3D APA-Net: 3D Adversarial Pyramid Anisotropic Convolutional Network for Prostate Segmentation in MR Images
Accurate and reliable segmentation of the prostate gland using magnetic resonance (MR) imaging has critical importance for the diagnosis and treatment of prostate diseases, especially prostate cancer. Although many automated segmentation approaches, including those based on deep learning have been p...
Saved in:
| Published in: | IEEE transactions on medical imaging Vol. 39; no. 2; pp. 447 - 457 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0278-0062, 1558-254X, 1558-254X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Accurate and reliable segmentation of the prostate gland using magnetic resonance (MR) imaging has critical importance for the diagnosis and treatment of prostate diseases, especially prostate cancer. Although many automated segmentation approaches, including those based on deep learning have been proposed, the segmentation performance still has room for improvement due to the large variability in image appearance, imaging interference, and anisotropic spatial resolution. In this paper, we propose the 3D adversarial pyramid anisotropic convolutional deep neural network (3D APA-Net) for prostate segmentation in MR images. This model is composed of a generator (i.e., 3D PA-Net) that performs image segmentation and a discriminator (i.e., a six-layer convolutional neural network) that differentiates between a segmentation result and its corresponding ground truth. The 3D PA-Net has an encoder-decoder architecture, which consists of a 3D ResNet encoder, an anisotropic convolutional decoder, and multi-level pyramid convolutional skip connections. The anisotropic convolutional blocks can exploit the 3D context information of the MR images with anisotropic resolution, the pyramid convolutional blocks address both voxel classification and gland localization issues, and the adversarial training regularizes 3D PA-Net and thus enables it to generate spatially consistent and continuous segmentation results. We evaluated the proposed 3D APA-Net against several state-of-the-art deep learning-based segmentation approaches on two public databases and the hybrid of the two. Our results suggest that the proposed model outperforms the compared approaches on three databases and could be used in a routine clinical workflow. |
|---|---|
| AbstractList | Accurate and reliable segmentation of the prostate gland using magnetic resonance (MR) imaging has critical importance for the diagnosis and treatment of prostate diseases, especially prostate cancer. Although many automated segmentation approaches, including those based on deep learning have been proposed, the segmentation performance still has room for improvement due to the large variability in image appearance, imaging interference, and anisotropic spatial resolution. In this paper, we propose the 3D adversarial pyramid anisotropic convolutional deep neural network (3D APA-Net) for prostate segmentation in MR images. This model is composed of a generator (i.e., 3D PA-Net) that performs image segmentation and a discriminator (i.e., a six-layer convolutional neural network) that differentiates between a segmentation result and its corresponding ground truth. The 3D PA-Net has an encoder-decoder architecture, which consists of a 3D ResNet encoder, an anisotropic convolutional decoder, and multi-level pyramid convolutional skip connections. The anisotropic convolutional blocks can exploit the 3D context information of the MR images with anisotropic resolution, the pyramid convolutional blocks address both voxel classification and gland localization issues, and the adversarial training regularizes 3D PA-Net and thus enables it to generate spatially consistent and continuous segmentation results. We evaluated the proposed 3D APA-Net against several state-of-the-art deep learning-based segmentation approaches on two public databases and the hybrid of the two. Our results suggest that the proposed model outperforms the compared approaches on three databases and could be used in a routine clinical workflow. Accurate and reliable segmentation of the prostate gland using magnetic resonance (MR) imaging has critical importance for the diagnosis and treatment of prostate diseases, especially prostate cancer. Although many automated segmentation approaches, including those based on deep learning have been proposed, the segmentation performance still has room for improvement due to the large variability in image appearance, imaging interference, and anisotropic spatial resolution. In this paper, we propose the 3D adversarial pyramid anisotropic convolutional deep neural network (3D APA-Net) for prostate segmentation in MR images. This model is composed of a generator (i.e., 3D PA-Net) that performs image segmentation and a discriminator (i.e., a six-layer convolutional neural network) that differentiates between a segmentation result and its corresponding ground truth. The 3D PA-Net has an encoder-decoder architecture, which consists of a 3D ResNet encoder, an anisotropic convolutional decoder, and multi-level pyramid convolutional skip connections. The anisotropic convolutional blocks can exploit the 3D context information of the MR images with anisotropic resolution, the pyramid convolutional blocks address both voxel classification and gland localization issues, and the adversarial training regularizes 3D PA-Net and thus enables it to generate spatially consistent and continuous segmentation results. We evaluated the proposed 3D APA-Net against several state-of-the-art deep learning-based segmentation approaches on two public databases and the hybrid of the two. Our results suggest that the proposed model outperforms the compared approaches on three databases and could be used in a routine clinical workflow.Accurate and reliable segmentation of the prostate gland using magnetic resonance (MR) imaging has critical importance for the diagnosis and treatment of prostate diseases, especially prostate cancer. Although many automated segmentation approaches, including those based on deep learning have been proposed, the segmentation performance still has room for improvement due to the large variability in image appearance, imaging interference, and anisotropic spatial resolution. In this paper, we propose the 3D adversarial pyramid anisotropic convolutional deep neural network (3D APA-Net) for prostate segmentation in MR images. This model is composed of a generator (i.e., 3D PA-Net) that performs image segmentation and a discriminator (i.e., a six-layer convolutional neural network) that differentiates between a segmentation result and its corresponding ground truth. The 3D PA-Net has an encoder-decoder architecture, which consists of a 3D ResNet encoder, an anisotropic convolutional decoder, and multi-level pyramid convolutional skip connections. The anisotropic convolutional blocks can exploit the 3D context information of the MR images with anisotropic resolution, the pyramid convolutional blocks address both voxel classification and gland localization issues, and the adversarial training regularizes 3D PA-Net and thus enables it to generate spatially consistent and continuous segmentation results. We evaluated the proposed 3D APA-Net against several state-of-the-art deep learning-based segmentation approaches on two public databases and the hybrid of the two. Our results suggest that the proposed model outperforms the compared approaches on three databases and could be used in a routine clinical workflow. |
| Author | Xia, Yong Zhang, Yanning Huang, Heng Jia, Haozhe Song, Yang Cai, Weidong Zhang, Donghao |
| Author_xml | – sequence: 1 givenname: Haozhe surname: Jia fullname: Jia, Haozhe email: haozhejia@mail.nwpu.edu.cn organization: National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science and Engineering, Northwestern Polytechnical University, Xian, China – sequence: 2 givenname: Yong orcidid: 0000-0001-9273-2847 surname: Xia fullname: Xia, Yong email: yxia@nwpu.edu.cn organization: National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science and Engineering, Northwestern Polytechnical University, Xian, China – sequence: 3 givenname: Yang surname: Song fullname: Song, Yang email: yang.song1@unsw.edu.au organization: School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia – sequence: 4 givenname: Donghao surname: Zhang fullname: Zhang, Donghao email: dzha9516@uni.sydney.edu.au organization: School of Computer Science, The University of Sydney, Sydney, NSW, Australia – sequence: 5 givenname: Heng surname: Huang fullname: Huang, Heng email: heng.huang@pitt.edu organization: Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA – sequence: 6 givenname: Yanning orcidid: 0000-0002-2977-8057 surname: Zhang fullname: Zhang, Yanning email: ynzhang@nwpu.edu.cn organization: National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science and Engineering, Northwestern Polytechnical University, Xian, China – sequence: 7 givenname: Weidong orcidid: 0000-0003-3706-8896 surname: Cai fullname: Cai, Weidong email: tom.cai@sydney.edu.au organization: School of Computer Science, The University of Sydney, Sydney, NSW, Australia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31295109$$D View this record in MEDLINE/PubMed |
| BookMark | eNp90c9P2zAUB3BrAo3Cdp80abK0C5d0z3Ycx7tV3Q8qwVZtPewWOc4LMiRxsRMm_ntctXDgwMk-fL7P8vuekqPBD0jIBwZzxkB_2Vyt5hyYnnPNS5DFGzJjUpYZl_m_IzIDrsoMoOAn5DTGGwCWS9BvyYlgXMs0YEZuxTe6WC-yXzh-pbt7c48hmuBMR9cPwfSuoYvBRT8Gv3WWLv1w77tpdH5IIqX--3BLWx_oOvg4mhHpX7zucUjXZKgb6NUfuurNNcZ35Lg1XcT3h_OMbH583ywvssvfP1fLxWVmRa7GTFmrbN1abHQDpWhrXXBh6rosRV5AnbdK81wIBbxsmWxAF3mjQAFLQkIjzsj5fuw2-LsJ41j1LlrsOjOgn2LFuVTJSw6Jfn5Bb_wU0s-SEhKY1Gl6Up8Oaqp7bKptcL0JD9XTFhOAPbBpBzFg-0wYVLuiqlRUtSuqOhSVIsWLiHX7lY3BuO614Md90CHi8zulkjoB8Qhky51o |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_1016_j_artmed_2021_102073 crossref_primary_10_1016_j_media_2020_101846 crossref_primary_10_1016_j_bspc_2023_104590 crossref_primary_10_1109_TMI_2020_3034995 crossref_primary_10_1016_j_neucom_2019_10_007 crossref_primary_10_1016_j_ejmp_2021_04_016 crossref_primary_10_1088_1742_6596_2562_1_012008 crossref_primary_10_1016_j_bspc_2023_105684 crossref_primary_10_1109_TCDS_2022_3213944 crossref_primary_10_32604_cmc_2023_046883 crossref_primary_10_1007_s11517_022_02702_0 crossref_primary_10_1016_j_compbiomed_2021_105063 crossref_primary_10_1109_TMI_2022_3211764 crossref_primary_10_1007_s10596_022_10177_z crossref_primary_10_1016_j_bspc_2024_106021 crossref_primary_10_1109_ACCESS_2023_3326882 crossref_primary_10_1109_JBHI_2020_3008759 crossref_primary_10_1109_TMI_2021_3114329 crossref_primary_10_1109_ACCESS_2021_3090825 crossref_primary_10_1109_TMI_2022_3221529 crossref_primary_10_1148_ryai_230138 crossref_primary_10_1109_TMI_2022_3186731 crossref_primary_10_1016_j_neucom_2021_06_021 crossref_primary_10_1088_1361_6560_acb19a crossref_primary_10_1109_TMI_2021_3093982 crossref_primary_10_1016_j_knosys_2021_107692 crossref_primary_10_1109_ACCESS_2020_3006317 crossref_primary_10_1007_s11042_023_18002_0 crossref_primary_10_1109_TMI_2020_2974574 crossref_primary_10_1016_j_cmpb_2023_107475 crossref_primary_10_1016_j_bspc_2023_105508 crossref_primary_10_1016_j_neucom_2020_07_116 crossref_primary_10_1109_TMI_2021_3117564 crossref_primary_10_3389_fmed_2025_1589707 crossref_primary_10_1109_TMI_2020_3025308 crossref_primary_10_1016_j_compbiomed_2020_104160 crossref_primary_10_1038_s41598_024_71045_7 crossref_primary_10_1016_j_cmpb_2022_106918 crossref_primary_10_1109_TIM_2022_3192292 crossref_primary_10_1002_nbm_4609 crossref_primary_10_3390_diagnostics11111964 crossref_primary_10_1007_s13369_021_06502_w crossref_primary_10_1259_bjr_20210038 crossref_primary_10_1016_j_bspc_2020_102347 crossref_primary_10_1177_17562872221128791 crossref_primary_10_1109_TMI_2020_2973595 crossref_primary_10_1002_suco_70317 crossref_primary_10_1016_j_cmpb_2022_107160 crossref_primary_10_1016_j_neucom_2019_07_080 crossref_primary_10_1109_TASE_2023_3264556 crossref_primary_10_1016_j_patcog_2022_108556 crossref_primary_10_1016_j_ejmp_2020_09_004 crossref_primary_10_1038_s41598_021_90294_4 crossref_primary_10_3389_fonc_2021_771787 crossref_primary_10_3390_jimaging8050133 crossref_primary_10_1371_journal_pone_0253829 crossref_primary_10_3389_fonc_2022_895177 crossref_primary_10_1002_jum_15691 crossref_primary_10_1016_j_patcog_2021_108420 crossref_primary_10_3390_cancers16101809 crossref_primary_10_1002_ima_22744 crossref_primary_10_1007_s00521_022_07188_3 crossref_primary_10_1016_j_cmpb_2021_106480 crossref_primary_10_1109_TII_2022_3146175 crossref_primary_10_1109_TMI_2020_2972964 crossref_primary_10_32604_cmc_2022_023057 crossref_primary_10_1109_ACCESS_2024_3382212 crossref_primary_10_1016_j_compmedimag_2023_102301 crossref_primary_10_1109_JBHI_2021_3093932 crossref_primary_10_1016_j_engappai_2025_111348 |
| Cites_doi | 10.1109/TMI.2019.2935018 10.1109/TMI.2002.808355 10.1109/CVPR.2017.189 10.1109/TMI.2018.2876510 10.3322/caac.21387 10.1007/978-3-319-46723-8_68 10.1007/3-540-32390-2_64 10.1016/j.inffus.2017.10.005 10.1109/TMI.2014.2300694 10.2214/AJR.11.7405 10.1016/j.neucom.2017.09.084 10.1109/TPAMI.2017.2699184 10.1109/TPAMI.2017.2737535 10.1109/JBHI.2017.2775662 10.1007/978-3-030-00937-3_59 10.1109/TMI.2015.2496296 10.1109/TMI.2012.2201498 10.1016/j.media.2017.11.005 10.1016/j.jacr.2013.05.006 10.1109/ICIP.2018.8451551 10.1109/ICCV.2015.123 10.1109/CVPR.2019.00320 10.1109/ISBI.2018.8363604 10.1007/978-3-030-00937-3_43 10.1109/3DV.2016.79 10.1007/978-3-030-00937-3_82 10.1109/IJCNN.2018.8489136 10.1109/ICIP.2018.8451775 10.1109/TMI.2015.2508280 10.1007/978-3-030-00934-2_27 10.1109/TMI.2010.2057442 10.1109/TMI.2010.2046908 10.1109/CVPR.2015.7298965 10.1007/978-3-030-00934-2_94 10.1016/j.media.2013.12.002 10.1109/CVPR.2016.90 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/TMI.2019.2928056 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-254X |
| EndPage | 457 |
| ExternalDocumentID | 31295109 10_1109_TMI_2019_2928056 8759928 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Science, Technology and Innovation Commission of Shenzhen Municipality grantid: JCYJ20180306171334997 funderid: 10.13039/501100010877 – fundername: Synergy Innovation Foundation of the University and Enterprise for Graduate Students in the NPU grantid: XQ201911 – fundername: Northwestern Polytechnical University grantid: ZZ2019029 funderid: 10.13039/501100002663 – fundername: Project for Graduate Innovation Team of the NPU – fundername: National Natural Science Foundation of China grantid: 61771397 funderid: 10.13039/501100001809 |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION AAYOK CGR CUY CVF ECM EIF NPM PKN RIG Z5M 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c347t-7cc7cbfced9d083fb9623abb883460b4f7924337028f15d0964d70701b8850d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 90 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000525258900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0062 1558-254X |
| IngestDate | Sat Sep 27 21:35:54 EDT 2025 Sun Jun 29 16:36:18 EDT 2025 Wed Feb 19 02:30:14 EST 2025 Sat Nov 29 05:14:07 EST 2025 Tue Nov 18 22:53:28 EST 2025 Wed Aug 27 02:29:45 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c347t-7cc7cbfced9d083fb9623abb883460b4f7924337028f15d0964d70701b8850d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3706-8896 0000-0001-9273-2847 0000-0002-2977-8057 |
| PMID | 31295109 |
| PQID | 2350159096 |
| PQPubID | 85460 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1109_TMI_2019_2928056 crossref_citationtrail_10_1109_TMI_2019_2928056 proquest_miscellaneous_2257707520 pubmed_primary_31295109 proquest_journals_2350159096 ieee_primary_8759928 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-01 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref33 ref11 ref32 ref10 ref1 ref39 ref17 ref38 ref16 luc (ref30) 2016 ref19 liu (ref24) 2018 ref45 ref26 ref20 ref41 sciolla (ref23) 2017 ref22 ref21 ref43 goodfellow (ref35) 2014 ref28 ref27 (ref2) 2012 yu (ref25) 2017 ref29 ref8 ref7 ronneberger (ref18) 2015 ref9 ref4 kinga (ref44) 2015 ref3 çiçek (ref46) 2016 ref6 ref5 ref40 (ref42) 2013 |
| References_xml | – ident: ref28 doi: 10.1109/TMI.2019.2935018 – ident: ref8 doi: 10.1109/TMI.2002.808355 – ident: ref29 doi: 10.1109/CVPR.2017.189 – ident: ref12 doi: 10.1109/TMI.2018.2876510 – ident: ref1 doi: 10.3322/caac.21387 – ident: ref32 doi: 10.1007/978-3-319-46723-8_68 – ident: ref40 doi: 10.1007/3-540-32390-2_64 – year: 2018 ident: ref24 article-title: Densely dilated spatial pooling convolutional network using benign loss functions for imbalanced volumetric prostate segmentation publication-title: arXiv 1801 10517 – year: 2015 ident: ref44 article-title: A method for stochastic optimization publication-title: Proc Int Conf Learn Represent (ICLR) – year: 2016 ident: ref30 article-title: Semantic segmentation using adversarial networks publication-title: ArXiv 1611 08408 – ident: ref15 doi: 10.1016/j.inffus.2017.10.005 – start-page: 66 year: 2017 ident: ref25 article-title: Volumetric ConvNets with mixed residual connections for automated prostate segmentation from 3D MR images publication-title: Proc 31st AAAI Conf Artif Intell – ident: ref10 doi: 10.1109/TMI.2014.2300694 – ident: ref3 doi: 10.2214/AJR.11.7405 – ident: ref5 doi: 10.1016/j.neucom.2017.09.084 – start-page: 234 year: 2015 ident: ref18 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent – ident: ref33 doi: 10.1109/TPAMI.2017.2699184 – year: 2013 ident: ref42 publication-title: NCI-ISBI 2013 Challenge - Automated Segmentation of Prostate Structures – ident: ref34 doi: 10.1109/TPAMI.2017.2737535 – ident: ref16 doi: 10.1109/JBHI.2017.2775662 – ident: ref27 doi: 10.1007/978-3-030-00937-3_59 – ident: ref11 doi: 10.1109/TMI.2015.2496296 – ident: ref9 doi: 10.1109/TMI.2012.2201498 – ident: ref20 doi: 10.1016/j.media.2017.11.005 – ident: ref4 doi: 10.1016/j.jacr.2013.05.006 – ident: ref17 doi: 10.1109/ICIP.2018.8451551 – ident: ref45 doi: 10.1109/ICCV.2015.123 – start-page: 424 year: 2016 ident: ref46 article-title: 3D U-Net: Learning dense volumetric segmentation from sparse annotation publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent – ident: ref41 doi: 10.1109/CVPR.2019.00320 – ident: ref36 doi: 10.1109/ISBI.2018.8363604 – year: 2017 ident: ref23 article-title: Multi-pass 3D convolutional neural network segmentation of prostate MRI images – year: 2012 ident: ref2 publication-title: MICCAI Grand Challenge Prostate MR Image Segmentation 2012 Nice – ident: ref37 doi: 10.1007/978-3-030-00937-3_43 – ident: ref19 doi: 10.1109/3DV.2016.79 – ident: ref38 doi: 10.1007/978-3-030-00937-3_82 – ident: ref26 doi: 10.1109/IJCNN.2018.8489136 – ident: ref14 doi: 10.1109/ICIP.2018.8451775 – ident: ref7 doi: 10.1109/TMI.2015.2508280 – ident: ref13 doi: 10.1007/978-3-030-00934-2_27 – ident: ref6 doi: 10.1109/TMI.2010.2057442 – ident: ref39 doi: 10.1109/TMI.2010.2046908 – ident: ref21 doi: 10.1109/CVPR.2015.7298965 – ident: ref31 doi: 10.1007/978-3-030-00934-2_94 – ident: ref43 doi: 10.1016/j.media.2013.12.002 – start-page: 2672 year: 2014 ident: ref35 article-title: Generative adversarial nets publication-title: Proc 27th Int Conf Neural Inf Process Syst – ident: ref22 doi: 10.1109/CVPR.2016.90 |
| SSID | ssj0014509 |
| Score | 2.5918334 |
| Snippet | Accurate and reliable segmentation of the prostate gland using magnetic resonance (MR) imaging has critical importance for the diagnosis and treatment of... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 447 |
| SubjectTerms | adversarial training Algorithms Anisotropy Artificial neural networks Biomedical imaging Coders Convolution Decoding Deep learning Encoders-Decoders Glands Ground truth Humans Image classification Image processing Image Processing, Computer-Assisted - methods Image segmentation Imaging, Three-Dimensional - methods Localization Machine learning Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Medical imaging Medical treatment Neural networks Neural Networks, Computer Prostate Prostate - diagnostic imaging Prostate cancer Prostate segmentation Spatial resolution Three-dimensional displays Workflow |
| Title | 3D APA-Net: 3D Adversarial Pyramid Anisotropic Convolutional Network for Prostate Segmentation in MR Images |
| URI | https://ieeexplore.ieee.org/document/8759928 https://www.ncbi.nlm.nih.gov/pubmed/31295109 https://www.proquest.com/docview/2350159096 https://www.proquest.com/docview/2257707520 |
| Volume | 39 |
| WOSCitedRecordID | wos000525258900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_aMkr7sI9267x1RYO9DObGkWxL2lvoVlZYQtjCyJuR9TFMG7vETmH__U62Y_rQDvYm8Mm2fCfd73xfAB-MSK3iiQ4pi10YK-pCJagJUbk6KcaRiNumfb--89lMLJdyvgOfhlwYa20bfGbP_bD15ZtKb_yvshFiaymp2IVdztMuV2vwGMRJF85BfcXYKKVbl2QkR4vplY_hkucUJ6PCP4B9hmouaaMQ72mjtr3K40iz1TiXz_7vXZ_D0x5ZkkknCi9gx5ZHcHiv3uAR7E97T_oxXLMvZDKfhDPbfCZ-7Bsz18qLI5n_WatVYcikLOqqWVe3hSYXVXnXSylSzLrgcYKIl8x93ggiVvLT_l71mUwlKUoy_UGuVnhc1S9hcfl1cfEt7BsvhJrFvAm51lznTlsjDUI0l0sESSrPhWBxGuWx42i1McYRm7hxYtAKig3Hs2OMFElk2CvYK6vSvgYSGZfnnBojU4dTlWJUpzLlxsWJUZoFMNp-_0z3Rcl9b4ybrDVOIpkh8zLPvKxnXgAfhxm3XUGOf9Aee8YMdD1PAjjdsjjrd2ydUe9hTSSuJYD3w2Xca96BokpbbZAGzzdcZ0KjAE460RjuvZWoNw8_8y0cUG-pt_Hep7DXrDf2HTzRd01Rr89QoJfirBXov7PZ7aA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NgcZ44GPjIzDASLwgkTW1nTjmrRpMq2ijCiq0t8jxB4qgydSmk_jvOSdptAdA4s1SzkmcO_t-l_sCeGvSxCoR65Ay7kKuqAtVSk2IytXJdBylvG3a920msiy9vJSLPXg_5MJYa9vgM3vqh60v39R663-VjRBbS0nTW3A75pxGXbbW4DPgcRfQQX3N2CihO6dkJEfL-dRHcclTitNR5R_CAUNFF7dxiDf0Udtg5e9Ys9U55w_-720fwv0eW5JJJwyPYM9WR3DvRsXBIziY9770Y_jBPpLJYhJmtvlA_Ni3Zt4oL5Bk8WutVqUhk6rc1M26vio1Oaur615OkSLrwscJYl6y8JkjiFnJV_t91ecyVaSsyPwLma7wwNo8huX5p-XZRdi3Xgg146IJhdZCF05bIw2CNFdIhEmqKNKU8SQquBNotzEmEJ24cWzQDuJG4OkxRoo4MuwJ7Fd1ZZ8BiYwrCkGNkYnDqUoxqhOZCON4bJRmAYx23z_XfVly3x3jZ96aJ5HMkXm5Z17eMy-Ad8OMq64kxz9ojz1jBrqeJwGc7Fic93t2k1PvY40lriWAN8Nl3G3ehaIqW2-RBk84XGdMowCedqIx3HsnUc___MzXcPdiOZ_ls2n2-QUcUm-3t9HfJ7DfrLf2JdzR1025Wb9qxfo3nI7v_w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+APA-Net%3A+3D+Adversarial+Pyramid+Anisotropic+Convolutional+Network+for+Prostate+Segmentation+in+MR+Images&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Jia%2C+Haozhe&rft.au=Xia%2C+Yong&rft.au=Song%2C+Yang&rft.au=Zhang%2C+Donghao&rft.date=2020-02-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=39&rft.issue=2&rft.spage=447&rft.epage=457&rft_id=info:doi/10.1109%2FTMI.2019.2928056&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2019_2928056 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |