.1109/TBME.2012.2205687 – ident: ref49 doi: 10.1016/j.media.2014.08.002 – ident: ref28 doi: 10.1109/CVPR.2017.634 – ident: ref62 doi: 10.1109/TPAMI.2010.138 – ident: ref39 doi: 10.1109/CVPR.2015.7298594 – ident: ref65 doi: 10.1109/LGRS.2018.2802944 – ident: ref40 doi: 10.1109/CVPR.2017.75 – ident: ref37 doi: 10.1093/brain/awh688 – ident: ref77 doi: 10.1007/s11548-017-1619-0 – ident: ref54 doi: 10.1007/978-3-030-00934-2_10 – ident: ref29 doi: 10.1109/CVPR.2017.243 – ident: ref58 doi: 10.1109/ISBI.2011.5872665 |
| SSID | ssj0014509 |
| Score | 2.6401763 |
| Snippet | The detection of retinal vessel is of great importance in the diagnosis and treatment of many ocular diseases. Many methods have been proposed for vessel... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1392 |
| SubjectTerms | Algorithms Biomedical imaging Blood vessels Coders Deep learning Diagnosis Diseases encoder-decoder Encoders-Decoders Eye diseases Feature extraction Image segmentation Medical treatment regularized walk Retina Retinal vessels vessel reconnection Vessel segmentation |
| Title | Dense Dilated Network With Probability Regularized Walk for Vessel Detection |
| URI | https://ieeexplore.ieee.org/document/8886468 https://www.ncbi.nlm.nih.gov/pubmed/31675323 https://www.proquest.com/docview/2397910483 https://www.proquest.com/docview/2311656636 |
| Volume | 39 |
| WOSCitedRecordID | wos000532214700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB9URPShfraNX6zgi9B4uc0m2X0UT1HQQ4qt9xZ2J3P06JGTu1yh_eu7u8mFClrwJQQy-WB_O-xvMrO_ATi1LmMsb5WhZatJKAqUoY7sgWIuI0xJCON1Zu-yfl8OBuphCb60e2GIyBef0bk79bn8YoJz96usY6O1VKRyGZazLKv3arUZA5HU5RzcKcZGKV-kJCPVeby_dTVc6pyrxE3CF0uQ76nyNr30y8z15vs-cAs-NHSSXdT4b8MSlTuw8Y_I4A6s3Tfp812469mglVhvNLYMs2D9ugScPY2qH-xhaj3bV8r-Zl99g_rp6I81etLjn8wyW_bdqYyPWY8qX71V7sG366vHy5uwaacQYiyyKtRSIaIxBbrdqKoQNCyESVRElKXadKUSWqHookootniZbqqM0YIinYhsqOKPsFJOSvoMDPnQMhGFUhWJ0MXQ6AxjJIlk7HrPowA6ixHOsdEady0vxrmPOSKVW0xyh0neYBLAWXvHc62z8R_bXTf0rV0z6gEcLkDMG0ec5dzlLbtONz-Ak_aydSGXF9ElTebOxmsQpXEawKca_PbZTiggiXm8__o7D2CduwDcV0Aewko1ndMRrOKvajSbHtt5OpDHfp7-BYTU46Y |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qFasPfvTDRquu4ItgeslmN9l9FM_S4t1R5LR9C7uTOTx65OSaE-pf7-4mFxRU8CUEMvlgZ4f9Tea3vwF47ULGOtyqYodWZSwqVLFJ3IEyrhLMSQgbdGZHxWSiLi_1-Ra87ffCEFEgn9GxPw21_GqJa_-rbOCytVzk6hbclkLwtN2t1dcMhGwJHdxrxiY53xQlEz2Yjs88i0sfcy39NPxtEQpdVf4OMMNCc_Lw_z7xETzoACV7186Ax7BF9S7c_0VmcBfujrsC-h6Mhi5tJTacLxzGrNikJYGzi3nzlZ2vXGwHruwN-xRa1K_mP5zRhVlcMYdt2RevM75gQ2oCf6veh88nH6bvT-OuoUKMmSia2CiNiNZW6Pej6krQrBJW6oSoyI1NlRZGo0hRS8qcx2yaa2uNoMRIUcx0dgDb9bKmQ2DIZw6LaFS6ksJUM2sKzJAUknUrPk8iGGxGuMRObdw3vViUIetIdOl8UnqflJ1PInjT3_GtVdr4h-2eH_rerhv1CI42Tiy7ULwuua9cpl45P4JX_WUXRL4yYmparr1NUCHKszyCJ63z-2d7qQCZ8ezpn9_5EnZOp-NROTqbfHwG97hPxwMf8gi2m9WansMd_N7Mr1cvwmz9CSNg5gU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dense+Dilated+Network+With+Probability+Regularized+Walk+for+Vessel+Detection&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Mou%2C+Lei&rft.au=Chen%2C+Li&rft.au=Cheng%2C+Jun&rft.au=Gu%2C+Zaiwang&rft.date=2020-05-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=39&rft.issue=5&rft.spage=1392&rft.epage=1403&rft_id=info:doi/10.1109%2FTMI.2019.2950051&rft.externalDocID=8886468 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |