3D APA-Net: 3D Adversarial Pyramid Anisotropic Convolutional Network for Prostate Segmentation in MR Images

Accurate and reliable segmentation of the prostate gland using magnetic resonance (MR) imaging has critical importance for the diagnosis and treatment of prostate diseases, especially prostate cancer. Although many automated segmentation approaches, including those based on deep learning have been p...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging Vol. 39; no. 2; pp. 447 - 457
Main Authors: Jia, Haozhe, Xia, Yong, Song, Yang, Zhang, Donghao, Huang, Heng, Zhang, Yanning, Cai, Weidong
Format: Journal Article
Language:English
Published: United States IEEE 01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0278-0062, 1558-254X, 1558-254X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Accurate and reliable segmentation of the prostate gland using magnetic resonance (MR) imaging has critical importance for the diagnosis and treatment of prostate diseases, especially prostate cancer. Although many automated segmentation approaches, including those based on deep learning have been proposed, the segmentation performance still has room for improvement due to the large variability in image appearance, imaging interference, and anisotropic spatial resolution. In this paper, we propose the 3D adversarial pyramid anisotropic convolutional deep neural network (3D APA-Net) for prostate segmentation in MR images. This model is composed of a generator (i.e., 3D PA-Net) that performs image segmentation and a discriminator (i.e., a six-layer convolutional neural network) that differentiates between a segmentation result and its corresponding ground truth. The 3D PA-Net has an encoder-decoder architecture, which consists of a 3D ResNet encoder, an anisotropic convolutional decoder, and multi-level pyramid convolutional skip connections. The anisotropic convolutional blocks can exploit the 3D context information of the MR images with anisotropic resolution, the pyramid convolutional blocks address both voxel classification and gland localization issues, and the adversarial training regularizes 3D PA-Net and thus enables it to generate spatially consistent and continuous segmentation results. We evaluated the proposed 3D APA-Net against several state-of-the-art deep learning-based segmentation approaches on two public databases and the hybrid of the two. Our results suggest that the proposed model outperforms the compared approaches on three databases and could be used in a routine clinical workflow.
AbstractList Accurate and reliable segmentation of the prostate gland using magnetic resonance (MR) imaging has critical importance for the diagnosis and treatment of prostate diseases, especially prostate cancer. Although many automated segmentation approaches, including those based on deep learning have been proposed, the segmentation performance still has room for improvement due to the large variability in image appearance, imaging interference, and anisotropic spatial resolution. In this paper, we propose the 3D adversarial pyramid anisotropic convolutional deep neural network (3D APA-Net) for prostate segmentation in MR images. This model is composed of a generator (i.e., 3D PA-Net) that performs image segmentation and a discriminator (i.e., a six-layer convolutional neural network) that differentiates between a segmentation result and its corresponding ground truth. The 3D PA-Net has an encoder-decoder architecture, which consists of a 3D ResNet encoder, an anisotropic convolutional decoder, and multi-level pyramid convolutional skip connections. The anisotropic convolutional blocks can exploit the 3D context information of the MR images with anisotropic resolution, the pyramid convolutional blocks address both voxel classification and gland localization issues, and the adversarial training regularizes 3D PA-Net and thus enables it to generate spatially consistent and continuous segmentation results. We evaluated the proposed 3D APA-Net against several state-of-the-art deep learning-based segmentation approaches on two public databases and the hybrid of the two. Our results suggest that the proposed model outperforms the compared approaches on three databases and could be used in a routine clinical workflow.
Accurate and reliable segmentation of the prostate gland using magnetic resonance (MR) imaging has critical importance for the diagnosis and treatment of prostate diseases, especially prostate cancer. Although many automated segmentation approaches, including those based on deep learning have been proposed, the segmentation performance still has room for improvement due to the large variability in image appearance, imaging interference, and anisotropic spatial resolution. In this paper, we propose the 3D adversarial pyramid anisotropic convolutional deep neural network (3D APA-Net) for prostate segmentation in MR images. This model is composed of a generator (i.e., 3D PA-Net) that performs image segmentation and a discriminator (i.e., a six-layer convolutional neural network) that differentiates between a segmentation result and its corresponding ground truth. The 3D PA-Net has an encoder-decoder architecture, which consists of a 3D ResNet encoder, an anisotropic convolutional decoder, and multi-level pyramid convolutional skip connections. The anisotropic convolutional blocks can exploit the 3D context information of the MR images with anisotropic resolution, the pyramid convolutional blocks address both voxel classification and gland localization issues, and the adversarial training regularizes 3D PA-Net and thus enables it to generate spatially consistent and continuous segmentation results. We evaluated the proposed 3D APA-Net against several state-of-the-art deep learning-based segmentation approaches on two public databases and the hybrid of the two. Our results suggest that the proposed model outperforms the compared approaches on three databases and could be used in a routine clinical workflow.Accurate and reliable segmentation of the prostate gland using magnetic resonance (MR) imaging has critical importance for the diagnosis and treatment of prostate diseases, especially prostate cancer. Although many automated segmentation approaches, including those based on deep learning have been proposed, the segmentation performance still has room for improvement due to the large variability in image appearance, imaging interference, and anisotropic spatial resolution. In this paper, we propose the 3D adversarial pyramid anisotropic convolutional deep neural network (3D APA-Net) for prostate segmentation in MR images. This model is composed of a generator (i.e., 3D PA-Net) that performs image segmentation and a discriminator (i.e., a six-layer convolutional neural network) that differentiates between a segmentation result and its corresponding ground truth. The 3D PA-Net has an encoder-decoder architecture, which consists of a 3D ResNet encoder, an anisotropic convolutional decoder, and multi-level pyramid convolutional skip connections. The anisotropic convolutional blocks can exploit the 3D context information of the MR images with anisotropic resolution, the pyramid convolutional blocks address both voxel classification and gland localization issues, and the adversarial training regularizes 3D PA-Net and thus enables it to generate spatially consistent and continuous segmentation results. We evaluated the proposed 3D APA-Net against several state-of-the-art deep learning-based segmentation approaches on two public databases and the hybrid of the two. Our results suggest that the proposed model outperforms the compared approaches on three databases and could be used in a routine clinical workflow.
Author Xia, Yong
Zhang, Yanning
Huang, Heng
Jia, Haozhe
Song, Yang
Cai, Weidong
Zhang, Donghao
Author_xml – sequence: 1
  givenname: Haozhe
  surname: Jia
  fullname: Jia, Haozhe
  email: haozhejia@mail.nwpu.edu.cn
  organization: National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science and Engineering, Northwestern Polytechnical University, Xian, China
– sequence: 2
  givenname: Yong
  orcidid: 0000-0001-9273-2847
  surname: Xia
  fullname: Xia, Yong
  email: yxia@nwpu.edu.cn
  organization: National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science and Engineering, Northwestern Polytechnical University, Xian, China
– sequence: 3
  givenname: Yang
  surname: Song
  fullname: Song, Yang
  email: yang.song1@unsw.edu.au
  organization: School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia
– sequence: 4
  givenname: Donghao
  surname: Zhang
  fullname: Zhang, Donghao
  email: dzha9516@uni.sydney.edu.au
  organization: School of Computer Science, The University of Sydney, Sydney, NSW, Australia
– sequence: 5
  givenname: Heng
  surname: Huang
  fullname: Huang, Heng
  email: heng.huang@pitt.edu
  organization: Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA
– sequence: 6
  givenname: Yanning
  orcidid: 0000-0002-2977-8057
  surname: Zhang
  fullname: Zhang, Yanning
  email: ynzhang@nwpu.edu.cn
  organization: National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science and Engineering, Northwestern Polytechnical University, Xian, China
– sequence: 7
  givenname: Weidong
  orcidid: 0000-0003-3706-8896
  surname: Cai
  fullname: Cai, Weidong
  email: tom.cai@sydney.edu.au
  organization: School of Computer Science, The University of Sydney, Sydney, NSW, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31295109$$D View this record in MEDLINE/PubMed
BookMark eNp90c9P2zAUB3BrAo3Cdp80abK0C5d0z3Ycx7tV3Q8qwVZtPewWOc4LMiRxsRMm_ntctXDgwMk-fL7P8vuekqPBD0jIBwZzxkB_2Vyt5hyYnnPNS5DFGzJjUpYZl_m_IzIDrsoMoOAn5DTGGwCWS9BvyYlgXMs0YEZuxTe6WC-yXzh-pbt7c48hmuBMR9cPwfSuoYvBRT8Gv3WWLv1w77tpdH5IIqX--3BLWx_oOvg4mhHpX7zucUjXZKgb6NUfuurNNcZ35Lg1XcT3h_OMbH583ywvssvfP1fLxWVmRa7GTFmrbN1abHQDpWhrXXBh6rosRV5AnbdK81wIBbxsmWxAF3mjQAFLQkIjzsj5fuw2-LsJ41j1LlrsOjOgn2LFuVTJSw6Jfn5Bb_wU0s-SEhKY1Gl6Up8Oaqp7bKptcL0JD9XTFhOAPbBpBzFg-0wYVLuiqlRUtSuqOhSVIsWLiHX7lY3BuO614Md90CHi8zulkjoB8Qhky51o
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_artmed_2021_102073
crossref_primary_10_1016_j_media_2020_101846
crossref_primary_10_1016_j_bspc_2023_104590
crossref_primary_10_1109_TMI_2020_3034995
crossref_primary_10_1016_j_neucom_2019_10_007
crossref_primary_10_1016_j_ejmp_2021_04_016
crossref_primary_10_1088_1742_6596_2562_1_012008
crossref_primary_10_1016_j_bspc_2023_105684
crossref_primary_10_1109_TCDS_2022_3213944
crossref_primary_10_32604_cmc_2023_046883
crossref_primary_10_1007_s11517_022_02702_0
crossref_primary_10_1016_j_compbiomed_2021_105063
crossref_primary_10_1109_TMI_2022_3211764
crossref_primary_10_1007_s10596_022_10177_z
crossref_primary_10_1016_j_bspc_2024_106021
crossref_primary_10_1109_ACCESS_2023_3326882
crossref_primary_10_1109_JBHI_2020_3008759
crossref_primary_10_1109_TMI_2021_3114329
crossref_primary_10_1109_ACCESS_2021_3090825
crossref_primary_10_1109_TMI_2022_3221529
crossref_primary_10_1148_ryai_230138
crossref_primary_10_1109_TMI_2022_3186731
crossref_primary_10_1016_j_neucom_2021_06_021
crossref_primary_10_1088_1361_6560_acb19a
crossref_primary_10_1109_TMI_2021_3093982
crossref_primary_10_1016_j_knosys_2021_107692
crossref_primary_10_1109_ACCESS_2020_3006317
crossref_primary_10_1007_s11042_023_18002_0
crossref_primary_10_1109_TMI_2020_2974574
crossref_primary_10_1016_j_cmpb_2023_107475
crossref_primary_10_1016_j_bspc_2023_105508
crossref_primary_10_1016_j_neucom_2020_07_116
crossref_primary_10_1109_TMI_2021_3117564
crossref_primary_10_3389_fmed_2025_1589707
crossref_primary_10_1109_TMI_2020_3025308
crossref_primary_10_1016_j_compbiomed_2020_104160
crossref_primary_10_1038_s41598_024_71045_7
crossref_primary_10_1016_j_cmpb_2022_106918
crossref_primary_10_1109_TIM_2022_3192292
crossref_primary_10_1002_nbm_4609
crossref_primary_10_3390_diagnostics11111964
crossref_primary_10_1007_s13369_021_06502_w
crossref_primary_10_1259_bjr_20210038
crossref_primary_10_1016_j_bspc_2020_102347
crossref_primary_10_1177_17562872221128791
crossref_primary_10_1109_TMI_2020_2973595
crossref_primary_10_1002_suco_70317
crossref_primary_10_1016_j_cmpb_2022_107160
crossref_primary_10_1016_j_neucom_2019_07_080
crossref_primary_10_1109_TASE_2023_3264556
crossref_primary_10_1016_j_patcog_2022_108556
crossref_primary_10_1016_j_ejmp_2020_09_004
crossref_primary_10_1038_s41598_021_90294_4
crossref_primary_10_3389_fonc_2021_771787
crossref_primary_10_3390_jimaging8050133
crossref_primary_10_1371_journal_pone_0253829
crossref_primary_10_3389_fonc_2022_895177
crossref_primary_10_1002_jum_15691
crossref_primary_10_1016_j_patcog_2021_108420
crossref_primary_10_3390_cancers16101809
crossref_primary_10_1002_ima_22744
crossref_primary_10_1007_s00521_022_07188_3
crossref_primary_10_1016_j_cmpb_2021_106480
crossref_primary_10_1109_TII_2022_3146175
crossref_primary_10_1109_TMI_2020_2972964
crossref_primary_10_32604_cmc_2022_023057
crossref_primary_10_1109_ACCESS_2024_3382212
crossref_primary_10_1016_j_compmedimag_2023_102301
crossref_primary_10_1109_JBHI_2021_3093932
crossref_primary_10_1016_j_engappai_2025_111348
Cites_doi 10.1109/TMI.2019.2935018
10.1109/TMI.2002.808355
10.1109/CVPR.2017.189
10.1109/TMI.2018.2876510
10.3322/caac.21387
10.1007/978-3-319-46723-8_68
10.1007/3-540-32390-2_64
10.1016/j.inffus.2017.10.005
10.1109/TMI.2014.2300694
10.2214/AJR.11.7405
10.1016/j.neucom.2017.09.084
10.1109/TPAMI.2017.2699184
10.1109/TPAMI.2017.2737535
10.1109/JBHI.2017.2775662
10.1007/978-3-030-00937-3_59
10.1109/TMI.2015.2496296
10.1109/TMI.2012.2201498
10.1016/j.media.2017.11.005
10.1016/j.jacr.2013.05.006
10.1109/ICIP.2018.8451551
10.1109/ICCV.2015.123
10.1109/CVPR.2019.00320
10.1109/ISBI.2018.8363604
10.1007/978-3-030-00937-3_43
10.1109/3DV.2016.79
10.1007/978-3-030-00937-3_82
10.1109/IJCNN.2018.8489136
10.1109/ICIP.2018.8451775
10.1109/TMI.2015.2508280
10.1007/978-3-030-00934-2_27
10.1109/TMI.2010.2057442
10.1109/TMI.2010.2046908
10.1109/CVPR.2015.7298965
10.1007/978-3-030-00934-2_94
10.1016/j.media.2013.12.002
10.1109/CVPR.2016.90
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2019.2928056
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 457
ExternalDocumentID 31295109
10_1109_TMI_2019_2928056
8759928
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Science, Technology and Innovation Commission of Shenzhen Municipality
  grantid: JCYJ20180306171334997
  funderid: 10.13039/501100010877
– fundername: Synergy Innovation Foundation of the University and Enterprise for Graduate Students in the NPU
  grantid: XQ201911
– fundername: Northwestern Polytechnical University
  grantid: ZZ2019029
  funderid: 10.13039/501100002663
– fundername: Project for Graduate Innovation Team of the NPU
– fundername: National Natural Science Foundation of China
  grantid: 61771397
  funderid: 10.13039/501100001809
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIG
Z5M
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c347t-7cc7cbfced9d083fb9623abb883460b4f7924337028f15d0964d70701b8850d3
IEDL.DBID RIE
ISICitedReferencesCount 90
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000525258900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0062
1558-254X
IngestDate Sat Sep 27 21:35:54 EDT 2025
Sun Jun 29 16:36:18 EDT 2025
Wed Feb 19 02:30:14 EST 2025
Sat Nov 29 05:14:07 EST 2025
Tue Nov 18 22:53:28 EST 2025
Wed Aug 27 02:29:45 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-7cc7cbfced9d083fb9623abb883460b4f7924337028f15d0964d70701b8850d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3706-8896
0000-0001-9273-2847
0000-0002-2977-8057
PMID 31295109
PQID 2350159096
PQPubID 85460
PageCount 11
ParticipantIDs crossref_primary_10_1109_TMI_2019_2928056
crossref_citationtrail_10_1109_TMI_2019_2928056
proquest_miscellaneous_2257707520
pubmed_primary_31295109
proquest_journals_2350159096
ieee_primary_8759928
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref33
ref11
ref32
ref10
ref1
ref39
ref17
ref38
ref16
luc (ref30) 2016
ref19
liu (ref24) 2018
ref45
ref26
ref20
ref41
sciolla (ref23) 2017
ref22
ref21
ref43
goodfellow (ref35) 2014
ref28
ref27
(ref2) 2012
yu (ref25) 2017
ref29
ref8
ref7
ronneberger (ref18) 2015
ref9
ref4
kinga (ref44) 2015
ref3
çiçek (ref46) 2016
ref6
ref5
ref40
(ref42) 2013
References_xml – ident: ref28
  doi: 10.1109/TMI.2019.2935018
– ident: ref8
  doi: 10.1109/TMI.2002.808355
– ident: ref29
  doi: 10.1109/CVPR.2017.189
– ident: ref12
  doi: 10.1109/TMI.2018.2876510
– ident: ref1
  doi: 10.3322/caac.21387
– ident: ref32
  doi: 10.1007/978-3-319-46723-8_68
– ident: ref40
  doi: 10.1007/3-540-32390-2_64
– year: 2018
  ident: ref24
  article-title: Densely dilated spatial pooling convolutional network using benign loss functions for imbalanced volumetric prostate segmentation
  publication-title: arXiv 1801 10517
– year: 2015
  ident: ref44
  article-title: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Represent (ICLR)
– year: 2016
  ident: ref30
  article-title: Semantic segmentation using adversarial networks
  publication-title: ArXiv 1611 08408
– ident: ref15
  doi: 10.1016/j.inffus.2017.10.005
– start-page: 66
  year: 2017
  ident: ref25
  article-title: Volumetric ConvNets with mixed residual connections for automated prostate segmentation from 3D MR images
  publication-title: Proc 31st AAAI Conf Artif Intell
– ident: ref10
  doi: 10.1109/TMI.2014.2300694
– ident: ref3
  doi: 10.2214/AJR.11.7405
– ident: ref5
  doi: 10.1016/j.neucom.2017.09.084
– start-page: 234
  year: 2015
  ident: ref18
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
– ident: ref33
  doi: 10.1109/TPAMI.2017.2699184
– year: 2013
  ident: ref42
  publication-title: NCI-ISBI 2013 Challenge - Automated Segmentation of Prostate Structures
– ident: ref34
  doi: 10.1109/TPAMI.2017.2737535
– ident: ref16
  doi: 10.1109/JBHI.2017.2775662
– ident: ref27
  doi: 10.1007/978-3-030-00937-3_59
– ident: ref11
  doi: 10.1109/TMI.2015.2496296
– ident: ref9
  doi: 10.1109/TMI.2012.2201498
– ident: ref20
  doi: 10.1016/j.media.2017.11.005
– ident: ref4
  doi: 10.1016/j.jacr.2013.05.006
– ident: ref17
  doi: 10.1109/ICIP.2018.8451551
– ident: ref45
  doi: 10.1109/ICCV.2015.123
– start-page: 424
  year: 2016
  ident: ref46
  article-title: 3D U-Net: Learning dense volumetric segmentation from sparse annotation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
– ident: ref41
  doi: 10.1109/CVPR.2019.00320
– ident: ref36
  doi: 10.1109/ISBI.2018.8363604
– year: 2017
  ident: ref23
  article-title: Multi-pass 3D convolutional neural network segmentation of prostate MRI images
– year: 2012
  ident: ref2
  publication-title: MICCAI Grand Challenge Prostate MR Image Segmentation 2012 Nice
– ident: ref37
  doi: 10.1007/978-3-030-00937-3_43
– ident: ref19
  doi: 10.1109/3DV.2016.79
– ident: ref38
  doi: 10.1007/978-3-030-00937-3_82
– ident: ref26
  doi: 10.1109/IJCNN.2018.8489136
– ident: ref14
  doi: 10.1109/ICIP.2018.8451775
– ident: ref7
  doi: 10.1109/TMI.2015.2508280
– ident: ref13
  doi: 10.1007/978-3-030-00934-2_27
– ident: ref6
  doi: 10.1109/TMI.2010.2057442
– ident: ref39
  doi: 10.1109/TMI.2010.2046908
– ident: ref21
  doi: 10.1109/CVPR.2015.7298965
– ident: ref31
  doi: 10.1007/978-3-030-00934-2_94
– ident: ref43
  doi: 10.1016/j.media.2013.12.002
– start-page: 2672
  year: 2014
  ident: ref35
  article-title: Generative adversarial nets
  publication-title: Proc 27th Int Conf Neural Inf Process Syst
– ident: ref22
  doi: 10.1109/CVPR.2016.90
SSID ssj0014509
Score 2.5918334
Snippet Accurate and reliable segmentation of the prostate gland using magnetic resonance (MR) imaging has critical importance for the diagnosis and treatment of...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 447
SubjectTerms adversarial training
Algorithms
Anisotropy
Artificial neural networks
Biomedical imaging
Coders
Convolution
Decoding
Deep learning
Encoders-Decoders
Glands
Ground truth
Humans
Image classification
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Imaging, Three-Dimensional - methods
Localization
Machine learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Medical imaging
Medical treatment
Neural networks
Neural Networks, Computer
Prostate
Prostate - diagnostic imaging
Prostate cancer
Prostate segmentation
Spatial resolution
Three-dimensional displays
Workflow
Title 3D APA-Net: 3D Adversarial Pyramid Anisotropic Convolutional Network for Prostate Segmentation in MR Images
URI https://ieeexplore.ieee.org/document/8759928
https://www.ncbi.nlm.nih.gov/pubmed/31295109
https://www.proquest.com/docview/2350159096
https://www.proquest.com/docview/2257707520
Volume 39
WOSCitedRecordID wos000525258900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_aMkr7sI9267x1RYO9DObGkWxL2lvoVlZYQtjCyJuR9TFMG7vETmH__U62Y_rQDvYm8Mm2fCfd73xfAB-MSK3iiQ4pi10YK-pCJagJUbk6KcaRiNumfb--89lMLJdyvgOfhlwYa20bfGbP_bD15ZtKb_yvshFiaymp2IVdztMuV2vwGMRJF85BfcXYKKVbl2QkR4vplY_hkucUJ6PCP4B9hmouaaMQ72mjtr3K40iz1TiXz_7vXZ_D0x5ZkkknCi9gx5ZHcHiv3uAR7E97T_oxXLMvZDKfhDPbfCZ-7Bsz18qLI5n_WatVYcikLOqqWVe3hSYXVXnXSylSzLrgcYKIl8x93ggiVvLT_l71mUwlKUoy_UGuVnhc1S9hcfl1cfEt7BsvhJrFvAm51lznTlsjDUI0l0sESSrPhWBxGuWx42i1McYRm7hxYtAKig3Hs2OMFElk2CvYK6vSvgYSGZfnnBojU4dTlWJUpzLlxsWJUZoFMNp-_0z3Rcl9b4ybrDVOIpkh8zLPvKxnXgAfhxm3XUGOf9Aee8YMdD1PAjjdsjjrd2ydUe9hTSSuJYD3w2Xca96BokpbbZAGzzdcZ0KjAE460RjuvZWoNw8_8y0cUG-pt_Hep7DXrDf2HTzRd01Rr89QoJfirBXov7PZ7aA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NgcZ44GPjIzDASLwgkTW1nTjmrRpMq2ijCiq0t8jxB4qgydSmk_jvOSdptAdA4s1SzkmcO_t-l_sCeGvSxCoR65Ay7kKuqAtVSk2IytXJdBylvG3a920msiy9vJSLPXg_5MJYa9vgM3vqh60v39R663-VjRBbS0nTW3A75pxGXbbW4DPgcRfQQX3N2CihO6dkJEfL-dRHcclTitNR5R_CAUNFF7dxiDf0Udtg5e9Ys9U55w_-720fwv0eW5JJJwyPYM9WR3DvRsXBIziY9770Y_jBPpLJYhJmtvlA_Ni3Zt4oL5Bk8WutVqUhk6rc1M26vio1Oaur615OkSLrwscJYl6y8JkjiFnJV_t91ecyVaSsyPwLma7wwNo8huX5p-XZRdi3Xgg146IJhdZCF05bIw2CNFdIhEmqKNKU8SQquBNotzEmEJ24cWzQDuJG4OkxRoo4MuwJ7Fd1ZZ8BiYwrCkGNkYnDqUoxqhOZCON4bJRmAYx23z_XfVly3x3jZ96aJ5HMkXm5Z17eMy-Ad8OMq64kxz9ojz1jBrqeJwGc7Fic93t2k1PvY40lriWAN8Nl3G3ehaIqW2-RBk84XGdMowCedqIx3HsnUc___MzXcPdiOZ_ls2n2-QUcUm-3t9HfJ7DfrLf2JdzR1025Wb9qxfo3nI7v_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+APA-Net%3A+3D+Adversarial+Pyramid+Anisotropic+Convolutional+Network+for+Prostate+Segmentation+in+MR+Images&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Jia%2C+Haozhe&rft.au=Xia%2C+Yong&rft.au=Song%2C+Yang&rft.au=Zhang%2C+Donghao&rft.date=2020-02-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=39&rft.issue=2&rft.spage=447&rft.epage=457&rft_id=info:doi/10.1109%2FTMI.2019.2928056&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2019_2928056
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon