Task-Oriented Network for Image Dehazing

Haze interferes the transmission of scene radiation and significantly degrades color and details of outdoor images. Existing deep neural networks-based image dehazing algorithms usually use some common networks. The network design does not model the image formation of haze process well, which accord...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing Vol. 29; pp. 6523 - 6534
Main Authors: Li, Runde, Pan, Jinshan, He, Min, Li, Zechao, Tang, Jinhui
Format: Journal Article
Language:English
Published: United States IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1057-7149, 1941-0042, 1941-0042
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Haze interferes the transmission of scene radiation and significantly degrades color and details of outdoor images. Existing deep neural networks-based image dehazing algorithms usually use some common networks. The network design does not model the image formation of haze process well, which accordingly leads to dehazed images containing artifacts and haze residuals in some special scenes. In this paper, we propose a task-oriented network for image dehazing, where the network design is motivated by the image formation of haze process. The task-oriented network involves a hybrid network containing an encoder and decoder network and a spatially variant recurrent neural network which is derived from the hazy process. In addition, we develop a multi-stage dehazing algorithm to further improve the accuracy by filtering haze residuals in a step-by-step fashion. To constrain the proposed network, we develop a dual composition loss, content-based pixel-wise loss and total variation constraint. We train the proposed network in an end-to-end manner and analyze its effect on image dehazing. Experimental results demonstrate that the proposed algorithm achieves favorable performance against state-of-the-art dehazing methods.
AbstractList Haze interferes the transmission of scene radiation and significantly degrades color and details of outdoor images. Existing deep neural networks-based image dehazing algorithms usually use some common networks. The network design does not model the image formation of haze process well, which accordingly leads to dehazed images containing artifacts and haze residuals in some special scenes. In this paper, we propose a task-oriented network for image dehazing, where the network design is motivated by the image formation of haze process. The task-oriented network involves a hybrid network containing an encoder and decoder network and a spatially variant recurrent neural network which is derived from the hazy process. In addition, we develop a multi-stage dehazing algorithm to further improve the accuracy by filtering haze residuals in a step-bystep fashion. To constrain the proposed network, we develop a dual composition loss, content-based pixel-wise loss and total variation constraint. We train the proposed network in an end-to-end manner and analyze its effect on image dehazing. Experimental results demonstrate that the proposed algorithm achieves favorable performance against state-of-the-art dehazing methods.Haze interferes the transmission of scene radiation and significantly degrades color and details of outdoor images. Existing deep neural networks-based image dehazing algorithms usually use some common networks. The network design does not model the image formation of haze process well, which accordingly leads to dehazed images containing artifacts and haze residuals in some special scenes. In this paper, we propose a task-oriented network for image dehazing, where the network design is motivated by the image formation of haze process. The task-oriented network involves a hybrid network containing an encoder and decoder network and a spatially variant recurrent neural network which is derived from the hazy process. In addition, we develop a multi-stage dehazing algorithm to further improve the accuracy by filtering haze residuals in a step-bystep fashion. To constrain the proposed network, we develop a dual composition loss, content-based pixel-wise loss and total variation constraint. We train the proposed network in an end-to-end manner and analyze its effect on image dehazing. Experimental results demonstrate that the proposed algorithm achieves favorable performance against state-of-the-art dehazing methods.
Haze interferes the transmission of scene radiation and significantly degrades color and details of outdoor images. Existing deep neural networks-based image dehazing algorithms usually use some common networks. The network design does not model the image formation of haze process well, which accordingly leads to dehazed images containing artifacts and haze residuals in some special scenes. In this paper, we propose a task-oriented network for image dehazing, where the network design is motivated by the image formation of haze process. The task-oriented network involves a hybrid network containing an encoder and decoder network and a spatially variant recurrent neural network which is derived from the hazy process. In addition, we develop a multi-stage dehazing algorithm to further improve the accuracy by filtering haze residuals in a step-by-step fashion. To constrain the proposed network, we develop a dual composition loss, content-based pixel-wise loss and total variation constraint. We train the proposed network in an end-to-end manner and analyze its effect on image dehazing. Experimental results demonstrate that the proposed algorithm achieves favorable performance against state-of-the-art dehazing methods.
