Modeling of Retinal Optical Coherence Tomography Based on Stochastic Differential Equations: Application to Denoising

In this paper a statistical modeling, based on stochastic differential equations (SDEs), is proposed for retinal Optical Coherence Tomography (OCT) images. In this method, pixel intensities of image are considered as discrete realizations of a Levy stable process. This process has independent increm...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on medical imaging Ročník 40; číslo 8; s. 2129 - 2141
Hlavní autoři: Tajmirriahi, Mahnoosh, Amini, Zahra, Hamidi, Arsham, Zam, Azhar, Rabbani, Hossein
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0278-0062, 1558-254X, 1558-254X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper a statistical modeling, based on stochastic differential equations (SDEs), is proposed for retinal Optical Coherence Tomography (OCT) images. In this method, pixel intensities of image are considered as discrete realizations of a Levy stable process. This process has independent increments and can be expressed as response of SDE to a white symmetric alpha stable (s <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\alpha }\text{s} </tex-math></inline-formula>) noise. Based on this assumption, applying appropriate differential operator makes intensities statistically independent. Mentioned white stable noise can be regenerated by applying fractional Laplacian operator to image intensities. In this way, we modeled OCT images as s <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\alpha }\text{s} </tex-math></inline-formula> distribution. We applied fractional Laplacian operator to image and fitted s <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\alpha }\text{s} </tex-math></inline-formula> to its histogram. Statistical tests were used to evaluate goodness of fit of stable distribution and its heavy tailed and stability characteristics. We used modeled s <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\alpha }\text{s} </tex-math></inline-formula> distribution as prior information in maximum a posteriori (MAP) estimator in order to reduce the speckle noise of OCT images. Such a statistically independent prior distribution simplified denoising optimization problem to a regularization algorithm with an adjustable shrinkage operator for each image. Alternating Direction Method of Multipliers (ADMM) algorithm was utilized to solve the denoising problem. We presented visual and quantitative evaluation results of the performance of this modeling and denoising methods for normal and abnormal images. Applying parameters of model in classification task as well as indicating effect of denoising in layer segmentation improvement illustrates that the proposed method describes OCT data more accurately than other models that do not remove statistical dependencies between pixel intensities.
AbstractList In this paper a statistical modeling, based on stochastic differential equations (SDEs), is proposed for retinal Optical Coherence Tomography (OCT) images. In this method, pixel intensities of image are considered as discrete realizations of a Levy stable process. This process has independent increments and can be expressed as response of SDE to a white symmetric alpha stable (s [Formula Omitted]) noise. Based on this assumption, applying appropriate differential operator makes intensities statistically independent. Mentioned white stable noise can be regenerated by applying fractional Laplacian operator to image intensities. In this way, we modeled OCT images as s [Formula Omitted] distribution. We applied fractional Laplacian operator to image and fitted s [Formula Omitted] to its histogram. Statistical tests were used to evaluate goodness of fit of stable distribution and its heavy tailed and stability characteristics. We used modeled s [Formula Omitted] distribution as prior information in maximum a posteriori (MAP) estimator in order to reduce the speckle noise of OCT images. Such a statistically independent prior distribution simplified denoising optimization problem to a regularization algorithm with an adjustable shrinkage operator for each image. Alternating Direction Method of Multipliers (ADMM) algorithm was utilized to solve the denoising problem. We presented visual and quantitative evaluation results of the performance of this modeling and denoising methods for normal and abnormal images. Applying parameters of model in classification task as well as indicating effect of denoising in layer segmentation improvement illustrates that the proposed method describes OCT data more accurately than other models that do not remove statistical dependencies between pixel intensities.
In this paper a statistical modeling, based on stochastic differential equations (SDEs), is proposed for retinal Optical Coherence Tomography (OCT) images. In this method, pixel intensities of image are considered as discrete realizations of a Levy stable process. This process has independent increments and can be expressed as response of SDE to a white symmetric alpha stable (s <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\alpha }\text{s} </tex-math></inline-formula>) noise. Based on this assumption, applying appropriate differential operator makes intensities statistically independent. Mentioned white stable noise can be regenerated by applying fractional Laplacian operator to image intensities. In this way, we modeled OCT images as s <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\alpha }\text{s} </tex-math></inline-formula> distribution. We applied fractional Laplacian operator to image and fitted s <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\alpha }\text{s} </tex-math></inline-formula> to its histogram. Statistical tests were used to evaluate goodness of fit of stable distribution and its heavy tailed and stability characteristics. We used modeled s <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\alpha }\text{s} </tex-math></inline-formula> distribution as prior information in maximum a posteriori (MAP) estimator in order to reduce the speckle noise of OCT images. Such a statistically independent prior distribution simplified denoising optimization problem to a regularization algorithm with an adjustable shrinkage operator for each image. Alternating Direction Method of Multipliers (ADMM) algorithm was utilized to solve the denoising problem. We presented visual and quantitative evaluation results of the performance of this modeling and denoising methods for normal and abnormal images. Applying parameters of model in classification task as well as indicating effect of denoising in layer segmentation improvement illustrates that the proposed method describes OCT data more accurately than other models that do not remove statistical dependencies between pixel intensities.
In this paper a statistical modeling, based on stochastic differential equations (SDEs), is proposed for retinal Optical Coherence Tomography (OCT) images. In this method, pixel intensities of image are considered as discrete realizations of a Levy stable process. This process has independent increments and can be expressed as response of SDE to a white symmetric alpha stable (s [Formula: see text]) noise. Based on this assumption, applying appropriate differential operator makes intensities statistically independent. Mentioned white stable noise can be regenerated by applying fractional Laplacian operator to image intensities. In this way, we modeled OCT images as s [Formula: see text] distribution. We applied fractional Laplacian operator to image and fitted s [Formula: see text] to its histogram. Statistical tests were used to evaluate goodness of fit of stable distribution and its heavy tailed and stability characteristics. We used modeled s [Formula: see text] distribution as prior information in maximum a posteriori (MAP) estimator in order to reduce the speckle noise of OCT images. Such a statistically independent prior distribution simplified denoising optimization problem to a regularization algorithm with an adjustable shrinkage operator for each image. Alternating Direction Method of Multipliers (ADMM) algorithm was utilized to solve the denoising problem. We presented visual and quantitative evaluation results of the performance of this modeling and denoising methods for normal and abnormal images. Applying parameters of model in classification task as well as indicating effect of denoising in layer segmentation improvement illustrates that the proposed method describes OCT data more accurately than other models that do not remove statistical dependencies between pixel intensities.In this paper a statistical modeling, based on stochastic differential equations (SDEs), is proposed for retinal Optical Coherence Tomography (OCT) images. In this method, pixel intensities of image are considered as discrete realizations of a Levy stable process. This process has independent increments and can be expressed as response of SDE to a white symmetric alpha stable (s [Formula: see text]) noise. Based on this assumption, applying appropriate differential operator makes intensities statistically independent. Mentioned white stable noise can be regenerated by applying fractional Laplacian operator to image intensities. In this way, we modeled OCT images as s [Formula: see text] distribution. We applied fractional Laplacian operator to image and fitted s [Formula: see text] to its histogram. Statistical tests were used to evaluate goodness of fit of stable distribution and its heavy tailed and stability characteristics. We used modeled s [Formula: see text] distribution as prior information in maximum a posteriori (MAP) estimator in order to reduce the speckle noise of OCT images. Such a statistically independent prior distribution simplified denoising optimization problem to a regularization algorithm with an adjustable shrinkage operator for each image. Alternating Direction Method of Multipliers (ADMM) algorithm was utilized to solve the denoising problem. We presented visual and quantitative evaluation results of the performance of this modeling and denoising methods for normal and abnormal images. Applying parameters of model in classification task as well as indicating effect of denoising in layer segmentation improvement illustrates that the proposed method describes OCT data more accurately than other models that do not remove statistical dependencies between pixel intensities.
In this paper a statistical modeling, based on stochastic differential equations (SDEs), is proposed for retinal Optical Coherence Tomography (OCT) images. In this method, pixel intensities of image are considered as discrete realizations of a Levy stable process. This process has independent increments and can be expressed as response of SDE to a white symmetric alpha stable (sαs) noise. Based on this assumption, applying appropriate differential operator makes intensities statistically independent. Mentioned white stable noise can be regenerated by applying fractional Laplacian operator to image intensities. In this way, we modeled OCT images as sαs distribution. We applied fractional Laplacian operator to image and fitted sαs to its histogram. Statistical tests were used to evaluate goodness of fit of stable distribution and its heavy tailed and stability characteristics. We used modeled sαs distribution as prior information in maximum a posteriori (MAP) estimator in order to reduce the speckle noise of OCT images. Such a statistically independent prior distribution simplified denoising optimization problem to a regularization algorithm with an adjustable shrinkage operator for each image. Alternating Direction Method of Multipliers (ADMM) algorithm was utilized to solve the denoising problem. We presented visual and quantitative evaluation results of the performance of this modeling and denoising methods for normal and abnormal images. Applying parameters of model in classification task as well as indicating effect of denoising in layer segmentation improvement illustrates that the proposed method describes OCT data more accurately than other models that do not remove statistical dependencies between pixel intensities.
Author Amini, Zahra
Tajmirriahi, Mahnoosh
Hamidi, Arsham
Zam, Azhar
Rabbani, Hossein
Author_xml – sequence: 1
  givenname: Mahnoosh
  orcidid: 0000-0002-5477-754X
  surname: Tajmirriahi
  fullname: Tajmirriahi, Mahnoosh
  email: mata.riahi@yahoo.com
  organization: Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
– sequence: 2
  givenname: Zahra
  orcidid: 0000-0001-6495-1313
  surname: Amini
  fullname: Amini, Zahra
  email: zahraamini64@yahoo.com.au
  organization: Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
– sequence: 3
  givenname: Arsham
  orcidid: 0000-0002-3138-8939
  surname: Hamidi
  fullname: Hamidi, Arsham
  email: arsham.hamidi@unibas.ch
  organization: Department of Biomedical Engineering, Biomedical Laser and Optics Group (BLOG), University of Basel, Basel, Switzerland
– sequence: 4
  givenname: Azhar
  orcidid: 0000-0001-7789-5680
  surname: Zam
  fullname: Zam, Azhar
  email: azhar.zam@unibas.ch
  organization: Department of Biomedical Engineering, Biomedical Laser and Optics Group (BLOG), University of Basel, Basel, Switzerland
– sequence: 5
  givenname: Hossein
  orcidid: 0000-0002-0551-3636
  surname: Rabbani
  fullname: Rabbani, Hossein
  email: rabbani.h@ieee.org
  organization: Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33852382$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9rFDEcxYNU7LZ6FwQJePEya35Pxlvd1lpoKegK3kJ25jvdlNlkmmQO_e_NuNseevD0-MLnvS-8d4KOfPCA0HtKlpSS5sv65mrJCKNLTmpOa_EKLaiUumJS_DlCC8JqXRGi2DE6SemeECokad6gY861ZFyzBZpuQgeD83c49PgnZOftgG_H7Nqiq7CFCL4FvA67cBftuH3E32yCDgePf-XQbm0qKD53fT-T2RXXxcNksws-fcVn4ziUpPnCOeBz8MGl8uwtet3bIcG7g56i398v1qsf1fXt5dXq7Lpquahz1RBhVdd1TDaMas3AqlYL2HDgPVVMWFpEsE4RJTe62dhaKdYx3hPdWF1Tfoo-73PHGB4mSNnsXGphGKyHMCXDJOVMaK5kQT-9QO_DFEsbMyWV0EoSXaiPB2ra7KAzY3Q7Gx_NU6EFUHugjSGlCL1pXf5XQI7WDYYSMy9nynJmXs4clitG8sL4lP0fy4e9xQHAM94IImij-V-A56Jl
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_bspc_2025_108245
crossref_primary_10_1093_rpd_ncac284
crossref_primary_10_1109_JBHI_2024_3480928
crossref_primary_10_1007_s40031_025_01216_1
crossref_primary_10_1016_j_chaos_2021_111104
crossref_primary_10_1109_TIM_2022_3185653
crossref_primary_10_1038_s41598_023_50164_7
crossref_primary_10_1109_JSTQE_2023_3240729
crossref_primary_10_1109_TMI_2023_3260990
crossref_primary_10_1109_JPHOT_2022_3148721
crossref_primary_10_1038_s41598_025_02375_3
crossref_primary_10_1109_TNSE_2025_3542603
crossref_primary_10_1109_LSP_2022_3226412
crossref_primary_10_1016_j_chaos_2024_114486
crossref_primary_10_1007_s12596_025_02823_3
crossref_primary_10_1109_TIM_2023_3346489
crossref_primary_10_1016_j_inffus_2024_102877
crossref_primary_10_1016_j_jfranklin_2025_107776
crossref_primary_10_1016_j_artmed_2024_103060
crossref_primary_10_1016_j_sciaf_2024_e02074
crossref_primary_10_1038_s41598_025_06144_0
crossref_primary_10_1109_TIM_2024_3375967
Cites_doi 10.1364/BOE.8.000162
10.1109/TMI.2020.2998066
10.1016/S0378-4371(02)00961-5
10.1137/S1064827598344169
10.1109/30.920468
10.1109/EMBC.2019.8857653
10.3182/20120711-3-BE-2027.00310
10.1016/j.media.2013.05.006
10.1016/j.compbiomed.2016.02.003
10.1109/SPMB47826.2019.9037832
10.1364/BOE.3.000927
10.1109/18.382009
10.1109/TIP.2012.2210725
10.1364/OL.30.003051
10.1364/BOE.8.003903
10.1007/s12652-018-0823-2
10.1016/j.bspc.2018.02.011
10.1364/AO.58.006233
10.1109/TMI.2017.2772963
10.1109/TMI.2009.2038375
10.1364/BOE.379551
10.1016/j.optcom.2012.10.053
10.1364/BOE.9.005129
10.1007/978-981-32-9291-8_10
10.1109/TMI.2016.2519439
10.1109/EMBC.2017.8037831
10.1007/s11042-019-07999-y
10.2174/157340508786404044
10.1364/OE.27.012289
10.1109/TIP.2005.857249
10.1109/TSP.2006.890843
10.1080/01621459.1980.10477573
10.1002/jbio.201960135
10.1109/TMI.2014.2374354
10.1038/ncomms15845
10.1109/CVPR.2005.38
10.1103/PhysRevE.76.021116
10.1109/TMI.2016.2556080
10.1109/ICCV.2015.36
10.1109/TIP.2020.2984896
10.1016/j.compbiomed.2019.01.010
10.1109/TMI.2016.2611503
10.1016/j.bspc.2019.101632
10.1117/1.JBO.21.9.096004
10.3390/app10186247
10.1109/TMI.2013.2271904
10.1103/PhysRevLett.97.138102
10.1109/TIP.2020.2994454
10.1117/1.429925
10.2307/2334448
10.1017/CBO9781107415805
10.1109/ICIVC.2018.8492869
10.1201/9780203738818
10.1364/BOE.377021
10.1109/TSP.2010.2091638
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2021.3073174
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 2141
ExternalDocumentID 33852382
10_1109_TMI_2021_3073174
9404198
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Vice-Chancellery for Research and Technology, Isfahan University of Medical Sciences
  grantid: 398989; 298236
  funderid: 10.13039/501100003970
– fundername: National Institute for Medical Research Development (NIMAD)
  grantid: 976795
  funderid: 10.13039/501100012155
– fundername: Leading House South Asia and Iran, Zurich University of Applied Sciences (Switzerland), under the Research Seed Money Grant
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
NPM
Z5M
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c347t-904a6ddd25921882ea6c84eb3e3f1624a1f1642d6065b89ba7662d23f089a8713
IEDL.DBID RIE
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000679532100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0062
1558-254X
IngestDate Thu Oct 02 06:39:18 EDT 2025
Sun Nov 09 08:26:46 EST 2025
Wed Feb 19 02:27:55 EST 2025
Sat Nov 29 05:14:08 EST 2025
Tue Nov 18 22:27:35 EST 2025
Wed Aug 27 02:40:01 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-904a6ddd25921882ea6c84eb3e3f1624a1f1642d6065b89ba7662d23f089a8713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0551-3636
0000-0002-5477-754X
0000-0002-3138-8939
0000-0001-7789-5680
0000-0001-6495-1313
PMID 33852382
PQID 2556486508
PQPubID 85460
PageCount 13
ParticipantIDs ieee_primary_9404198
proquest_miscellaneous_2513248365
crossref_primary_10_1109_TMI_2021_3073174
pubmed_primary_33852382
crossref_citationtrail_10_1109_TMI_2021_3073174
proquest_journals_2556486508
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref19
ref18
klebanov (ref8) 2015
ref51
ref46
ref45
ref48
ref47
ref42
ref44
ref43
ref49
ref7
jain (ref50) 1989
ref9
ref4
ref3
ref6
ref5
guo (ref41) 2021; 70
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
mayer (ref62) 2008
markkanen (ref2) 2016
ref24
ref23
ref26
ref25
ref20
ref22
amini (ref16) 2017; 22
ref21
ref28
ref27
ref29
ibragimov (ref1) 2012; 9
ref60
ref61
References_xml – ident: ref21
  doi: 10.1364/BOE.8.000162
– year: 1989
  ident: ref50
  publication-title: Fundamentals of Digital Image Processing
– ident: ref25
  doi: 10.1109/TMI.2020.2998066
– ident: ref52
  doi: 10.1016/S0378-4371(02)00961-5
– ident: ref59
  doi: 10.1137/S1064827598344169
– ident: ref4
  doi: 10.1109/30.920468
– ident: ref19
  doi: 10.1109/EMBC.2019.8857653
– ident: ref13
  doi: 10.3182/20120711-3-BE-2027.00310
– ident: ref61
  doi: 10.1016/j.media.2013.05.006
– ident: ref20
  doi: 10.1016/j.compbiomed.2016.02.003
– ident: ref35
  doi: 10.1109/SPMB47826.2019.9037832
– ident: ref30
  doi: 10.1364/BOE.3.000927
– ident: ref5
  doi: 10.1109/18.382009
– ident: ref56
  doi: 10.1109/TIP.2012.2210725
– ident: ref10
  doi: 10.1364/OL.30.003051
– ident: ref22
  doi: 10.1364/BOE.8.003903
– ident: ref24
  doi: 10.1007/s12652-018-0823-2
– ident: ref34
  doi: 10.1016/j.bspc.2018.02.011
– ident: ref36
  doi: 10.1364/AO.58.006233
– ident: ref23
  doi: 10.1109/TMI.2017.2772963
– ident: ref14
  doi: 10.1109/TMI.2009.2038375
– ident: ref44
  doi: 10.1364/BOE.379551
– year: 2016
  ident: ref2
  article-title: Cauchy difference priors for edge-preserving Bayesian inversion with an application to X-ray tomography
  publication-title: arXiv 1603 06135
– ident: ref29
  doi: 10.1016/j.optcom.2012.10.053
– ident: ref37
  doi: 10.1364/BOE.9.005129
– ident: ref45
  doi: 10.1007/978-981-32-9291-8_10
– ident: ref15
  doi: 10.1109/TMI.2016.2519439
– ident: ref18
  doi: 10.1109/EMBC.2017.8037831
– ident: ref43
  doi: 10.1007/s11042-019-07999-y
– ident: ref60
  doi: 10.2174/157340508786404044
– ident: ref40
  doi: 10.1364/OE.27.012289
– ident: ref49
  doi: 10.1109/TIP.2005.857249
– ident: ref47
  doi: 10.1109/TSP.2006.890843
– ident: ref53
  doi: 10.1080/01621459.1980.10477573
– ident: ref38
  doi: 10.1002/jbio.201960135
– ident: ref32
  doi: 10.1109/TMI.2014.2374354
– ident: ref27
  doi: 10.1038/ncomms15845
– ident: ref55
  doi: 10.1109/CVPR.2005.38
– ident: ref48
  doi: 10.1103/PhysRevE.76.021116
– ident: ref28
  doi: 10.1109/TMI.2016.2556080
– ident: ref58
  doi: 10.1109/ICCV.2015.36
– volume: 9
  year: 2012
  ident: ref1
  publication-title: Gaussian Random Processes
– ident: ref26
  doi: 10.1109/TIP.2020.2984896
– ident: ref42
  doi: 10.1016/j.compbiomed.2019.01.010
– volume: 70
  start-page: 1
  year: 2021
  ident: ref41
  article-title: Unsupervised denoising of optical coherence tomography images with nonlocal-generative adversarial network
  publication-title: IEEE Trans Instrum Meas
– ident: ref3
  doi: 10.1109/TMI.2016.2611503
– ident: ref39
  doi: 10.1016/j.bspc.2019.101632
– ident: ref12
  doi: 10.1117/1.JBO.21.9.096004
– year: 2015
  ident: ref8
  article-title: Tempered distributions: Does universal tempering procedure exist?
  publication-title: arXiv 1505 02068
– ident: ref51
  doi: 10.3390/app10186247
– ident: ref31
  doi: 10.1109/TMI.2013.2271904
– ident: ref11
  doi: 10.1103/PhysRevLett.97.138102
– ident: ref17
  doi: 10.1109/TIP.2020.2994454
– ident: ref9
  doi: 10.1117/1.429925
– ident: ref54
  doi: 10.2307/2334448
– ident: ref46
  doi: 10.1017/CBO9781107415805
– ident: ref57
  doi: 10.1109/ICIVC.2018.8492869
– volume: 22
  start-page: 86011
  year: 2017
  ident: ref16
  article-title: Optical coherence tomography image denoising using Gaussianization transform
  publication-title: J Biomed Opt
– start-page: 160
  year: 2008
  ident: ref62
  article-title: Fuzzy C-means clustering for retinal layer segmentation on high resolution OCT images
  publication-title: Proc 19th Biennial Int EURASIP Conf (BIOSIGNAL)
– ident: ref7
  doi: 10.1201/9780203738818
– ident: ref33
  doi: 10.1364/BOE.377021
– ident: ref6
  doi: 10.1109/TSP.2010.2091638
SSID ssj0014509
Score 2.494007
Snippet In this paper a statistical modeling, based on stochastic differential equations (SDEs), is proposed for retinal Optical Coherence Tomography (OCT) images. In...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2129
SubjectTerms Algorithms
Alternating direction method of multipliers~(ADMM) algorithm
Differential equations
Formulas (mathematics)
Fractals
fractional Laplacian
Goodness of fit
Histograms
Image classification
Image segmentation
Laplace equations
Laplace transforms
Mathematical model
Mathematical models
Noise
Noise reduction
Operators (mathematics)
Optical Coherence Tomography
optical coherence tomography~(OCT) image
Optimization
Pixels
Regularization
Retina
Statistical analysis
Statistical models
Statistical tests
stochastic differential equation (SDE)
Stochastic processes
Stochasticity
Technological innovation
Tomography
Title Modeling of Retinal Optical Coherence Tomography Based on Stochastic Differential Equations: Application to Denoising
URI https://ieeexplore.ieee.org/document/9404198
https://www.ncbi.nlm.nih.gov/pubmed/33852382
https://www.proquest.com/docview/2556486508
https://www.proquest.com/docview/2513248365
Volume 40
WOSCitedRecordID wos000679532100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_aIqU-WG39WFtLBF8Et5fbzWYT31rbomCr6An3tuRrsVA3tbfn3-8km1srqODTBjLZDcxkM79M5jcAL7ShrdOG5bzWCFBaJ3LFWJUb00phtGK6jonC7-uLCzGfy49r8GrMhXHOxctn7jA0YyzferMMR2UTyShDkLwO63XNh1ytMWLAquE6RxEYYykvViFJKiez83cIBIvpYbBn9MC3YBOBGSIwUfy2G8XyKn_3NOOOc7b9f3O9D_eSZ0mOBlN4AGuu24G7t_gGd2DzPEXSd2EZiqCFVHTiW_Ip5D3j2A_X8WSbhJyNmAVIZv5b4rQmx7jfWeI78rn35qsK_M7kJJVXwd_EFTn9PtCGL16To19hcdJ7cuI6fxkOJR7Cl7PT2Zu3eSrBkJuS1X0uKVPcWosgCX0BUTjFjWAIwF3ZTnnB1BQfrLAIgyotpFY154UtypYKqRCLlY9go_OdewKEY59sqdFCIwRlXNvKClz-KNlSPa0zmKxU0ZjETx7KZFw1EadQ2aAem6DHJukxg5fjiOuBm-MfsrtBR6NcUk8G-yttN2nxLprAysZEcF0zeD5247ILsRTVOb8MMgjjmSh5lcHjwUrGd6-M6-mfv7kHW2Fmwy3Cfdjob5buGdwxP_rLxc0B2vZcHETb_gnlyvMb
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6Vgko58GgpBAoYiQsS6Xodx3G4FdqqFbsLgq3UW-RXRKU2Kd0sv5-x4w0gARKnRPI4sTRjez6P5xuAV9rQ2mnDU1FoBCi1k6niPE-NqUtptOK6CInCk2I2k2dn5ac1eDPkwjjnwuUzt-dfQyzftmbpj8pGJaccQfINuJlzzmifrTXEDHjeX-hgnjOWCrYKStJyNJ-eIBRk4z1v0eiDb8IGQjPEYJL9th-FAit_9zXDnnN07_9Gex_uRt-S7PfG8ADWXLMFd35hHNyCjWmMpW_D0pdB88nopK3JZ5_5jH0_XoWzbeKzNkIeIJm3l5HVmrzDHc-StiFfutZ8VZ7hmRzEAiu4UFyQw289cfjiLdn_GRgnXUsOXNOe-2OJh3B6dDh_f5zGIgypyXjRpSXlSlhrESahNyCZU8JIjhDcZfVYMK7G-ODMIhDKtSy1KoRglmU1laVCNJbtwHrTNu4xEIFtZU2NlhpBKBfa5lbiAoCSNdXjIoHRShWViQzlvlDGRRWQCi0r1GPl9VhFPSbweuhx1bNz_EN22-tokIvqSWB3pe0qTt9F5XnZuPTOawIvh2aceD6aohrXLr0MAnkuM5En8Ki3kuHbK-N68ud_voDbx_PppJqczD48hU0_yv5O4S6sd9dL9wxume_d-eL6ebDwH_Xq9Xo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+of+Retinal+Optical+Coherence+Tomography+Based+on+Stochastic+Differential+Equations%3A+Application+to+Denoising&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Tajmirriahi%2C+Mahnoosh&rft.au=Amini%2C+Zahra&rft.au=Hamidi%2C+Arsham&rft.au=Zam%2C+Azhar&rft.date=2021-08-01&rft.issn=1558-254X&rft.eissn=1558-254X&rft.volume=40&rft.issue=8&rft.spage=2129&rft_id=info:doi/10.1109%2FTMI.2021.3073174&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon