Modeling of Retinal Optical Coherence Tomography Based on Stochastic Differential Equations: Application to Denoising
In this paper a statistical modeling, based on stochastic differential equations (SDEs), is proposed for retinal Optical Coherence Tomography (OCT) images. In this method, pixel intensities of image are considered as discrete realizations of a Levy stable process. This process has independent increm...
Uloženo v:
| Vydáno v: | IEEE transactions on medical imaging Ročník 40; číslo 8; s. 2129 - 2141 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0278-0062, 1558-254X, 1558-254X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper a statistical modeling, based on stochastic differential equations (SDEs), is proposed for retinal Optical Coherence Tomography (OCT) images. In this method, pixel intensities of image are considered as discrete realizations of a Levy stable process. This process has independent increments and can be expressed as response of SDE to a white symmetric alpha stable (s <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\alpha }\text{s} </tex-math></inline-formula>) noise. Based on this assumption, applying appropriate differential operator makes intensities statistically independent. Mentioned white stable noise can be regenerated by applying fractional Laplacian operator to image intensities. In this way, we modeled OCT images as s <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\alpha }\text{s} </tex-math></inline-formula> distribution. We applied fractional Laplacian operator to image and fitted s <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\alpha }\text{s} </tex-math></inline-formula> to its histogram. Statistical tests were used to evaluate goodness of fit of stable distribution and its heavy tailed and stability characteristics. We used modeled s <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\alpha }\text{s} </tex-math></inline-formula> distribution as prior information in maximum a posteriori (MAP) estimator in order to reduce the speckle noise of OCT images. Such a statistically independent prior distribution simplified denoising optimization problem to a regularization algorithm with an adjustable shrinkage operator for each image. Alternating Direction Method of Multipliers (ADMM) algorithm was utilized to solve the denoising problem. We presented visual and quantitative evaluation results of the performance of this modeling and denoising methods for normal and abnormal images. Applying parameters of model in classification task as well as indicating effect of denoising in layer segmentation improvement illustrates that the proposed method describes OCT data more accurately than other models that do not remove statistical dependencies between pixel intensities. |
|---|---|
| AbstractList | In this paper a statistical modeling, based on stochastic differential equations (SDEs), is proposed for retinal Optical Coherence Tomography (OCT) images. In this method, pixel intensities of image are considered as discrete realizations of a Levy stable process. This process has independent increments and can be expressed as response of SDE to a white symmetric alpha stable (s [Formula Omitted]) noise. Based on this assumption, applying appropriate differential operator makes intensities statistically independent. Mentioned white stable noise can be regenerated by applying fractional Laplacian operator to image intensities. In this way, we modeled OCT images as s [Formula Omitted] distribution. We applied fractional Laplacian operator to image and fitted s [Formula Omitted] to its histogram. Statistical tests were used to evaluate goodness of fit of stable distribution and its heavy tailed and stability characteristics. We used modeled s [Formula Omitted] distribution as prior information in maximum a posteriori (MAP) estimator in order to reduce the speckle noise of OCT images. Such a statistically independent prior distribution simplified denoising optimization problem to a regularization algorithm with an adjustable shrinkage operator for each image. Alternating Direction Method of Multipliers (ADMM) algorithm was utilized to solve the denoising problem. We presented visual and quantitative evaluation results of the performance of this modeling and denoising methods for normal and abnormal images. Applying parameters of model in classification task as well as indicating effect of denoising in layer segmentation improvement illustrates that the proposed method describes OCT data more accurately than other models that do not remove statistical dependencies between pixel intensities. In this paper a statistical modeling, based on stochastic differential equations (SDEs), is proposed for retinal Optical Coherence Tomography (OCT) images. In this method, pixel intensities of image are considered as discrete realizations of a Levy stable process. This process has independent increments and can be expressed as response of SDE to a white symmetric alpha stable (s <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\alpha }\text{s} </tex-math></inline-formula>) noise. Based on this assumption, applying appropriate differential operator makes intensities statistically independent. Mentioned white stable noise can be regenerated by applying fractional Laplacian operator to image intensities. In this way, we modeled OCT images as s <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\alpha }\text{s} </tex-math></inline-formula> distribution. We applied fractional Laplacian operator to image and fitted s <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\alpha }\text{s} </tex-math></inline-formula> to its histogram. Statistical tests were used to evaluate goodness of fit of stable distribution and its heavy tailed and stability characteristics. We used modeled s <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\alpha }\text{s} </tex-math></inline-formula> distribution as prior information in maximum a posteriori (MAP) estimator in order to reduce the speckle noise of OCT images. Such a statistically independent prior distribution simplified denoising optimization problem to a regularization algorithm with an adjustable shrinkage operator for each image. Alternating Direction Method of Multipliers (ADMM) algorithm was utilized to solve the denoising problem. We presented visual and quantitative evaluation results of the performance of this modeling and denoising methods for normal and abnormal images. Applying parameters of model in classification task as well as indicating effect of denoising in layer segmentation improvement illustrates that the proposed method describes OCT data more accurately than other models that do not remove statistical dependencies between pixel intensities. In this paper a statistical modeling, based on stochastic differential equations (SDEs), is proposed for retinal Optical Coherence Tomography (OCT) images. In this method, pixel intensities of image are considered as discrete realizations of a Levy stable process. This process has independent increments and can be expressed as response of SDE to a white symmetric alpha stable (s [Formula: see text]) noise. Based on this assumption, applying appropriate differential operator makes intensities statistically independent. Mentioned white stable noise can be regenerated by applying fractional Laplacian operator to image intensities. In this way, we modeled OCT images as s [Formula: see text] distribution. We applied fractional Laplacian operator to image and fitted s [Formula: see text] to its histogram. Statistical tests were used to evaluate goodness of fit of stable distribution and its heavy tailed and stability characteristics. We used modeled s [Formula: see text] distribution as prior information in maximum a posteriori (MAP) estimator in order to reduce the speckle noise of OCT images. Such a statistically independent prior distribution simplified denoising optimization problem to a regularization algorithm with an adjustable shrinkage operator for each image. Alternating Direction Method of Multipliers (ADMM) algorithm was utilized to solve the denoising problem. We presented visual and quantitative evaluation results of the performance of this modeling and denoising methods for normal and abnormal images. Applying parameters of model in classification task as well as indicating effect of denoising in layer segmentation improvement illustrates that the proposed method describes OCT data more accurately than other models that do not remove statistical dependencies between pixel intensities.In this paper a statistical modeling, based on stochastic differential equations (SDEs), is proposed for retinal Optical Coherence Tomography (OCT) images. In this method, pixel intensities of image are considered as discrete realizations of a Levy stable process. This process has independent increments and can be expressed as response of SDE to a white symmetric alpha stable (s [Formula: see text]) noise. Based on this assumption, applying appropriate differential operator makes intensities statistically independent. Mentioned white stable noise can be regenerated by applying fractional Laplacian operator to image intensities. In this way, we modeled OCT images as s [Formula: see text] distribution. We applied fractional Laplacian operator to image and fitted s [Formula: see text] to its histogram. Statistical tests were used to evaluate goodness of fit of stable distribution and its heavy tailed and stability characteristics. We used modeled s [Formula: see text] distribution as prior information in maximum a posteriori (MAP) estimator in order to reduce the speckle noise of OCT images. Such a statistically independent prior distribution simplified denoising optimization problem to a regularization algorithm with an adjustable shrinkage operator for each image. Alternating Direction Method of Multipliers (ADMM) algorithm was utilized to solve the denoising problem. We presented visual and quantitative evaluation results of the performance of this modeling and denoising methods for normal and abnormal images. Applying parameters of model in classification task as well as indicating effect of denoising in layer segmentation improvement illustrates that the proposed method describes OCT data more accurately than other models that do not remove statistical dependencies between pixel intensities. In this paper a statistical modeling, based on stochastic differential equations (SDEs), is proposed for retinal Optical Coherence Tomography (OCT) images. In this method, pixel intensities of image are considered as discrete realizations of a Levy stable process. This process has independent increments and can be expressed as response of SDE to a white symmetric alpha stable (sαs) noise. Based on this assumption, applying appropriate differential operator makes intensities statistically independent. Mentioned white stable noise can be regenerated by applying fractional Laplacian operator to image intensities. In this way, we modeled OCT images as sαs distribution. We applied fractional Laplacian operator to image and fitted sαs to its histogram. Statistical tests were used to evaluate goodness of fit of stable distribution and its heavy tailed and stability characteristics. We used modeled sαs distribution as prior information in maximum a posteriori (MAP) estimator in order to reduce the speckle noise of OCT images. Such a statistically independent prior distribution simplified denoising optimization problem to a regularization algorithm with an adjustable shrinkage operator for each image. Alternating Direction Method of Multipliers (ADMM) algorithm was utilized to solve the denoising problem. We presented visual and quantitative evaluation results of the performance of this modeling and denoising methods for normal and abnormal images. Applying parameters of model in classification task as well as indicating effect of denoising in layer segmentation improvement illustrates that the proposed method describes OCT data more accurately than other models that do not remove statistical dependencies between pixel intensities. |
| Author | Amini, Zahra Tajmirriahi, Mahnoosh Hamidi, Arsham Zam, Azhar Rabbani, Hossein |
| Author_xml | – sequence: 1 givenname: Mahnoosh orcidid: 0000-0002-5477-754X surname: Tajmirriahi fullname: Tajmirriahi, Mahnoosh email: mata.riahi@yahoo.com organization: Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran – sequence: 2 givenname: Zahra orcidid: 0000-0001-6495-1313 surname: Amini fullname: Amini, Zahra email: zahraamini64@yahoo.com.au organization: Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran – sequence: 3 givenname: Arsham orcidid: 0000-0002-3138-8939 surname: Hamidi fullname: Hamidi, Arsham email: arsham.hamidi@unibas.ch organization: Department of Biomedical Engineering, Biomedical Laser and Optics Group (BLOG), University of Basel, Basel, Switzerland – sequence: 4 givenname: Azhar orcidid: 0000-0001-7789-5680 surname: Zam fullname: Zam, Azhar email: azhar.zam@unibas.ch organization: Department of Biomedical Engineering, Biomedical Laser and Optics Group (BLOG), University of Basel, Basel, Switzerland – sequence: 5 givenname: Hossein orcidid: 0000-0002-0551-3636 surname: Rabbani fullname: Rabbani, Hossein email: rabbani.h@ieee.org organization: Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33852382$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc9rFDEcxYNU7LZ6FwQJePEya35Pxlvd1lpoKegK3kJ25jvdlNlkmmQO_e_NuNseevD0-MLnvS-8d4KOfPCA0HtKlpSS5sv65mrJCKNLTmpOa_EKLaiUumJS_DlCC8JqXRGi2DE6SemeECokad6gY861ZFyzBZpuQgeD83c49PgnZOftgG_H7Nqiq7CFCL4FvA67cBftuH3E32yCDgePf-XQbm0qKD53fT-T2RXXxcNksws-fcVn4ziUpPnCOeBz8MGl8uwtet3bIcG7g56i398v1qsf1fXt5dXq7Lpquahz1RBhVdd1TDaMas3AqlYL2HDgPVVMWFpEsE4RJTe62dhaKdYx3hPdWF1Tfoo-73PHGB4mSNnsXGphGKyHMCXDJOVMaK5kQT-9QO_DFEsbMyWV0EoSXaiPB2ra7KAzY3Q7Gx_NU6EFUHugjSGlCL1pXf5XQI7WDYYSMy9nynJmXs4clitG8sL4lP0fy4e9xQHAM94IImij-V-A56Jl |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2025_108245 crossref_primary_10_1093_rpd_ncac284 crossref_primary_10_1109_JBHI_2024_3480928 crossref_primary_10_1007_s40031_025_01216_1 crossref_primary_10_1016_j_chaos_2021_111104 crossref_primary_10_1109_TIM_2022_3185653 crossref_primary_10_1038_s41598_023_50164_7 crossref_primary_10_1109_JSTQE_2023_3240729 crossref_primary_10_1109_TMI_2023_3260990 crossref_primary_10_1109_JPHOT_2022_3148721 crossref_primary_10_1038_s41598_025_02375_3 crossref_primary_10_1109_TNSE_2025_3542603 crossref_primary_10_1109_LSP_2022_3226412 crossref_primary_10_1016_j_chaos_2024_114486 crossref_primary_10_1007_s12596_025_02823_3 crossref_primary_10_1109_TIM_2023_3346489 crossref_primary_10_1016_j_inffus_2024_102877 crossref_primary_10_1016_j_jfranklin_2025_107776 crossref_primary_10_1016_j_artmed_2024_103060 crossref_primary_10_1016_j_sciaf_2024_e02074 crossref_primary_10_1038_s41598_025_06144_0 crossref_primary_10_1109_TIM_2024_3375967 |