Haze interferes the transmission of scene radiation and significantly degrades color and details of outdoor images. Existing deep neural networks-based image dehazing algorithms usually use some common networks. The network design does not model the image formation of haze process well, which accordingly leads to dehazed images containing artifacts and haze residuals in some special scenes. In this paper, we propose a task-oriented network for image dehazing, where the network design is motivated by the image formation of haze process. The task-oriented network involves a hybrid network containing an encoder and decoder network and a spatially variant recurrent neural network which is derived from the hazy process. In addition, we develop a multi-stage dehazing algorithm to further improve the accuracy by filtering haze residuals in a step-bystep fashion. To constrain the proposed network, we develop a dual composition loss, content-based pixel-wise loss and total variation constraint. We train the proposed network in an end-to-end manner and analyze its effect on image dehazing. Experimental results demonstrate that the proposed algorithm achieves favorable performance against state-of-the-art dehazing methods.
Author Pan, Jinshan
Li, Runde
Tang, Jinhui
Li, Zechao
He, Min
Author_xml – sequence: 1
  givenname: Runde
  orcidid: 0000-0002-3204-6359
  surname: Li
  fullname: Li, Runde
  email: rundeli@njust.edu.cn
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 2
  givenname: Jinshan
  surname: Pan
  fullname: Pan, Jinshan
  email: jspan@njust.edu.cn
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 3
  givenname: Min
  orcidid: 0000-0002-7785-9409
  surname: He
  fullname: He, Min
  email: paper_review@126.com
  organization: College of Command and Control Engineering, Army Engineering University of PLA, Nanjing, China
– sequence: 4
  givenname: Zechao
  orcidid: 0000-0002-5341-5985
  surname: Li
  fullname: Li, Zechao
  email: zechao.li@njust.edu.cn
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 5
  givenname: Jinhui
  orcidid: 0000-0001-9008-222X
  surname: Tang
  fullname: Tang, Jinhui
  email: jinhuitang@njust.edu.cn
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32386154$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1PwzAQQC1UBC2wIyGhSixdUs7OObZHVL4qIWAoc-QkZwi0CdipEPx6XLUwdGDyDe_dWW_Aek3bEGPHHMacgzmfTR_HAgSMhTFcgtlhfW6QJwAoenEGqRLF0eyzQQivABwlz_bYfipSnXGJfTaa2fCWPPiamo6q4T11n61_G7rWD6cL-0zDS3qx33XzfMh2nZ0HOtq8B-zp-mo2uU3uHm6mk4u7pExRdYnlqCpeOq1Mxktp08KVpshAOGU1AWqnMyWLAq3OZFlhVrlCWGfQpcoSqPSAjdZ73337saTQ5Ys6lDSf24baZcgFAkjBpcaInm2hr-3SN_F3kYodDCLySJ1uqGWxoCp_9_XC-q_8t0EEYA2Uvg3Bk_tDOOSrzHnMnK8y55vMUcm2lLLubFe3TedtPf9PPFmLNRH93TGgtUCd_gClUIaa
CODEN IIPRE4
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3050260
crossref_primary_10_1109_TIP_2020_3044208
crossref_primary_10_1007_s00371_022_02493_3
crossref_primary_10_1016_j_patcog_2021_108076
crossref_primary_10_3390_rs14081852
crossref_primary_10_1109_JOE_2021_3064093
crossref_primary_10_1016_j_image_2023_117033
crossref_primary_10_1145_3576918
crossref_primary_10_1109_LSP_2023_3304540
crossref_primary_10_3390_rs15040938
crossref_primary_10_3390_s22031199
crossref_primary_10_1007_s13042_022_01753_x
crossref_primary_10_1109_TPAMI_2024_3416731
crossref_primary_10_1007_s00521_024_09969_4
crossref_primary_10_1080_01969722_2023_2176624
crossref_primary_10_1049_ipr2_12506
crossref_primary_10_3390_s23167026
crossref_primary_10_1016_j_micpro_2021_104079
crossref_primary_10_1109_ACCESS_2022_3188860
crossref_primary_10_1109_TIP_2023_3286263
crossref_primary_10_1109_TIP_2021_3116790
crossref_primary_10_3390_s21082625
crossref_primary_10_3390_s21113896
crossref_primary_10_1109_TIP_2023_3333564
crossref_primary_10_3390_s23218932
crossref_primary_10_1109_TGRS_2023_3261545
crossref_primary_10_1016_j_jvcir_2022_103720
crossref_primary_10_1109_TIP_2021_3078319
crossref_primary_10_1109_ACCESS_2025_3576646
crossref_primary_10_1016_j_optlastec_2025_113542
crossref_primary_10_1016_j_sigpro_2021_108396
crossref_primary_10_1109_ACCESS_2021_3099224
crossref_primary_10_1016_j_engappai_2023_106001
crossref_primary_10_1007_s13042_023_01782_0
crossref_primary_10_3390_rs16020225
crossref_primary_10_1109_TAI_2022_3204732
Cites_doi 10.1007/978-3-030-01237-3_32
10.1007/978-3-030-01234-2_43
10.1109/TPAMI.2003.1201821
10.1109/CVPR.2014.383
10.24963/ijcai.2018/172
10.1109/ICCPHOT.2014.6831817
10.1109/CVPR.2018.00856
10.1007/978-3-319-46475-6_36
10.1109/CVPR.2018.00778
10.1109/TIP.2016.2598681
10.1145/2647868.2654889
10.1109/ICCV.2013.82
10.1145/3240508.3240694
10.1109/CVPR.2018.00324
10.1109/TPAMI.2010.168
10.1007/978-3-319-46493-0_34
10.1145/2651362
10.1109/CVPR.2018.00343
10.1109/CVPR.2017.35
10.1109/TIP.2013.2262284
10.1109/CVPR.2019.00835
10.1109/CVPR.2019.01195
10.1007/978-3-642-33715-4_54
10.1109/CVPR.2018.00337
10.1007/s11263-011-0508-1
10.1109/ICIP.2017.8296874
10.1109/TPAMI.2015.2505283
10.1109/TIP.2018.2867951
10.1109/CVPR.2018.00267
10.1007/978-3-319-46475-6_10
10.1109/ICCV.2017.511
10.1109/WACV.2019.00151
10.1109/ICIP.2010.5651263
10.1109/CVPR.2016.185
10.1007/978-3-319-46475-6_43
10.1016/j.cviu.2017.09.003
10.1109/ICCV.2017.351
10.1109/CVPRW.2018.00127
10.1109/ICCV.1999.790306
10.1109/CVPR.2017.243
10.1109/TIP.2015.2446191
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2020.2991509
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Technology Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 6534
ExternalDocumentID 32386154
10_1109_TIP_2020_2991509
9088248
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20180471
  funderid: 10.13039/501100004608
– fundername: National Natural Science Foundation of China
  grantid: 61922043; 61925204; 61872421
  funderid: 10.13039/501100001809
– fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China
  grantid: 2018AAA0102002
  funderid: 10.13039/501100012166
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
NPM
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c347t-a147d1cf87961c5a3bfc9b602f7a8e048f8675bb4a865cd46dfb2af94f37ae073
IEDL.DBID RIE
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000545079400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Sat Sep 27 20:55:17 EDT 2025
Mon Jun 30 10:23:03 EDT 2025
Wed Feb 19 02:09:39 EST 2025
Tue Nov 18 21:52:29 EST 2025
Sat Nov 29 03:21:12 EST 2025
Wed Aug 27 02:37:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-a147d1cf87961c5a3bfc9b602f7a8e048f8675bb4a865cd46dfb2af94f37ae073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7785-9409
0000-0002-3204-6359
0000-0001-9008-222X
0000-0002-5341-5985
PMID 32386154
PQID 2419494441
PQPubID 85429
PageCount 12
ParticipantIDs pubmed_primary_32386154
proquest_journals_2419494441
crossref_primary_10_1109_TIP_2020_2991509
proquest_miscellaneous_2400521584
crossref_citationtrail_10_1109_TIP_2020_2991509
ieee_primary_9088248
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
mei (ref17) 2018
ref37
ref15
ref36
ref14
ref31
ref30
ref11
ref32
ref10
ref2
ref1
ref39
ref16
ref19
ref18
he (ref8) 2011; 33
kingma (ref45) 2015
ref46
ref24
ref23
ref26
ref20
ref42
ref41
ref22
ref44
liu (ref33) 2018
ref21
ref43
yang (ref25) 2018
ref28
ref27
ref29
ref7
ref9
ref4
ref3
ref6
ref5
ref40
dosovitskiy (ref38) 2016
References_xml – ident: ref34
  doi: 10.1007/978-3-030-01237-3_32
– ident: ref27
  doi: 10.1007/978-3-030-01234-2_43
– ident: ref1
  doi: 10.1109/TPAMI.2003.1201821
– ident: ref20
  doi: 10.1109/CVPR.2014.383
– ident: ref26
  doi: 10.24963/ijcai.2018/172
– ident: ref21
  doi: 10.1109/ICCPHOT.2014.6831817
– ident: ref14
  doi: 10.1109/CVPR.2018.00856
– ident: ref7
  doi: 10.1007/978-3-319-46475-6_36
– ident: ref30
  doi: 10.1109/CVPR.2018.00778
– ident: ref12
  doi: 10.1109/TIP.2016.2598681
– ident: ref46
  doi: 10.1145/2647868.2654889
– ident: ref9
  doi: 10.1109/ICCV.2013.82
– ident: ref35
  doi: 10.1145/3240508.3240694
– ident: ref40
  doi: 10.1109/CVPR.2018.00324
– volume: 33
  start-page: 2341
  year: 2011
  ident: ref8
  article-title: Single image haze removal using dark channel prior
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.168
– ident: ref29
  doi: 10.1007/978-3-319-46493-0_34
– ident: ref23
  doi: 10.1145/2651362
– ident: ref15
  doi: 10.1109/CVPR.2018.00343
– start-page: 203
  year: 2018
  ident: ref17
  article-title: Progressive feature fusion network for realistic image Dehazing
  publication-title: Proc Asian Conf Comput Vis
– ident: ref36
  doi: 10.1109/CVPR.2017.35
– ident: ref5
  doi: 10.1109/TIP.2013.2262284
– start-page: 7485
  year: 2018
  ident: ref25
  article-title: Towards perceptual image Dehazing by physics-based disentanglement and adversarial training
  publication-title: Proc 22nd AAAI Conf Artif Intell
– ident: ref4
  doi: 10.1109/CVPR.2019.00835
– ident: ref28
  doi: 10.1109/CVPR.2019.01195
– ident: ref41
  doi: 10.1007/978-3-642-33715-4_54
– ident: ref16
  doi: 10.1109/CVPR.2018.00337
– ident: ref19
  doi: 10.1007/s11263-011-0508-1
– ident: ref44
  doi: 10.1109/ICIP.2017.8296874
– ident: ref42
  doi: 10.1109/TPAMI.2015.2505283
– ident: ref43
  doi: 10.1109/TIP.2018.2867951
– start-page: 658
  year: 2016
  ident: ref38
  article-title: Generating images with perceptual similarity metrics based on deep networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref32
  doi: 10.1109/CVPR.2018.00267
– ident: ref3
  doi: 10.1007/978-3-319-46475-6_10
– ident: ref24
  doi: 10.1109/ICCV.2017.511
– year: 2015
  ident: ref45
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Represent
– ident: ref18
  doi: 10.1109/WACV.2019.00151
– ident: ref22
  doi: 10.1109/ICIP.2010.5651263
– ident: ref6
  doi: 10.1109/CVPR.2016.185
– ident: ref39
  doi: 10.1007/978-3-319-46475-6_43
– start-page: 182
  year: 2018
  ident: ref33
  article-title: Multiple connected residual network for image enhancement on smartphones
  publication-title: Proc Eur Conf Comput Vis Workshops
– ident: ref11
  doi: 10.1016/j.cviu.2017.09.003
– ident: ref31
  doi: 10.1109/ICCV.2017.351
– ident: ref13
  doi: 10.1109/CVPRW.2018.00127
– ident: ref2
  doi: 10.1109/ICCV.1999.790306
– ident: ref37
  doi: 10.1109/CVPR.2017.243
– ident: ref10
  doi: 10.1109/TIP.2015.2446191
SSID ssj0014516
Score 2.5083075
Snippet Haze interferes the transmission of scene radiation and significantly degrades color and details of outdoor images. Existing deep neural networks-based image...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6523
SubjectTerms Algorithms
Artificial neural networks
Atmospheric modeling
Coders
Convolutional neural networks
Distortion
Haze
Image color analysis
image dehazing
Image restoration
Image transmission
multi-stage dehazing algorithm
Neural networks
Recurrent neural networks
Task analysis
Task-oriented network
Title Task-Oriented Network for Image Dehazing
URI https://ieeexplore.ieee.org/document/9088248
https://www.ncbi.nlm.nih.gov/pubmed/32386154
https://www.proquest.com/docview/2419494441
https://www.proquest.com/docview/2400521584
Volume 29
WOSCitedRecordID wos000545079400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8QwEIAHFQ968P2oj6WCBwXj9pHmcRR10cvqYYW9lSRNVNRd2Ye_30nbLQoqeCs0TcMkk3yTSWYAjkXhuHaSERMpRdD-okTLQhIrmIuZkEZrUyab4N2u6Pfl_RycNXdhrLXl4TN77h9LX34xNFO_Vdb2Z3ISKuZhnnNW3dVqPAY-4Wzp2cw44Yj9M5dkJNu923s0BJPoHKde5B_5bQkqc6r8jpflMtNZ_V8D12Clxsnwour_dZizgw1YrdEyrBV3vAHLX-IObsJJT41fyJ0PcYzAGXaro-Ah8mt4-4YTTHhln3zY6ccteOhc9y5vSJ0ygZiU8glRMeVFbJzgksUmU6l2RmoWJY4rYVFbnUALQWuqBMtMQVnhdKKcpC7lyqK6b8PCYDiwuxBqrEUhT8TMUx2NNC-M9VFsmcqyxKUBtGdSzE0dT9yntXjNS7sikjnKPfdyz2u5B3DafPFexdL4o-ymF29TrpZsAAezjsprZRvnCCGSSopgF8BR8xrVxPs-1MAOp76M3wCPEbcC2Kk6uKk7RWxBsKN7P_9zH5Z8y6p9lwNYmIym9hAWzcfkeTxq4Vjsi1Y5Fj8BY4zYPA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3dT9swEMBPfEkbDxQog7ACmcQDk3CbD8cfj9MAUQGlD0XiLbIde5sGLaItfz_nJI02iU3iLVIcxzr77N_57DuAY1E4rp1kxERKEbS_KNGykMQK5mImpNHalMkm-GAg7u_lcAlOm7sw1try8Jnt-sfSl19MzNxvlfX8mZyEimVYzShNouq2VuMz8ClnS99mxglH8F84JSPZG_WHaAomURcnXyQg-dciVGZV-TdglgvNRet9TdyEjRoow2_VCNiCJTvehlYNl2GtutNtWP8j8mAbTkZq-pvc-iDHiJzhoDoMHiLBhv1HnGLCM_vTB57-sQN3F-ej75ekTppATEr5jKiY8iI2TnDJYpOpVDsjNYsSx5WwqK9OoI2gNVWCZaagrHA6UU5Sl3JlUeE_wcp4MrZ7EGqsRSFRxMxzHY00L4z1cWyZyrLEpQH0FlLMTR1R3Ce2eMhLyyKSOco993LPa7kH8LX54qmKpvGfsm0v3qZcLdkAOouOymt1m-aIIZJKimgXwJfmNSqK936osZ3MfRm_BR4jcAWwW3VwU3eK4IJoR_ff_ucRfLgc3Vzn1_3B1Wf46FtZ7cJ0YGX2PLcHsGZeZr-mz4fliHwFtNPamw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Task-Oriented+Network+for+Image+Dehazing&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Runde%2C+Li&rft.au=Pan%2C+Jinshan&rft.au=He%2C+Min&rft.au=Li%2C+Zechao&rft.date=2020-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=29&rft.spage=6523&rft_id=info:doi/10.1109%2FTIP.2020.2991509&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon