Two New Splitting Methods for Three-Operator Monotone Inclusions in Hilbert Spaces
In this paper, we propose two new unified splitting methods for monotone inclusion problems with three operators in real Hilbert spaces. These methods are based on the combination of Douglas-Rachford method and other methods, forward-backward-forward method and reflected-forward-backward method. The...
Uloženo v:
| Vydáno v: | Set-valued and variational analysis Ročník 32; číslo 3; s. 26 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.09.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 1877-0533, 1877-0541 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we propose two new unified splitting methods for monotone inclusion problems with three operators in real Hilbert spaces. These methods are based on the combination of Douglas-Rachford method and other methods, forward-backward-forward method and reflected-forward-backward method. The weak convergence of new algorithms under standard assumptions is established. We also give some numerical examples to demonstrate the efficiency of the proposed methods. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1877-0533 1877-0541 |
| DOI: | 10.1007/s11228-024-00730-6 |