Integrating multi-criteria decision making and clustering for business customer segmentation

Purpose – The purpose of this paper is to develop a systematic approach for business customer segmentation. Design/methodology/approach – This study proposes an approach for business customer segmentation that integrates clustering and multi-criteria decision making (MCDM). First, proper segmentatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial management + data systems Jg. 115; H. 6; S. 1022 - 1040
Hauptverfasser: Güçdemir, Hülya, Selim, Hasan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Wembley Emerald Group Publishing Limited 13.07.2015
Schlagworte:
ISSN:0263-5577, 1758-5783
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Purpose – The purpose of this paper is to develop a systematic approach for business customer segmentation. Design/methodology/approach – This study proposes an approach for business customer segmentation that integrates clustering and multi-criteria decision making (MCDM). First, proper segmentation variables are identified and then customers are grouped by using hierarchical and partitional clustering algorithms. The approach extended the recency-frequency-monetary (RFM) model by proposing five novel segmentation variables for business markets. To confirm the viability of the proposed approach, a real-world application is presented. Three agglomerative hierarchical clustering algorithms namely “Ward’s method,” “single linkage” and “complete linkage,” and a partitional clustering algorithm, “k-means,” are used in segmentation. In the implementation, fuzzy analytic hierarchy process is employed to determine the importance of the segments. Findings – Business customers of an international original equipment manufacturer (OEM) are segmented in the application. In this regard, 317 business customers of the OEM are segmented as “best,” “valuable,” “average,” “potential valuable” and “potential invaluable” according to the cluster ranks obtained in this study. The results of the application reveal that the proposed approach can effectively be used in practice for business customer segmentation. Research limitations/implications – The success of the proposed approach relies on the availability and quality of customers’ data. Therefore, design of an extensive customer database management system is the foundation for any successful customer relationship management (CRM) solution offered by the proposed approach. Such a database management system may entail a noteworthy level of investment. Practical implications – The results of the application reveal that the proposed approach can effectively be used in practice for business customer segmentation. By making customer segmentation decisions, the proposed approach can provides firms a basis for the development of effective loyalty programs and design of customized strategies for their customers. Social implications – The proposed segmentation approach may contribute firms to gaining sustainable competitive advantage in the market by increasing the effectiveness of CRM strategies. Originality/value – This study proposes an integrated approach for business customer segmentation. The proposed approach differentiates itself from its counterparts by combining MCDM and clustering in business customer segmentation. In addition, it extends the traditional RFM model by including five novel segmentation variables for business markets.
AbstractList Purpose - The purpose of this paper is to develop a systematic approach for business customer segmentation. Design/methodology/approach - This study proposes an approach for business customer segmentation that integrates clustering and multi-criteria decision making (MCDM). First, proper segmentation variables are identified and then customers are grouped by using hierarchical and partitional clustering algorithms. The approach extended the recency-frequency-monetary (RFM) model by proposing five novel segmentation variables for business markets. To confirm the viability of the proposed approach, a real-world application is presented. Three agglomerative hierarchical clustering algorithms namely "Ward's method," "single linkage" and "complete linkage," and a partitional clustering algorithm, "k-means," are used in segmentation. In the implementation, fuzzy analytic hierarchy process is employed to determine the importance of the segments. Findings - Business customers of an international original equipment manufacturer (OEM) are segmented in the application. In this regard, 317 business customers of the OEM are segmented as "best," "valuable," "average," "potential valuable" and "potential invaluable" according to the cluster ranks obtained in this study. The results of the application reveal that the proposed approach can effectively be used in practice for business customer segmentation. Research limitations/implications - The success of the proposed approach relies on the availability and quality of customers' data. Therefore, design of an extensive customer database management system is the foundation for any successful customer relationship management (CRM) solution offered by the proposed approach. Such a database management system may entail a noteworthy level of investment. Practical implications - The results of the application reveal that the proposed approach can effectively be used in practice for business customer segmentation. By making customer segmentation decisions, the proposed approach can provides firms a basis for the development of effective loyalty programs and design of customized strategies for their customers. Social implications - The proposed segmentation approach may contribute firms to gaining sustainable competitive advantage in the market by increasing the effectiveness of CRM strategies. Originality/value - This study proposes an integrated approach for business customer segmentation. The proposed approach differentiates itself from its counterparts by combining MCDM and clustering in business customer segmentation. In addition, it extends the traditional RFM model by including five novel segmentation variables for business markets.
Purpose – The purpose of this paper is to develop a systematic approach for business customer segmentation. Design/methodology/approach – This study proposes an approach for business customer segmentation that integrates clustering and multi-criteria decision making (MCDM). First, proper segmentation variables are identified and then customers are grouped by using hierarchical and partitional clustering algorithms. The approach extended the recency-frequency-monetary (RFM) model by proposing five novel segmentation variables for business markets. To confirm the viability of the proposed approach, a real-world application is presented. Three agglomerative hierarchical clustering algorithms namely “Ward’s method,” “single linkage” and “complete linkage,” and a partitional clustering algorithm, “k-means,” are used in segmentation. In the implementation, fuzzy analytic hierarchy process is employed to determine the importance of the segments. Findings – Business customers of an international original equipment manufacturer (OEM) are segmented in the application. In this regard, 317 business customers of the OEM are segmented as “best,” “valuable,” “average,” “potential valuable” and “potential invaluable” according to the cluster ranks obtained in this study. The results of the application reveal that the proposed approach can effectively be used in practice for business customer segmentation. Research limitations/implications – The success of the proposed approach relies on the availability and quality of customers’ data. Therefore, design of an extensive customer database management system is the foundation for any successful customer relationship management (CRM) solution offered by the proposed approach. Such a database management system may entail a noteworthy level of investment. Practical implications – The results of the application reveal that the proposed approach can effectively be used in practice for business customer segmentation. By making customer segmentation decisions, the proposed approach can provides firms a basis for the development of effective loyalty programs and design of customized strategies for their customers. Social implications – The proposed segmentation approach may contribute firms to gaining sustainable competitive advantage in the market by increasing the effectiveness of CRM strategies. Originality/value – This study proposes an integrated approach for business customer segmentation. The proposed approach differentiates itself from its counterparts by combining MCDM and clustering in business customer segmentation. In addition, it extends the traditional RFM model by including five novel segmentation variables for business markets.
Author Güçdemir, Hülya
Selim, Hasan
Author_xml – sequence: 1
  givenname: Hülya
  surname: Güçdemir
  fullname: Güçdemir, Hülya
  organization: Department of Industrial Engineering, Celal Bayar University, Manisa, Turkey
– sequence: 2
  givenname: Hasan
  surname: Selim
  fullname: Selim, Hasan
  organization: Department of Industrial Engineering, Dokuz Eylul University, Izmir, Turkey
BookMark eNp9kc1u3SAQRlGVSr1J8wDdWcqmG5oBDJhllf5dKVEWaXeREMbjKxIbUrAXffti3W4SVVmhYc43oDOn5CSmiIR8YPCJMegu9zdf7igwyoFJCsD1G7JjWnZU6k6ckB1wJaiUWr8jp6U8QEUUVztyv48LHrJbQjw08zotgfocFszBNQP6UEKKzewet7aLQ-OntWzdWo4pN_1aQsRSGl-v04y5KXiYMS51YIrvydvRTQXP_51n5Ne3rz-vftDr2-_7q8_X1ItWL9R1vBsRvQMY2o5xw3tk7aCk7qXrpRlgbJUwRhnTStMqJnrNWseNdsy50Ykz8vE49ymn3yuWxc6heJwmFzGtxTINRkvFQVT04gX6kNYc6-8sByMEN0qoSrEj5XMqJeNon3KYXf5jGdjNt918W2B282033zWjX2R8OGpYsgvTq0k4JrEKdNPw38eeLVf8BZTLlbY
CitedBy_id crossref_primary_10_3390_app13010342
crossref_primary_10_1007_s42979_024_03203_7
crossref_primary_10_1016_j_jretconser_2020_102289
crossref_primary_10_1108_JBIM_06_2022_0257
crossref_primary_10_1108_K_05_2017_0164
crossref_primary_10_1108_IJOA_12_2018_1602
crossref_primary_10_3390_app14010078
crossref_primary_10_3390_math12213427
crossref_primary_10_1007_s10479_023_05562_5
crossref_primary_10_1088_1742_6596_1366_1_012108
crossref_primary_10_1088_1742_6596_1869_1_012085
crossref_primary_10_1108_IJPPM_12_2021_0715
crossref_primary_10_1111_itor_12956
crossref_primary_10_1108_IMDS_10_2015_0410
crossref_primary_10_1007_s40430_019_1848_y
crossref_primary_10_3233_JIFS_189084
crossref_primary_10_1080_21639159_2022_2080094
crossref_primary_10_1007_s40092_018_0285_3
crossref_primary_10_1016_j_ijedudev_2025_103224
crossref_primary_10_1007_s10115_021_01574_4
crossref_primary_10_3390_su11216013
crossref_primary_10_1007_s00170_017_0258_5
crossref_primary_10_1016_j_jii_2020_100177
crossref_primary_10_1088_1742_6596_1248_1_012016
crossref_primary_10_1007_s42488_023_00085_x
crossref_primary_10_1016_j_asoc_2020_106366
crossref_primary_10_1108_IMDS_04_2016_0141
crossref_primary_10_3390_su16052046
crossref_primary_10_1016_j_ijinfomgt_2023_102641
crossref_primary_10_1016_j_jmsy_2017_02_004
crossref_primary_10_1108_JDAL_10_2024_0020
crossref_primary_10_1007_s12597_020_00489_y
crossref_primary_10_1057_s41270_023_00235_5
crossref_primary_10_3390_systems12040125
crossref_primary_10_1016_j_jclepro_2018_05_067
crossref_primary_10_3390_computers14060208
crossref_primary_10_1002_asi_24448
crossref_primary_10_1108_IJQRM_01_2016_0010
crossref_primary_10_3390_systems13050363
crossref_primary_10_1108_JIABR_04_2023_0134
crossref_primary_10_1088_1757_899X_598_1_012116
crossref_primary_10_3390_math9161836
crossref_primary_10_1016_j_indmarman_2021_08_011
crossref_primary_10_1016_j_eswa_2023_122310
crossref_primary_10_1108_SRJ_05_2020_0203
crossref_primary_10_1155_2022_7479110
crossref_primary_10_1016_j_heliyon_2024_e31323
Cites_doi 10.1108/00251741011043920
10.1016/j.eswa.2008.04.003
10.1016/j.im.2004.01.008
10.1016/S0925-5273(03)00099-9
10.1016/j.eswa.2010.12.041
10.1016/S0166-3615(01)00147-6
10.1016/0165-0114(85)90090-9
10.1016/j.asoc.2008.09.003
10.1080/01621459.1963.10500845
10.1016/0377-2217(90)90056-H
10.1016/j.eswa.2009.12.070
10.1016/S0165-0114(83)80082-7
10.1023/B:FODM.0000013071.63614.3d
10.1016/j.eswa.2008.05.029
10.1016/j.elerap.2010.11.002
10.4156/ijact.vol5.issue1.16
10.1016/j.eswa.2011.08.045
10.1016/S0019-9958(65)90241-X
10.1177/002224378302000204
10.1509/jmkg.64.4.17.18077
10.1108/09576050310503367
10.1016/j.jretconser.2008.11.001
10.1016/j.eswa.2007.01.046
10.1177/002224298504900202
10.4236/jssm.2011.43034
10.1016/S0165-0114(99)00155-4
10.1016/j.rser.2003.12.007
10.1016/j.ijpe.2012.03.036
10.1007/s10845-005-6635-1
10.1016/j.tra.2007.08.003
10.1080/00207540600787200
10.1142/9789814343138_0001
10.1016/j.eswa.2013.07.053
10.1016/j.eswa.2008.06.061
10.1016/j.eswa.2007.05.043
10.1016/j.ejor.2007.05.001
10.1016/j.eswa.2005.09.004
10.1243/09544062JMES508
10.1016/S0165-0114(02)00383-4
10.1016/j.omega.2006.05.003
ContentType Journal Article
Copyright Emerald Group Publishing Limited
Emerald Group Publishing Limited 2015
Copyright_xml – notice: Emerald Group Publishing Limited
– notice: Emerald Group Publishing Limited 2015
DBID AAYXX
CITATION
7SC
7WY
7WZ
7XB
8AO
8FD
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
F28
FR3
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K6~
K7-
L.-
L.0
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1108/IMDS-01-2015-0027
DatabaseName CrossRef
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep (ProQuest)
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Technology Research Database

ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Business
EISSN 1758-5783
EndPage 1040
ExternalDocumentID 10_1108_IMDS_01_2015_0027
10.1108/IMDS-01-2015-0027
GroupedDBID 0R
1WG
29I
3FY
3V.
4.4
5GY
5VS
70U
7WY
8AO
8FE
8FG
8R4
8R5
9E0
9F-
AACOY
AADTA
AADXL
AAGBP
AALRV
AAMCF
AAUDR
ABFLS
ABIJV
ABPPZ
ABSDC
ACGFS
ACIWK
ACMTK
ADOMW
AEBZA
AEDOK
AENEX
AEUCW
AFKRA
AFZLO
AJEBP
ALMA_UNASSIGNED_HOLDINGS
APPLU
ARAPS
ASMFL
ASPJK
ATGMP
AUCOK
AVELQ
AZQEC
BENPR
BEZIV
BGLVJ
BLEHN
BPHCQ
BUONS
CAG
CS3
DU5
DWQXO
EBS
ECCUG
EJD
FNNZZ
GEA
GEB
GEC
GEI
GMM
GMN
GMX
GNUQQ
GQ.
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
H13
HCIFZ
HZ
IAO
IEA
IGG
IJT
IOF
IPNFZ
J1Y
JI-
JL0
K6
K6V
K7-
KBGRL
L7B
LXL
LXN
M0C
M0N
M2O
MS
N95
O9-
P2P
P62
PADUT
PQBIZ
PQEST
PQQKQ
PQUKI
PRINS
PROAC
Q2X
Q3A
RIG
TDQ
TEM
TET
TGG
TMD
TMF
TMK
TMT
TN5
V1G
VQA
WU
X
Z11
Z12
Z21
ZYZAG
-~X
.DC
.WU
0R~
1XV
AAKOT
AAPSD
AAVEV
AAXBI
AAYXX
ABCQX
ABEAN
ABJNI
ABXQL
ABYQI
ACBMB
ACTSA
ACZKX
ADFRT
ADQHX
ADWNT
ADYJY
AEMMR
AETHF
AFFHD
AFNZV
AGHQT
AGTVX
AHMHQ
AIAFM
AILOG
AJFKA
AODMV
ASJQZ
BTXLY
CCPQU
CITATION
EOXHF
HZ~
K6~
M42
MS~
PHGZM
PHGZT
PQGLB
SCAQC
SDURG
7SC
7XB
8FD
AFNTC
F28
FR3
ITC
JQ2
L.-
L.0
L7M
L~C
L~D
MBDVC
PKEHL
PUEGO
Q9U
ID FETCH-LOGICAL-c347t-a828feeca00d481292be14d657b5ab59d0f463996994594613b714a297a1aafa3
IEDL.DBID TMT
ISICitedReferencesCount 54
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000359055200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-5577
IngestDate Wed Oct 01 09:56:24 EDT 2025
Sat Aug 23 14:26:40 EDT 2025
Sat Nov 29 07:41:21 EST 2025
Tue Nov 18 21:08:29 EST 2025
Tue Nov 23 15:44:13 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Business customer segmentation
Fuzzy AHP
Multi-criteria decision making
Data clustering
Language English
License https://www.emerald.com/insight/site-policies
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-a828feeca00d481292be14d657b5ab59d0f463996994594613b714a297a1aafa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2093329636
PQPubID 47599
PageCount 19
ParticipantIDs crossref_primary_10_1108_IMDS_01_2015_0027
proquest_miscellaneous_1709756203
proquest_journals_2093329636
emerald_primary_10_1108_IMDS-01-2015-0027
crossref_citationtrail_10_1108_IMDS_01_2015_0027
PublicationCentury 2000
PublicationDate 2015-07-13
PublicationDateYYYYMMDD 2015-07-13
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-13
  day: 13
PublicationDecade 2010
PublicationPlace Wembley
PublicationPlace_xml – name: Wembley
PublicationTitle Industrial management + data systems
PublicationYear 2015
Publisher Emerald Group Publishing Limited
Publisher_xml – name: Emerald Group Publishing Limited
References key2020122301292690100_b37
key2020122301292690100_b38
key2020122301292690100_b39
key2020122301292690100_b201
key2020122301292690100_b30
key2020122301292690100_b31
key2020122301292690100_b32
key2020122301292690100_b33
key2020122301292690100_b34
key2020122301292690100_b35
key2020122301292690100_b36
key2020122301292690100_b9
key2020122301292690100_b8
key2020122301292690100_b5
key2020122301292690100_b4
key2020122301292690100_b7
key2020122301292690100_b6
key2020122301292690100_b48
key2020122301292690100_b49
key2020122301292690100_b40
key2020122301292690100_b41
key2020122301292690100_b42
key2020122301292690100_b43
key2020122301292690100_b44
key2020122301292690100_b46
key2020122301292690100_b47
key2020122301292690100_b15
key2020122301292690100_b16
key2020122301292690100_b17
key2020122301292690100_b18
key2020122301292690100_b19
key2020122301292690100_b10
key2020122301292690100_b11
key2020122301292690100_b12
key2020122301292690100_b13
key2020122301292690100_b14
key2020122301292690100_b50
key2020122301292690100_b26
key2020122301292690100_b27
key2020122301292690100_b3
key2020122301292690100_b28
key2020122301292690100_b2
key2020122301292690100_b29
key2020122301292690100_b20
key2020122301292690100_b21
key2020122301292690100_b22
key2020122301292690100_b23
key2020122301292690100_b24
key2020122301292690100_b25
key2020122301292690100_frd1
References_xml – ident: key2020122301292690100_b41
  doi: 10.1108/00251741011043920
– ident: key2020122301292690100_b8
  doi: 10.1016/j.eswa.2008.04.003
– ident: key2020122301292690100_b31
  doi: 10.1016/j.im.2004.01.008
– ident: key2020122301292690100_b25
  doi: 10.1016/S0925-5273(03)00099-9
– ident: key2020122301292690100_b29
  doi: 10.1016/j.eswa.2010.12.041
– ident: key2020122301292690100_b47
– ident: key2020122301292690100_b28
  doi: 10.1016/S0166-3615(01)00147-6
– ident: key2020122301292690100_b4
  doi: 10.1016/0165-0114(85)90090-9
– ident: key2020122301292690100_b19
  doi: 10.1016/j.asoc.2008.09.003
– ident: key2020122301292690100_b46
  doi: 10.1080/01621459.1963.10500845
– ident: key2020122301292690100_frd1
  doi: 10.1016/0377-2217(90)90056-H
– ident: key2020122301292690100_b3
– ident: key2020122301292690100_b22
  doi: 10.1016/j.eswa.2009.12.070
– ident: key2020122301292690100_b7
– ident: key2020122301292690100_b27
– ident: key2020122301292690100_b33
– ident: key2020122301292690100_b44
  doi: 10.1016/S0165-0114(83)80082-7
– ident: key2020122301292690100_b16
  doi: 10.1023/B:FODM.0000013071.63614.3d
– ident: key2020122301292690100_b9
  doi: 10.1016/j.eswa.2008.05.029
– ident: key2020122301292690100_b49
  doi: 10.1016/j.elerap.2010.11.002
– ident: key2020122301292690100_b11
  doi: 10.4156/ijact.vol5.issue1.16
– ident: key2020122301292690100_b20
  doi: 10.1016/j.eswa.2011.08.045
– ident: key2020122301292690100_b50
  doi: 10.1016/S0019-9958(65)90241-X
– ident: key2020122301292690100_b37
  doi: 10.1177/002224378302000204
– ident: key2020122301292690100_b39
  doi: 10.1509/jmkg.64.4.17.18077
– ident: key2020122301292690100_b24
  doi: 10.1108/09576050310503367
– ident: key2020122301292690100_b32
– ident: key2020122301292690100_b18
  doi: 10.1016/j.jretconser.2008.11.001
– ident: key2020122301292690100_b15
  doi: 10.1016/j.eswa.2007.01.046
– ident: key2020122301292690100_b12
– ident: key2020122301292690100_b13
  doi: 10.1177/002224298504900202
– ident: key2020122301292690100_b21
  doi: 10.4236/jssm.2011.43034
– ident: key2020122301292690100_b10
  doi: 10.1016/S0165-0114(99)00155-4
– ident: key2020122301292690100_b36
  doi: 10.1016/j.rser.2003.12.007
– ident: key2020122301292690100_b42
  doi: 10.1016/j.ijpe.2012.03.036
– ident: key2020122301292690100_b2
  doi: 10.1007/s10845-005-6635-1
– ident: key2020122301292690100_b43
  doi: 10.1016/j.tra.2007.08.003
– ident: key2020122301292690100_b6
  doi: 10.1080/00207540600787200
– ident: key2020122301292690100_b14
  doi: 10.1142/9789814343138_0001
– ident: key2020122301292690100_b48
  doi: 10.1016/j.eswa.2013.07.053
– ident: key2020122301292690100_b201
  doi: 10.1016/j.eswa.2008.06.061
– ident: key2020122301292690100_b5
  doi: 10.1016/j.eswa.2007.05.043
– ident: key2020122301292690100_b17
– ident: key2020122301292690100_b40
– ident: key2020122301292690100_b30
  doi: 10.1016/j.ejor.2007.05.001
– ident: key2020122301292690100_b26
  doi: 10.1016/j.eswa.2005.09.004
– ident: key2020122301292690100_b35
  doi: 10.1243/09544062JMES508
– ident: key2020122301292690100_b34
  doi: 10.1016/S0165-0114(02)00383-4
– ident: key2020122301292690100_b23
  doi: 10.1016/j.omega.2006.05.003
– ident: key2020122301292690100_b38
SSID ssj0002626
Score 2.3676913
Snippet Purpose – The purpose of this paper is to develop a systematic approach for business customer segmentation. Design/methodology/approach – This study proposes...
Purpose – The purpose of this paper is to develop a systematic approach for business customer segmentation. Design/methodology/approach – This study proposes...
Purpose - The purpose of this paper is to develop a systematic approach for business customer segmentation. Design/methodology/approach - This study proposes...
SourceID proquest
crossref
emerald
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1022
SubjectTerms Algorithms
Analytic hierarchy process
Behavior
Brand loyalty
Business
Business competition
Business machines
Cluster analysis
Clustering
Competition
Competitive advantage
Customer relationship management
Customer satisfaction
Customer services
Customers
Data base management systems
Data management systems
Decision making
Design engineering
Genetic algorithms
Information & knowledge management
Information systems
Loyalty programs
Manufacturers
Market segmentation
Markets
Mathematical models
Multiple criteria decision making
Multiple criterion
OEM
Researchers
Segmentation
Strategy
Studies
Variables
Viability
SummonAdditionalLinks – databaseName: ABI/INFORM Collection
  dbid: 7WY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD507Rh7WS9bWda0qLCXFQSyLVnRUyltQwNtKXRbMxgIWZJLIXGyONnv75Ejp3SUvuzJ2JZ84Ts6Fx3pfABfc5eX1nFPZckM5d4zqrjoURQenllbpKrZt_bzUl5f94ZDdRMn3Oq4rLLViY2idhMb5sgxSMfQO0VxyY-nf2hgjQrZ1Uih8QY20FCLwGAg736tNHGaN3RreMyoEFLGrGZgvhlcnd2GSBrtn6AhNntml_7ZnPukoBur09_83-_dgg_R3yQnSwHZhjVf7cC7drn7Dmy2tA4kjvKP8HsQS0igVSPNgkOKqiXUdDbERUoeMm5YrIipHLGjRai2EE7RAyaR1rImFi9P8A9J7e_HcYtT9Ql-9M-_n17QSMJAbcblnBoMyUrvrWHMcfQGVFr4hLtcyEKYQijHSh68nFwhxoqjd1DIhJtUSZMYU5psF9arSeU_A0ltVorSoAXEPom3SniPDkJZGGeLnss6wFoItI0VygNRxkg3kQrr6YCaZokOqOmAWgeOVl2my_IcrzX-FnF9se0zcehAt4VVx1Fd6ydMO3C4uo3jMSRZTOUni1onkimJTiXLvrz-iD14v3ybpEnWhfX5bOH34a39O3-oZweNID8CQKn5GQ
  priority: 102
  providerName: ProQuest
Title Integrating multi-criteria decision making and clustering for business customer segmentation
URI https://www.emerald.com/insight/content/doi/10.1108/IMDS-01-2015-0027/full/html
https://www.proquest.com/docview/2093329636
https://www.proquest.com/docview/1709756203
Volume 115
WOSCitedRecordID wos000359055200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVMCB
  databaseName: Emerald Management 120
  customDbUrl:
  eissn: 1758-5783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002626
  issn: 0263-5577
  databaseCode: TMT
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://www.emerald.com/insight
  providerName: Emerald
– providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1758-5783
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0002626
  issn: 0263-5577
  databaseCode: 7WY
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global (OCUL)
  customDbUrl:
  eissn: 1758-5783
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0002626
  issn: 0263-5577
  databaseCode: M0C
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1758-5783
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0002626
  issn: 0263-5577
  databaseCode: P5Z
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1758-5783
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0002626
  issn: 0263-5577
  databaseCode: K7-
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1758-5783
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0002626
  issn: 0263-5577
  databaseCode: BENPR
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1758-5783
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0002626
  issn: 0263-5577
  databaseCode: M2O
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3fa9Qw-GNOEV-cTsXTeUTwRSFc2iTN5VHnhkPvduipUwYlTVI3uOuN9c6_3y-59GQyBMGXlLZJmibfz-T7AfCicEVtnfBU1cxQ4T2jWsghReAR3Noq19Fv7csHNR4PT070ZAuOO1-YaFa53o6JdPq8aYOSOgiG20iFNwEHQvaao9HbT0EbRh4madCvBmHLenC2nM8iTWYBUaej6YYy50VMv4ZXTqVUKp1yXtvXFT71h7Pub4IdudDhzn8f_z24mwRS8noNQfdhyze7cLuzh9-FnS7vA0lk4AGcHqUYE8j2SLRIpEh7QtBnQ1zK2UPmMc0VMY0jdrYK4RjCLYrIJOW9bInFxwv8C9L6H_PkA9U8hM-HB9P9dzRlaaCWC7WkBnW22ntrGHMCxQWdVz4TrpCqkqaS2rFaBDGo0AgEWqD4UKlMmFwrkxlTG_4ItptF4x8DyS2vZW2QRWKbzFstvUcJoq6Ms9XQ8R6wbk1Km0KYh0waszKqMmxYhiktWVaGKS3DlPbg1abJxTp-x98qv0xrd23dK2vVg70OFMqE9i32pDnPkaYVPXi-eY0IG05hTOMXq7bMFNMKpU7Gn_zL2J7CnfW3Fc34HmwvL1f-GdyyP5fn7WUfbqiv3_pw883BePIR794riuWI7YcyP8ZyIr_3Izb8AnyUCaQ
linkProvider Emerald
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Ra9UwFD7MKerLplPx6tQI-qAQSJukaR5kiHPscu8uglP2IGRpkoqw9c71XsU_td-4k970jonsbQ8-lbZJ2iZfzpfTJOcDeFX4onZeBKpqZqkIgVEtZEkRPII7V-W627f2dawmk_LgQH9agbN-L0xcVtnbxM5Q-6mL_8jRSUfXO0e4FFsnP2lUjYqzq72ExgIWo_DnN7ps7bvhNrbv6zzf-bj_YZcmVQHquFAzatHHqENwljEvkN50XoVM-EKqStpKas9qEWm70PjSWiDdVSoTNtfKZtbWlmO5N-Cm4GURe9RI0aXlz4tO3g2PnEqpVJpFjUo7w73tz9FzR76VNPqCl3jwr83AF4TQsdzO-v9WP_dgLY2nyftFB7gPK6HZgNv9cv4NWO9lK0iyYg_g2zCFyEDWJt2CSoqmM8astsQnySFy3Kl0Edt44o7mMZpEPMURPkmynS1xeHmKNUra8P04beFqHsKXa_ncR7DaTJvwGEjueC1riwyPebLgtAwBB0B1Zb2rSs8HwPomNy5FYI9CIEem88RYaSJKDMtMRImJKBnA22WWk0X4kasSv0k4-mfaS_AbwGYPI5OsVmsuMDSAl8vbaG_iJJJtwnTemkwxrXDQzPiTq4t4AXd29_fGZjycjJ7C3cWTFc34JqzOTufhGdxyv2Y_2tPnXScicHjdqDwHT99UWA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB9qleJLq1Xx-qERfFEIl90km8uj2B4etkfBU_ogLNl8lEK7V7p3_v2d5LInlSIIPi2bTbK7yeQ3M8l8ALyvXBWsE56qwAwV3jOqhRxRJB7BrW1KnfzWfpyo6XR0fq7PNmDa-8Iks8rVdkzC6cu2i0rqMBpuIwqvAw7E7DWT06NvURtGHiZp1K-Gcct6eOPCI3gsEWejMjY7na2RuaxS-jW8ciqlUvmU88G-7vGpP5x1fwN24kLjnf_9_c9gO8uj5NOKgJ7Dhm93Yas3h9-FnT7tA8ko8AJ-TnKICeR6JBkkUoSeGPPZEJdT9pDrlOWKmNYRe7WM0RjiLUrIJKe97IjF4jn-BOn8xXV2gWpfwvfx8ezzF5qTNFDLhVpQgypb8N4axpxAaUGXjS-Eq6RqpGmkdiyIKAVVGmlAC5QeGlUIU2plCmOC4a9gs523_jWQ0vIgg0EOiW0Kb7X0HgWI0Bhnm5HjA2D9lNQ2RzCPiTSu6qTJsFEdR7RmRR1HtI4jOoCP6yY3q_Adf6v8IU_dg3XvTdUADnpKqPOq77AnzXmJkFYN4N36Ma7XeAhjWj9fdnWhmFYodDK-9w-vewtbZ0fj-mQy_boPT1fFihb8ADYXt0t_CE_sr8Vld_smEfwdgtMEIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+multi-criteria+decision+making+and+clustering+for+business+customer+segmentation&rft.jtitle=Industrial+management+%2B+data+systems&rft.au=G%C3%BC%C3%A7demir%2C+H%C3%BClya&rft.au=Selim%2C+Hasan&rft.date=2015-07-13&rft.issn=0263-5577&rft.volume=115&rft.issue=6&rft.spage=1022&rft.epage=1040&rft_id=info:doi/10.1108%2FIMDS-01-2015-0027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1108_IMDS_01_2015_0027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-5577&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-5577&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-5577&client=summon