| Cites_doi | 10.1364/BOE.8.000162 10.1109/TMI.2020.2998066 10.1016/S0378-4371(02)00961-5 10.1137/S1064827598344169 10.1109/30.920468 10.1109/EMBC.2019.8857653 10.3182/20120711-3-BE-2027.00310 10.1016/j.media.2013.05.006 10.1016/j.compbiomed.2016.02.003 10.1109/SPMB47826.2019.9037832 10.1364/BOE.3.000927 10.1109/18.382009 10.1109/TIP.2012.2210725 10.1364/OL.30.003051 10.1364/BOE.8.003903 10.1007/s12652-018-0823-2 10.1016/j.bspc.2018.02.011 10.1364/AO.58.006233 10.1109/TMI.2017.2772963 10.1109/TMI.2009.2038375 10.1364/BOE.379551 10.1016/j.optcom.2012.10.053 10.1364/BOE.9.005129 10.1007/978-981-32-9291-8_10 10.1109/TMI.2016.2519439 10.1109/EMBC.2017.8037831 10.1007/s11042-019-07999-y 10.2174/157340508786404044 10.1364/OE.27.012289 10.1109/TIP.2005.857249 10.1109/TSP.2006.890843 10.1080/01621459.1980.10477573 10.1002/jbio.201960135 10.1109/TMI.2014.2374354 10.1038/ncomms15845 10.1109/CVPR.2005.38 10.1103/PhysRevE.76.021116 10.1109/TMI.2016.2556080 10.1109/ICCV.2015.36 10.1109/TIP.2020.2984896 10.1016/j.compbiomed.2019.01.010 10.1109/TMI.2016.2611503 10.1016/j.bspc.2019.101632 10.1117/1.JBO.21.9.096004 10.3390/app10186247 10.1109/TMI.2013.2271904 10.1103/PhysRevLett.97.138102 10.1109/TIP.2020.2994454 10.1117/1.429925 10.2307/2334448 10.1017/CBO9781107415805 10.1109/ICIVC.2018.8492869 10.1201/9780203738818 10.1364/BOE.377021 10.1109/TSP.2010.2091638 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/TMI.2021.3073174 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-254X |
| EndPage | 2141 |
| ExternalDocumentID | 33852382 10_1109_TMI_2021_3073174 9404198 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Vice-Chancellery for Research and Technology, Isfahan University of Medical Sciences grantid: 398989; 298236 funderid: 10.13039/501100003970 – fundername: National Institute for Medical Research Development (NIMAD) grantid: 976795 funderid: 10.13039/501100012155 – fundername: Leading House South Asia and Iran, Zurich University of Applied Sciences (Switzerland), under the Research Seed Money Grant |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION NPM Z5M 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c347t-904a6ddd25921882ea6c84eb3e3f1624a1f1642d6065b89ba7662d23f089a8713 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000679532100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0062 1558-254X |
| IngestDate | Thu Oct 02 06:39:18 EDT 2025 Sun Nov 09 08:26:46 EST 2025 Wed Feb 19 02:27:55 EST 2025 Sat Nov 29 05:14:08 EST 2025 Tue Nov 18 22:27:35 EST 2025 Wed Aug 27 02:40:01 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c347t-904a6ddd25921882ea6c84eb3e3f1624a1f1642d6065b89ba7662d23f089a8713 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0551-3636 0000-0002-5477-754X 0000-0002-3138-8939 0000-0001-7789-5680 0000-0001-6495-1313 |
| PMID | 33852382 |
| PQID | 2556486508 |
