Integrating multi-criteria decision making and clustering for business customer segmentation
Purpose – The purpose of this paper is to develop a systematic approach for business customer segmentation. Design/methodology/approach – This study proposes an approach for business customer segmentation that integrates clustering and multi-criteria decision making (MCDM). First, proper segmentatio...
Gespeichert in:
| Veröffentlicht in: | Industrial management + data systems Jg. 115; H. 6; S. 1022 - 1040 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Wembley
Emerald Group Publishing Limited
13.07.2015
|
| Schlagworte: | |
| ISSN: | 0263-5577, 1758-5783 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Purpose
– The purpose of this paper is to develop a systematic approach for business customer segmentation.
Design/methodology/approach
– This study proposes an approach for business customer segmentation that integrates clustering and multi-criteria decision making (MCDM). First, proper segmentation variables are identified and then customers are grouped by using hierarchical and partitional clustering algorithms. The approach extended the recency-frequency-monetary (RFM) model by proposing five novel segmentation variables for business markets. To confirm the viability of the proposed approach, a real-world application is presented. Three agglomerative hierarchical clustering algorithms namely “Ward’s method,” “single linkage” and “complete linkage,” and a partitional clustering algorithm, “k-means,” are used in segmentation. In the implementation, fuzzy analytic hierarchy process is employed to determine the importance of the segments.
Findings
– Business customers of an international original equipment manufacturer (OEM) are segmented in the application. In this regard, 317 business customers of the OEM are segmented as “best,” “valuable,” “average,” “potential valuable” and “potential invaluable” according to the cluster ranks obtained in this study. The results of the application reveal that the proposed approach can effectively be used in practice for business customer segmentation.
Research limitations/implications
– The success of the proposed approach relies on the availability and quality of customers’ data. Therefore, design of an extensive customer database management system is the foundation for any successful customer relationship management (CRM) solution offered by the proposed approach. Such a database management system may entail a noteworthy level of investment.
Practical implications
– The results of the application reveal that the proposed approach can effectively be used in practice for business customer segmentation. By making customer segmentation decisions, the proposed approach can provides firms a basis for the development of effective loyalty programs and design of customized strategies for their customers.
Social implications
– The proposed segmentation approach may contribute firms to gaining sustainable competitive advantage in the market by increasing the effectiveness of CRM strategies.
Originality/value
– This study proposes an integrated approach for business customer segmentation. The proposed approach differentiates itself from its counterparts by combining MCDM and clustering in business customer segmentation. In addition, it extends the traditional RFM model by including five novel segmentation variables for business markets. |
|---|---|
| AbstractList | Purpose - The purpose of this paper is to develop a systematic approach for business customer segmentation. Design/methodology/approach - This study proposes an approach for business customer segmentation that integrates clustering and multi-criteria decision making (MCDM). First, proper segmentation variables are identified and then customers are grouped by using hierarchical and partitional clustering algorithms. The approach extended the recency-frequency-monetary (RFM) model by proposing five novel segmentation variables for business markets. To confirm the viability of the proposed approach, a real-world application is presented. Three agglomerative hierarchical clustering algorithms namely "Ward's method," "single linkage" and "complete linkage," and a partitional clustering algorithm, "k-means," are used in segmentation. In the implementation, fuzzy analytic hierarchy process is employed to determine the importance of the segments. Findings - Business customers of an international original equipment manufacturer (OEM) are segmented in the application. In this regard, 317 business customers of the OEM are segmented as "best," "valuable," "average," "potential valuable" and "potential invaluable" according to the cluster ranks obtained in this study. The results of the application reveal that the proposed approach can effectively be used in practice for business customer segmentation. Research limitations/implications - The success of the proposed approach relies on the availability and quality of customers' data. Therefore, design of an extensive customer database management system is the foundation for any successful customer relationship management (CRM) solution offered by the proposed approach. Such a database management system may entail a noteworthy level of investment. Practical implications - The results of the application reveal that the proposed approach can effectively be used in practice for business customer segmentation. By making customer segmentation decisions, the proposed approach can provides firms a basis for the development of effective loyalty programs and design of customized strategies for their customers. Social implications - The proposed segmentation approach may contribute firms to gaining sustainable competitive advantage in the market by increasing the effectiveness of CRM strategies. Originality/value - This study proposes an integrated approach for business customer segmentation. The proposed approach differentiates itself from its counterparts by combining MCDM and clustering in business customer segmentation. In addition, it extends the traditional RFM model by including five novel segmentation variables for business markets. Purpose – The purpose of this paper is to develop a systematic approach for business customer segmentation. Design/methodology/approach – This study proposes an approach for business customer segmentation that integrates clustering and multi-criteria decision making (MCDM). First, proper segmentation variables are identified and then customers are grouped by using hierarchical and partitional clustering algorithms. The approach extended the recency-frequency-monetary (RFM) model by proposing five novel segmentation variables for business markets. To confirm the viability of the proposed approach, a real-world application is presented. Three agglomerative hierarchical clustering algorithms namely “Ward’s method,” “single linkage” and “complete linkage,” and a partitional clustering algorithm, “k-means,” are used in segmentation. In the implementation, fuzzy analytic hierarchy process is employed to determine the importance of the segments. Findings – Business customers of an international original equipment manufacturer (OEM) are segmented in the application. In this regard, 317 business customers of the OEM are segmented as “best,” “valuable,” “average,” “potential valuable” and “potential invaluable” according to the cluster ranks obtained in this study. The results of the application reveal that the proposed approach can effectively be used in practice for business customer segmentation. Research limitations/implications – The success of the proposed approach relies on the availability and quality of customers’ data. Therefore, design of an extensive customer database management system is the foundation for any successful customer relationship management (CRM) solution offered by the proposed approach. Such a database management system may entail a noteworthy level of investment. Practical implications – The results of the application reveal that the proposed approach can effectively be used in practice for business customer segmentation. By making customer segmentation decisions, the proposed approach can provides firms a basis for the development of effective loyalty programs and design of customized strategies for their customers. Social implications – The proposed segmentation approach may contribute firms to gaining sustainable competitive advantage in the market by increasing the effectiveness of CRM strategies. Originality/value – This study proposes an integrated approach for business customer segmentation. The proposed approach differentiates itself from its counterparts by combining MCDM and clustering in business customer segmentation. In addition, it extends the traditional RFM model by including five novel segmentation variables for business markets. |
| Author | Güçdemir, Hülya Selim, Hasan |
| Author_xml | – sequence: 1 givenname: Hülya surname: Güçdemir fullname: Güçdemir, Hülya organization: Department of Industrial Engineering, Celal Bayar University, Manisa, Turkey – sequence: 2 givenname: Hasan surname: Selim fullname: Selim, Hasan organization: Department of Industrial Engineering, Dokuz Eylul University, Izmir, Turkey |
| BookMark | eNp9kc1u3SAQRlGVSr1J8wDdWcqmG5oBDJhllf5dKVEWaXeREMbjKxIbUrAXffti3W4SVVmhYc43oDOn5CSmiIR8YPCJMegu9zdf7igwyoFJCsD1G7JjWnZU6k6ckB1wJaiUWr8jp6U8QEUUVztyv48LHrJbQjw08zotgfocFszBNQP6UEKKzewet7aLQ-OntWzdWo4pN_1aQsRSGl-v04y5KXiYMS51YIrvydvRTQXP_51n5Ne3rz-vftDr2-_7q8_X1ItWL9R1vBsRvQMY2o5xw3tk7aCk7qXrpRlgbJUwRhnTStMqJnrNWseNdsy50Ykz8vE49ymn3yuWxc6heJwmFzGtxTINRkvFQVT04gX6kNYc6-8sByMEN0qoSrEj5XMqJeNon3KYXf5jGdjNt918W2B282033zWjX2R8OGpYsgvTq0k4JrEKdNPw38eeLVf8BZTLlbY |
| CitedBy_id | crossref_primary_10_3390_app13010342 crossref_primary_10_1007_s42979_024_03203_7 crossref_primary_10_1016_j_jretconser_2020_102289 crossref_primary_10_1108_JBIM_06_2022_0257 crossref_primary_10_1108_K_05_2017_0164 crossref_primary_10_1108_IJOA_12_2018_1602 crossref_primary_10_3390_app14010078 crossref_primary_10_3390_math12213427 crossref_primary_10_1007_s10479_023_05562_5 crossref_primary_10_1088_1742_6596_1366_1_012108 crossref_primary_10_1088_1742_6596_1869_1_012085 crossref_primary_10_1108_IJPPM_12_2021_0715 crossref_primary_10_1111_itor_12956 crossref_primary_10_1108_IMDS_10_2015_0410 crossref_primary_10_1007_s40430_019_1848_y crossref_primary_10_3233_JIFS_189084 crossref_primary_10_1080_21639159_2022_2080094 crossref_primary_10_1007_s40092_018_0285_3 crossref_primary_10_1016_j_ijedudev_2025_103224 crossref_primary_10_1007_s10115_021_01574_4 crossref_primary_10_3390_su11216013 crossref_primary_10_1007_s00170_017_0258_5 crossref_primary_10_1016_j_jii_2020_100177 crossref_primary_10_1088_1742_6596_1248_1_012016 crossref_primary_10_1007_s42488_023_00085_x crossref_primary_10_1016_j_asoc_2020_106366 crossref_primary_10_1108_IMDS_04_2016_0141 crossref_primary_10_3390_su16052046 crossref_primary_10_1016_j_ijinfomgt_2023_102641 crossref_primary_10_1016_j_jmsy_2017_02_004 crossref_primary_10_1108_JDAL_10_2024_0020 crossref_primary_10_1007_s12597_020_00489_y crossref_primary_10_1057_s41270_023_00235_5 crossref_primary_10_3390_systems12040125 crossref_primary_10_1016_j_jclepro_2018_05_067 crossref_primary_10_3390_computers14060208 crossref_primary_10_1002_asi_24448 crossref_primary_10_1108_IJQRM_01_2016_0010 crossref_primary_10_3390_systems13050363 crossref_primary_10_1108_JIABR_04_2023_0134 crossref_primary_10_1088_1757_899X_598_1_012116 crossref_primary_10_3390_math9161836 crossref_primary_10_1016_j_indmarman_2021_08_011 crossref_primary_10_1016_j_eswa_2023_122310 crossref_primary_10_1108_SRJ_05_2020_0203 crossref_primary_10_1155_2022_7479110 crossref_primary_10_1016_j_heliyon_2024_e31323 |
| Cites_doi | 10.1108/00251741011043920 10.1016/j.eswa.2008.04.003 10.1016/j.im.2004.01.008 10.1016/S0925-5273(03)00099-9 10.1016/j.eswa.2010.12.041 10.1016/S0166-3615(01)00147-6 10.1016/0165-0114(85)90090-9 10.1016/j.asoc.2008.09.003 10.1080/01621459.1963.10500845 10.1016/0377-2217(90)90056-H 10.1016/j.eswa.2009.12.070 10.1016/S0165-0114(83)80082-7 10.1023/B:FODM.0000013071.63614.3d 10.1016/j.eswa.2008.05.029 10.1016/j.elerap.2010.11.002 10.4156/ijact.vol5.issue1.16 10.1016/j.eswa.2011.08.045 10.1016/S0019-9958(65)90241-X 10.1177/002224378302000204 10.1509/jmkg.64.4.17.18077 10.1108/09576050310503367 10.1016/j.jretconser.2008.11.001 10.1016/j.eswa.2007.01.046 10.1177/002224298504900202 10.4236/jssm.2011.43034 10.1016/S0165-0114(99)00155-4 10.1016/j.rser.2003.12.007 10.1016/j.ijpe.2012.03.036 10.1007/s10845-005-6635-1 10.1016/j.tra.2007.08.003 10.1080/00207540600787200 10.1142/9789814343138_0001 10.1016/j.eswa.2013.07.053 10.1016/j.eswa.2008.06.061 10.1016/j.eswa.2007.05.043 10.1016/j.ejor.2007.05.001 10.1016/j.eswa.2005.09.004 10.1243/09544062JMES508 10.1016/S0165-0114(02)00383-4 10.1016/j.omega.2006.05.003 |
| ContentType | Journal Article |
| Copyright | Emerald Group Publishing Limited Emerald Group Publishing Limited 2015 |
| Copyright_xml | – notice: Emerald Group Publishing Limited – notice: Emerald Group Publishing Limited 2015 |
| DBID | AAYXX CITATION 7SC 7WY 7WZ 7XB 8AO 8FD 8FE 8FG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO F28 FR3 F~G GNUQQ GUQSH HCIFZ JQ2 K6~ K7- L.- L.0 L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1108/IMDS-01-2015-0027 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep (ProQuest) SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Professional Standard Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ABI/INFORM Professional Standard ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Technology Research Database ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Business |
| EISSN | 1758-5783 |
| EndPage | 1040 |
| ExternalDocumentID | 10_1108_IMDS_01_2015_0027 10.1108/IMDS-01-2015-0027 |
| GroupedDBID | 0R 1WG 29I 3FY 3V. 4.4 5GY 5VS 70U 7WY 8AO 8FE 8FG 8R4 8R5 9E0 9F- AACOY AADTA AADXL AAGBP AALRV AAMCF AAUDR ABFLS ABIJV ABPPZ ABSDC ACGFS ACIWK ACMTK ADOMW AEBZA AEDOK AENEX AEUCW AFKRA AFZLO AJEBP ALMA_UNASSIGNED_HOLDINGS APPLU ARAPS ASMFL ASPJK ATGMP AUCOK AVELQ AZQEC BENPR BEZIV BGLVJ BLEHN BPHCQ BUONS CAG CS3 DU5 DWQXO EBS ECCUG EJD FNNZZ GEA GEB GEC GEI GMM GMN GMX GNUQQ GQ. GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH H13 HCIFZ HZ IAO IEA IGG IJT IOF IPNFZ J1Y JI- JL0 K6 K6V K7- KBGRL L7B LXL LXN M0C M0N M2O MS N95 O9- P2P P62 PADUT PQBIZ PQEST PQQKQ PQUKI PRINS PROAC Q2X Q3A RIG TDQ TEM TET TGG TMD TMF TMK TMT TN5 V1G VQA WU X Z11 Z12 Z21 ZYZAG -~X .DC .WU 0R~ 1XV AAKOT AAPSD AAVEV AAXBI AAYXX ABCQX ABEAN ABJNI ABXQL ABYQI ACBMB ACTSA ACZKX ADFRT ADQHX ADWNT ADYJY AEMMR AETHF AFFHD AFNZV AGHQT AGTVX AHMHQ AIAFM AILOG AJFKA AODMV ASJQZ BTXLY CCPQU CITATION EOXHF HZ~ K6~ M42 MS~ PHGZM PHGZT PQGLB SCAQC SDURG 7SC 7XB 8FD AFNTC F28 FR3 ITC JQ2 L.- L.0 L7M L~C L~D MBDVC PKEHL PUEGO Q9U |
| ID | FETCH-LOGICAL-c347t-a828feeca00d481292be14d657b5ab59d0f463996994594613b714a297a1aafa3 |
| IEDL.DBID | TMT |
| ISICitedReferencesCount | 54 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000359055200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0263-5577 |
| IngestDate | Wed Oct 01 09:56:24 EDT 2025 Sat Aug 23 14:26:40 EDT 2025 Sat Nov 29 07:41:21 EST 2025 Tue Nov 18 21:08:29 EST 2025 Tue Nov 23 15:44:13 EST 2021 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Business customer segmentation Fuzzy AHP Multi-criteria decision making Data clustering |
| Language | English |
| License | https://www.emerald.com/insight/site-policies |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c347t-a828feeca00d481292be14d657b5ab59d0f463996994594613b714a297a1aafa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2093329636 |
| PQPubID | 47599 |
| PageCount | 19 |
| ParticipantIDs | crossref_primary_10_1108_IMDS_01_2015_0027 proquest_miscellaneous_1709756203 proquest_journals_2093329636 emerald_primary_10_1108_IMDS-01-2015-0027 crossref_citationtrail_10_1108_IMDS_01_2015_0027 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-07-13 |
| PublicationDateYYYYMMDD | 2015-07-13 |
| PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-13 day: 13 |
| PublicationDecade | 2010 |
| PublicationPlace | Wembley |
| PublicationPlace_xml | – name: Wembley |
| PublicationTitle | Industrial management + data systems |
| PublicationYear | 2015 |
| Publisher | Emerald Group Publishing Limited |
| Publisher_xml | – name: Emerald Group Publishing Limited |
| References | key2020122301292690100_b37 key2020122301292690100_b38 key2020122301292690100_b39 key2020122301292690100_b201 key2020122301292690100_b30 key2020122301292690100_b31 key2020122301292690100_b32 key2020122301292690100_b33 key2020122301292690100_b34 key2020122301292690100_b35 key2020122301292690100_b36 key2020122301292690100_b9 key2020122301292690100_b8 key2020122301292690100_b5 key2020122301292690100_b4 key2020122301292690100_b7 key2020122301292690100_b6 key2020122301292690100_b48 key2020122301292690100_b49 key2020122301292690100_b40 key2020122301292690100_b41 key2020122301292690100_b42 key2020122301292690100_b43 key2020122301292690100_b44 key2020122301292690100_b46 key2020122301292690100_b47 key2020122301292690100_b15 key2020122301292690100_b16 key2020122301292690100_b17 key2020122301292690100_b18 key2020122301292690100_b19 key2020122301292690100_b10 key2020122301292690100_b11 key2020122301292690100_b12 key2020122301292690100_b13 key2020122301292690100_b14 key2020122301292690100_b50 key2020122301292690100_b26 key2020122301292690100_b27 key2020122301292690100_b3 key2020122301292690100_b28 key2020122301292690100_b2 key2020122301292690100_b29 key2020122301292690100_b20 key2020122301292690100_b21 key2020122301292690100_b22 key2020122301292690100_b23 key2020122301292690100_b24 key2020122301292690100_b25 key2020122301292690100_frd1 |
| References_xml | – ident: key2020122301292690100_b41 doi: 10.1108/00251741011043920 – ident: key2020122301292690100_b8 doi: 10.1016/j.eswa.2008.04.003 – ident: key2020122301292690100_b31 doi: 10.1016/j.im.2004.01.008 – ident: key2020122301292690100_b25 doi: 10.1016/S0925-5273(03)00099-9 – ident: key2020122301292690100_b29 doi: 10.1016/j.eswa.2010.12.041 – ident: key2020122301292690100_b47 – ident: key2020122301292690100_b28 doi: 10.1016/S0166-3615(01)00147-6 – ident: key2020122301292690100_b4 doi: 10.1016/0165-0114(85)90090-9 – ident: key2020122301292690100_b19 doi: 10.1016/j.asoc.2008.09.003 – ident: key2020122301292690100_b46 doi: 10.1080/01621459.1963.10500845 – ident: key2020122301292690100_frd1 doi: 10.1016/0377-2217(90)90056-H – ident: key2020122301292690100_b3 – ident: key2020122301292690100_b22 doi: 10.1016/j.eswa.2009.12.070 – ident: key2020122301292690100_b7 – ident: key2020122301292690100_b27 – ident: key2020122301292690100_b33 – ident: key2020122301292690100_b44 doi: 10.1016/S0165-0114(83)80082-7 – ident: key2020122301292690100_b16 doi: 10.1023/B:FODM.0000013071.63614.3d – ident: key2020122301292690100_b9 doi: 10.1016/j.eswa.2008.05.029 – ident: key2020122301292690100_b49 doi: 10.1016/j.elerap.2010.11.002 – ident: key2020122301292690100_b11 doi: 10.4156/ijact.vol5.issue1.16 – ident: key2020122301292690100_b20 doi: 10.1016/j.eswa.2011.08.045 – ident: key2020122301292690100_b50 doi: 10.1016/S0019-9958(65)90241-X – ident: key2020122301292690100_b37 doi: 10.1177/002224378302000204 – ident: key2020122301292690100_b39 doi: 10.1509/jmkg.64.4.17.18077 – ident: key2020122301292690100_b24 doi: 10.1108/09576050310503367 – ident: key2020122301292690100_b32 – ident: key2020122301292690100_b18 doi: 10.1016/j.jretconser.2008.11.001 – ident: key2020122301292690100_b15 doi: 10.1016/j.eswa.2007.01.046 – ident: key2020122301292690100_b12 – ident: key2020122301292690100_b13 doi: 10.1177/002224298504900202 – ident: key2020122301292690100_b21 doi: 10.4236/jssm.2011.43034 – ident: key2020122301292690100_b10 doi: 10.1016/S0165-0114(99)00155-4 – ident: key2020122301292690100_b36 doi: 10.1016/j.rser.2003.12.007 – ident: key2020122301292690100_b42 doi: 10.1016/j.ijpe.2012.03.036 – ident: key2020122301292690100_b2 doi: 10.1007/s10845-005-6635-1 – ident: key2020122301292690100_b43 doi: 10.1016/j.tra.2007.08.003 – ident: key2020122301292690100_b6 doi: 10.1080/00207540600787200 – ident: key2020122301292690100_b14 doi: 10.1142/9789814343138_0001 – ident: key2020122301292690100_b48 doi: 10.1016/j.eswa.2013.07.053 – ident: key2020122301292690100_b201 doi: 10.1016/j.eswa.2008.06.061 – ident: key2020122301292690100_b5 doi: 10.1016/j.eswa.2007.05.043 – ident: key2020122301292690100_b17 – ident: key2020122301292690100_b40 – ident: key2020122301292690100_b30 doi: 10.1016/j.ejor.2007.05.001 – ident: key2020122301292690100_b26 doi: 10.1016/j.eswa.2005.09.004 – ident: key2020122301292690100_b35 doi: 10.1243/09544062JMES508 – ident: key2020122301292690100_b34 doi: 10.1016/S0165-0114(02)00383-4 – ident: key2020122301292690100_b23 doi: 10.1016/j.omega.2006.05.003 – ident: key2020122301292690100_b38 |
| SSID | ssj0002626 |
| Score | 2.3676913 |
| Snippet | Purpose
– The purpose of this paper is to develop a systematic approach for business customer segmentation.
Design/methodology/approach
– This study proposes... Purpose – The purpose of this paper is to develop a systematic approach for business customer segmentation. Design/methodology/approach – This study proposes... Purpose - The purpose of this paper is to develop a systematic approach for business customer segmentation. Design/methodology/approach - This study proposes... |
| SourceID | proquest crossref emerald |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1022 |
| SubjectTerms | Algorithms Analytic hierarchy process Behavior Brand loyalty Business Business competition Business machines Cluster analysis Clustering Competition Competitive advantage Customer relationship management Customer satisfaction Customer services Customers Data base management systems Data management systems Decision making Design engineering Genetic algorithms Information & knowledge management Information systems Loyalty programs Manufacturers Market segmentation Markets Mathematical models Multiple criteria decision making Multiple criterion OEM Researchers Segmentation Strategy Studies Variables Viability |
| SummonAdditionalLinks | – databaseName: ABI/INFORM Collection dbid: 7WY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD507Rh7WS9bWda0qLCXFQSyLVnRUyltQwNtKXRbMxgIWZJLIXGyONnv75Ejp3SUvuzJ2JZ84Ts6Fx3pfABfc5eX1nFPZckM5d4zqrjoURQenllbpKrZt_bzUl5f94ZDdRMn3Oq4rLLViY2idhMb5sgxSMfQO0VxyY-nf2hgjQrZ1Uih8QY20FCLwGAg736tNHGaN3RreMyoEFLGrGZgvhlcnd2GSBrtn6AhNntml_7ZnPukoBur09_83-_dgg_R3yQnSwHZhjVf7cC7drn7Dmy2tA4kjvKP8HsQS0igVSPNgkOKqiXUdDbERUoeMm5YrIipHLGjRai2EE7RAyaR1rImFi9P8A9J7e_HcYtT9Ql-9M-_n17QSMJAbcblnBoMyUrvrWHMcfQGVFr4hLtcyEKYQijHSh68nFwhxoqjd1DIhJtUSZMYU5psF9arSeU_A0ltVorSoAXEPom3SniPDkJZGGeLnss6wFoItI0VygNRxkg3kQrr6YCaZokOqOmAWgeOVl2my_IcrzX-FnF9se0zcehAt4VVx1Fd6ydMO3C4uo3jMSRZTOUni1onkimJTiXLvrz-iD14v3ybpEnWhfX5bOH34a39O3-oZweNID8CQKn5GQ priority: 102 providerName: ProQuest |
| Title | Integrating multi-criteria decision making and clustering for business customer segmentation |
| URI | https://www.emerald.com/insight/content/doi/10.1108/IMDS-01-2015-0027/full/html https://www.proquest.com/docview/2093329636 https://www.proquest.com/docview/1709756203 |
| Volume | 115 |
| WOSCitedRecordID | wos000359055200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVMCB databaseName: Emerald Management 120 customDbUrl: eissn: 1758-5783 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002626 issn: 0263-5577 databaseCode: TMT dateStart: 19940101 isFulltext: true titleUrlDefault: https://www.emerald.com/insight providerName: Emerald – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1758-5783 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0002626 issn: 0263-5577 databaseCode: 7WY dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global (OCUL) customDbUrl: eissn: 1758-5783 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0002626 issn: 0263-5577 databaseCode: M0C dateStart: 19950101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1758-5783 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0002626 issn: 0263-5577 databaseCode: P5Z dateStart: 19950101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1758-5783 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0002626 issn: 0263-5577 databaseCode: K7- dateStart: 19950101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1758-5783 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0002626 issn: 0263-5577 databaseCode: BENPR dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1758-5783 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0002626 issn: 0263-5577 databaseCode: M2O dateStart: 19950101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3fa9Qw-GNOEV-cTsXTeUTwRSFc2iTN5VHnhkPvduipUwYlTVI3uOuN9c6_3y-59GQyBMGXlLZJmibfz-T7AfCicEVtnfBU1cxQ4T2jWsghReAR3Noq19Fv7csHNR4PT070ZAuOO1-YaFa53o6JdPq8aYOSOgiG20iFNwEHQvaao9HbT0EbRh4madCvBmHLenC2nM8iTWYBUaej6YYy50VMv4ZXTqVUKp1yXtvXFT71h7Pub4IdudDhzn8f_z24mwRS8noNQfdhyze7cLuzh9-FnS7vA0lk4AGcHqUYE8j2SLRIpEh7QtBnQ1zK2UPmMc0VMY0jdrYK4RjCLYrIJOW9bInFxwv8C9L6H_PkA9U8hM-HB9P9dzRlaaCWC7WkBnW22ntrGHMCxQWdVz4TrpCqkqaS2rFaBDGo0AgEWqD4UKlMmFwrkxlTG_4ItptF4x8DyS2vZW2QRWKbzFstvUcJoq6Ms9XQ8R6wbk1Km0KYh0waszKqMmxYhiktWVaGKS3DlPbg1abJxTp-x98qv0xrd23dK2vVg70OFMqE9i32pDnPkaYVPXi-eY0IG05hTOMXq7bMFNMKpU7Gn_zL2J7CnfW3Fc34HmwvL1f-GdyyP5fn7WUfbqiv3_pw883BePIR794riuWI7YcyP8ZyIr_3Izb8AnyUCaQ |
| linkProvider | Emerald |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Ra9UwFD7MKerLplPx6tQI-qAQSJukaR5kiHPscu8uglP2IGRpkoqw9c71XsU_td-4k970jonsbQ8-lbZJ2iZfzpfTJOcDeFX4onZeBKpqZqkIgVEtZEkRPII7V-W627f2dawmk_LgQH9agbN-L0xcVtnbxM5Q-6mL_8jRSUfXO0e4FFsnP2lUjYqzq72ExgIWo_DnN7ps7bvhNrbv6zzf-bj_YZcmVQHquFAzatHHqENwljEvkN50XoVM-EKqStpKas9qEWm70PjSWiDdVSoTNtfKZtbWlmO5N-Cm4GURe9RI0aXlz4tO3g2PnEqpVJpFjUo7w73tz9FzR76VNPqCl3jwr83AF4TQsdzO-v9WP_dgLY2nyftFB7gPK6HZgNv9cv4NWO9lK0iyYg_g2zCFyEDWJt2CSoqmM8astsQnySFy3Kl0Edt44o7mMZpEPMURPkmynS1xeHmKNUra8P04beFqHsKXa_ncR7DaTJvwGEjueC1riwyPebLgtAwBB0B1Zb2rSs8HwPomNy5FYI9CIEem88RYaSJKDMtMRImJKBnA22WWk0X4kasSv0k4-mfaS_AbwGYPI5OsVmsuMDSAl8vbaG_iJJJtwnTemkwxrXDQzPiTq4t4AXd29_fGZjycjJ7C3cWTFc34JqzOTufhGdxyv2Y_2tPnXScicHjdqDwHT99UWA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB9qleJLq1Xx-qERfFEIl90km8uj2B4etkfBU_ogLNl8lEK7V7p3_v2d5LInlSIIPi2bTbK7yeQ3M8l8ALyvXBWsE56qwAwV3jOqhRxRJB7BrW1KnfzWfpyo6XR0fq7PNmDa-8Iks8rVdkzC6cu2i0rqMBpuIwqvAw7E7DWT06NvURtGHiZp1K-Gcct6eOPCI3gsEWejMjY7na2RuaxS-jW8ciqlUvmU88G-7vGpP5x1fwN24kLjnf_9_c9gO8uj5NOKgJ7Dhm93Yas3h9-FnT7tA8ko8AJ-TnKICeR6JBkkUoSeGPPZEJdT9pDrlOWKmNYRe7WM0RjiLUrIJKe97IjF4jn-BOn8xXV2gWpfwvfx8ezzF5qTNFDLhVpQgypb8N4axpxAaUGXjS-Eq6RqpGmkdiyIKAVVGmlAC5QeGlUIU2plCmOC4a9gs523_jWQ0vIgg0EOiW0Kb7X0HgWI0Bhnm5HjA2D9lNQ2RzCPiTSu6qTJsFEdR7RmRR1HtI4jOoCP6yY3q_Adf6v8IU_dg3XvTdUADnpKqPOq77AnzXmJkFYN4N36Ma7XeAhjWj9fdnWhmFYodDK-9w-vewtbZ0fj-mQy_boPT1fFihb8ADYXt0t_CE_sr8Vld_smEfwdgtMEIQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+multi-criteria+decision+making+and+clustering+for+business+customer+segmentation&rft.jtitle=Industrial+management+%2B+data+systems&rft.au=G%C3%BC%C3%A7demir%2C+H%C3%BClya&rft.au=Selim%2C+Hasan&rft.date=2015-07-13&rft.issn=0263-5577&rft.volume=115&rft.issue=6&rft.spage=1022&rft.epage=1040&rft_id=info:doi/10.1108%2FIMDS-01-2015-0027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1108_IMDS_01_2015_0027 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-5577&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-5577&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-5577&client=summon |