| PQPubID | 85460 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_9404198 proquest_miscellaneous_2513248365 crossref_primary_10_1109_TMI_2021_3073174 pubmed_primary_33852382 crossref_citationtrail_10_1109_TMI_2021_3073174 proquest_journals_2556486508 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-01 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref19 ref18 klebanov (ref8) 2015 ref51 ref46 ref45 ref48 ref47 ref42 ref44 ref43 ref49 ref7 jain (ref50) 1989 ref9 ref4 ref3 ref6 ref5 guo (ref41) 2021; 70 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 mayer (ref62) 2008 markkanen (ref2) 2016 ref24 ref23 ref26 ref25 ref20 ref22 amini (ref16) 2017; 22 ref21 ref28 ref27 ref29 ibragimov (ref1) 2012; 9 ref60 ref61 |
| References_xml | – ident: ref21 doi: 10.1364/BOE.8.000162 – year: 1989 ident: ref50 publication-title: Fundamentals of Digital Image Processing – ident: ref25 doi: 10.1109/TMI.2020.2998066 – ident: ref52 doi: 10.1016/S0378-4371(02)00961-5 – ident: ref59 doi: 10.1137/S1064827598344169 – ident: ref4 doi: 10.1109/30.920468 – ident: ref19 doi: 10.1109/EMBC.2019.8857653 – ident: ref13 doi: 10.3182/20120711-3-BE-2027.00310 – ident: ref61 doi: 10.1016/j.media.2013.05.006 – ident: ref20 doi: 10.1016/j.compbiomed.2016.02.003 – ident: ref35 doi: 10.1109/SPMB47826.2019.9037832 – ident: ref30 doi: 10.1364/BOE.3.000927 – ident: ref5 doi: 10.1109/18.382009 – ident: ref56 doi: 10.1109/TIP.2012.2210725 – ident: ref10 doi: 10.1364/OL.30.003051 – ident: ref22 doi: 10.1364/BOE.8.003903 – ident: ref24 doi: 10.1007/s12652-018-0823-2 – ident: ref34 doi: 10.1016/j.bspc.2018.02.011 – ident: ref36 doi: 10.1364/AO.58.006233 – ident: ref23 doi: 10.1109/TMI.2017.2772963 – ident: ref14 doi: 10.1109/TMI.2009.2038375 – ident: ref44 doi: 10.1364/BOE.379551 – year: 2016 ident: ref2 article-title: Cauchy difference priors for edge-preserving Bayesian inversion with an application to X-ray tomography publication-title: arXiv 1603 06135 – ident: ref29 doi: 10.1016/j.optcom.2012.10.053 – ident: ref37 doi: 10.1364/BOE.9.005129 – ident: ref45 doi: 10.1007/978-981-32-9291-8_10 – ident: ref15 doi: 10.1109/TMI.2016.2519439 – ident: ref18 doi: 10.1109/EMBC.2017.8037831 – ident: ref43 doi: 10.1007/s11042-019-07999-y – ident: ref60 doi: 10.2174/157340508786404044 – ident: ref40 doi: 10.1364/OE.27.012289 – ident: ref49 doi: 10.1109/TIP.2005.857249 – ident: ref47 doi: 10.1109/TSP.2006.890843 – ident: ref53 doi: 10.1080/01621459.1980.10477573 – ident: ref38 doi: 10.1002/jbio.201960135 – ident: ref32 doi: 10.1109/TMI.2014.2374354 – ident: ref27 doi: 10.1038/ncomms15845 – ident: ref55 doi: 10.1109/CVPR.2005.38 – ident: ref48 doi: 10.1103/PhysRevE.76.021116 – ident: ref28 doi: 10.1109/TMI.2016.2556080 – ident: ref58 doi: 10.1109/ICCV.2015.36 – volume: 9 year: 2012 ident: ref1 publication-title: Gaussian Random Processes – ident: ref26 doi: 10.1109/TIP.2020.2984896 – ident: ref42 doi: 10.1016/j.compbiomed.2019.01.010 – volume: 70 start-page: 1 year: 2021 ident: ref41 article-title: Unsupervised denoising of optical coherence tomography images with nonlocal-generative adversarial network publication-title: IEEE Trans Instrum Meas – ident: ref3 doi: 10.1109/TMI.2016.2611503 – ident: ref39 doi: 10.1016/j.bspc.2019.101632 – ident: ref12 doi: 10.1117/1.JBO.21.9.096004 – year: 2015 ident: ref8 article-title: Tempered distributions: Does universal tempering procedure exist? publication-title: arXiv 1505 02068 – ident: ref51 doi: 10.3390/app10186247 – ident: ref31 doi: 10.1109/TMI.2013.2271904 – ident: ref11 doi: 10.1103/PhysRevLett.97.138102 – ident: ref17 doi: 10.1109/TIP.2020.2994454 – ident: ref9 doi: 10.1117/1.429925 – ident: ref54 doi: 10.2307/2334448 – ident: ref46 doi: 10.1017/CBO9781107415805 – ident: ref57 doi: 10.1109/ICIVC.2018.8492869 – volume: 22 start-page: 86011 year: 2017 ident: ref16 article-title: Optical coherence tomography image denoising using Gaussianization transform publication-title: J Biomed Opt – start-page: 160 year: 2008 ident: ref62 article-title: Fuzzy C-means clustering for retinal layer segmentation on high resolution OCT images publication-title: Proc 19th Biennial Int EURASIP Conf (BIOSIGNAL) – ident: ref7 doi: 10.1201/9780203738818 – ident: ref33 doi: 10.1364/BOE.377021 – ident: ref6 doi: 10.1109/TSP.2010.2091638 |
| SSID | ssj0014509 |
| Score | 2.494007 |
| Snippet | In this paper a statistical modeling, based on stochastic differential equations (SDEs), is proposed for retinal Optical Coherence Tomography (OCT) images. In... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2129 |
| SubjectTerms | Algorithms Alternating direction method of multipliers~(ADMM) algorithm Differential equations Formulas (mathematics) Fractals fractional Laplacian Goodness of fit Histograms Image classification Image segmentation Laplace equations Laplace transforms Mathematical model Mathematical models Noise Noise reduction Operators (mathematics) Optical Coherence Tomography optical coherence tomography~(OCT) image Optimization Pixels Regularization Retina Statistical analysis Statistical models Statistical tests stochastic differential equation (SDE) Stochastic processes Stochasticity Technological innovation Tomography |
| Title | Modeling of Retinal Optical Coherence Tomography Based on Stochastic Differential Equations: Application to Denoising |
| URI | https://ieeexplore.ieee.org/document/9404198 https://www.ncbi.nlm.nih.gov/pubmed/33852382 https://www.proquest.com/docview/2556486508 https://www.proquest.com/docview/2513248365 |
| Volume | 40 |
| WOSCitedRecordID | wos000679532100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9QwDLa2CU3jgcHGj7IxBYkXJLpLk1ya8LaxTSCxgeCQ7q1Km1RMGu3Y9fj7sdNeGRIg8dRKddpIdmp_cfwZ4EWdcyuC52mg3LrKaps6kZcpl-iup2XIgomFwu_ziwszn9uPa_BqrIUJIcTDZ-GQbmMu37fVkrbKJlZxhSB5HdbzXPe1WmPGQE374xyCGGO5FquUJLeT2fk7BIIiOyR7xgh8CzYRmCECM-I3bxTbq_w90owe52z7_-Z6H-4NkSU76k3hAayFZgfu3uIb3IHN8yGTvgtLaoJGpeisrdknqnvGsR-u4842o5qNWAXIZu23gdOaHaO_86xt2Oeurb464ndmJ0N7FfxNXLHT7z1t-OI1O_qVFmddy05C017SpsRD-HJ2OnvzNh1aMKSVVHmXWq6c9t4jSMJYwIjgdGUUAvAg60wL5TK8KOERBk1LY0uXay28kDU31iEWk49go2mb8ARYrRHLaFdabYQqXW28klJy60SpXXB1ApOVKopq4CenNhlXRcQp3Baox4L0WAx6TODlOOK65-b4h-wu6WiUG9STwP5K28WweBcFsbIpQ6FrAs_Hx7jsKJfimtAuSQZhvDJSTxN43FvJ-O6VcT398zf3YItm1p8i3IeN7mYZnsGd6kd3ubg5QNuem4No2z8BHVfyQQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9QwDLbGQGM88GNjo2NAkHhBors0SdNkb4Nt2sTdgeAm7a1K21RM2tpt1-Pvx257BSRA4qmV6rSR7NT-4vgzwJsy4Vb4goeecusqKm3oRJKFXKK7jjMfedMWCo-T6dScn9vPK_BuqIXx3reHz_we3ba5_KLOF7RVNrKKKwTJd-BurJTgXbXWkDNQcXegQxBnLNdimZTkdjSbnCIUFNEeWTTG4OuwhtAMMZgRv_mjtsHK32PN1uccP_q_2T6Gh31syQ46Y3gCK77agAe_MA5uwNqkz6VvwoLaoFExOqtL9oUqn3Hsp-t2b5tR1UZbB8hm9VXPas3eo8crWF2xr02df3PE8MwO-wYr-KO4ZEc3HXH4fJ8d_EyMs6Zmh76qL2hb4imcHR_NPpyEfROGMJcqaULLldNFUSBMwmjACO90bhRCcC_LSAvlIrwoUSAQijNjM5doLQohS26sQzQmt2C1qiv_DFipEc1ol1lthMpcaQolpeTWiUw778oARktVpHnPUE6NMi7TFqlwm6IeU9Jj2usxgLfDiOuOneMfspuko0GuV08Au0ttp_3ynafEy6YMBa8BvB4e48KjbIqrfL0gGQTyykgdB7DdWcnw7qVx7fz5m6_g_slsMk7Hp9OPz2GdZtmdKdyF1eZ24V_Avfx7czG_fdla-A8lsfSg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+of+Retinal+Optical+Coherence+Tomography+Based+on+Stochastic+Differential+Equations%3A+Application+to+Denoising&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Tajmirriahi%2C+Mahnoosh&rft.au=Amini%2C+Zahra&rft.au=Hamidi%2C+Arsham&rft.au=Zam%2C+Azhar&rft.date=2021-08-01&rft.issn=1558-254X&rft.eissn=1558-254X&rft.volume=40&rft.issue=8&rft.spage=2129&rft_id=info:doi/10.1109%2FTMI.2021.3073174&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |