Deep Attentive Features for Prostate Segmentation in 3D Transrectal Ultrasound

Automatic prostate segmentation in transrectal ultrasound (TRUS) images is of essential importance for image-guided prostate interventions and treatment planning. However, developing such automatic solutions remains very challenging due to the missing/ambiguous boundary and inhomogeneous intensity d...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on medical imaging Ročník 38; číslo 12; s. 2768 - 2778
Hlavní autori: Wang, Yi, Ni, Dong, Dou, Haoran, Hu, Xiaowei, Zhu, Lei, Yang, Xin, Xu, Ming, Qin, Jing, Heng, Pheng-Ann, Wang, Tianfu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0278-0062, 1558-254X, 1558-254X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Automatic prostate segmentation in transrectal ultrasound (TRUS) images is of essential importance for image-guided prostate interventions and treatment planning. However, developing such automatic solutions remains very challenging due to the missing/ambiguous boundary and inhomogeneous intensity distribution of the prostate in TRUS, as well as the large variability in prostate shapes. This paper develops a novel 3D deep neural network equipped with attention modules for better prostate segmentation in TRUS by fully exploiting the complementary information encoded in different layers of the convolutional neural network (CNN). Our attention module utilizes the attention mechanism to selectively leverage the multi-level features integrated from different layers to refine the features at each individual layer, suppressing the non-prostate noise at shallow layers of the CNN and increasing more prostate details into features at deep layers. Experimental results on challenging 3D TRUS volumes show that our method attains satisfactory segmentation performance. The proposed attention mechanism is a general strategy to aggregate multi-level deep features and has the potential to be used for other medical image segmentation tasks. The code is publicly available at https://github.com/wulalago/DAF3D.
AbstractList Automatic prostate segmentation in transrectal ultrasound (TRUS) images is of essential importance for image-guided prostate interventions and treatment planning. However, developing such automatic solutions remains very challenging due to the missing/ambiguous boundary and inhomogeneous intensity distribution of the prostate in TRUS, as well as the large variability in prostate shapes. This paper develops a novel 3D deep neural network equipped with attention modules for better prostate segmentation in TRUS by fully exploiting the complementary information encoded in different layers of the convolutional neural network (CNN). Our attention module utilizes the attention mechanism to selectively leverage the multi-level features integrated from different layers to refine the features at each individual layer, suppressing the non-prostate noise at shallow layers of the CNN and increasing more prostate details into features at deep layers. Experimental results on challenging 3D TRUS volumes show that our method attains satisfactory segmentation performance. The proposed attention mechanism is a general strategy to aggregate multi-level deep features and has the potential to be used for other medical image segmentation tasks. The code is publicly available at https://github.com/wulalago/DAF3D.Automatic prostate segmentation in transrectal ultrasound (TRUS) images is of essential importance for image-guided prostate interventions and treatment planning. However, developing such automatic solutions remains very challenging due to the missing/ambiguous boundary and inhomogeneous intensity distribution of the prostate in TRUS, as well as the large variability in prostate shapes. This paper develops a novel 3D deep neural network equipped with attention modules for better prostate segmentation in TRUS by fully exploiting the complementary information encoded in different layers of the convolutional neural network (CNN). Our attention module utilizes the attention mechanism to selectively leverage the multi-level features integrated from different layers to refine the features at each individual layer, suppressing the non-prostate noise at shallow layers of the CNN and increasing more prostate details into features at deep layers. Experimental results on challenging 3D TRUS volumes show that our method attains satisfactory segmentation performance. The proposed attention mechanism is a general strategy to aggregate multi-level deep features and has the potential to be used for other medical image segmentation tasks. The code is publicly available at https://github.com/wulalago/DAF3D.
Automatic prostate segmentation in transrectal ultrasound (TRUS) images is of essential importance for image-guided prostate interventions and treatment planning. However, developing such automatic solutions remains very challenging due to the missing/ambiguous boundary and inhomogeneous intensity distribution of the prostate in TRUS, as well as the large variability in prostate shapes. This paper develops a novel 3D deep neural network equipped with attention modules for better prostate segmentation in TRUS by fully exploiting the complementary information encoded in different layers of the convolutional neural network (CNN). Our attention module utilizes the attention mechanism to selectively leverage the multi-level features integrated from different layers to refine the features at each individual layer, suppressing the non-prostate noise at shallow layers of the CNN and increasing more prostate details into features at deep layers. Experimental results on challenging 3D TRUS volumes show that our method attains satisfactory segmentation performance. The proposed attention mechanism is a general strategy to aggregate multi-level deep features and has the potential to be used for other medical image segmentation tasks. The code is publicly available at https://github.com/wulalago/DAF3D.
Author Wang, Yi
Ni, Dong
Zhu, Lei
Yang, Xin
Heng, Pheng-Ann
Hu, Xiaowei
Dou, Haoran
Qin, Jing
Xu, Ming
Wang, Tianfu
Author_xml – sequence: 1
  givenname: Yi
  orcidid: 0000-0002-8428-288X
  surname: Wang
  fullname: Wang, Yi
  organization: National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Health Science Center, School of Biomedical Engineering, Shenzhen University, Shenzhen, China
– sequence: 2
  givenname: Dong
  orcidid: 0000-0002-9146-6003
  surname: Ni
  fullname: Ni, Dong
  email: nidong@szu.edu.cn
  organization: National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Health Science Center, School of Biomedical Engineering, Shenzhen University, Shenzhen, China
– sequence: 3
  givenname: Haoran
  orcidid: 0000-0001-8628-5489
  surname: Dou
  fullname: Dou, Haoran
  organization: National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Health Science Center, School of Biomedical Engineering, Shenzhen University, Shenzhen, China
– sequence: 4
  givenname: Xiaowei
  orcidid: 0000-0002-5708-7018
  surname: Hu
  fullname: Hu, Xiaowei
  organization: Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong
– sequence: 5
  givenname: Lei
  orcidid: 0000-0003-3871-663X
  surname: Zhu
  fullname: Zhu, Lei
  organization: Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong
– sequence: 6
  givenname: Xin
  orcidid: 0000-0003-4653-6524
  surname: Yang
  fullname: Yang, Xin
  organization: Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong
– sequence: 7
  givenname: Ming
  surname: Xu
  fullname: Xu, Ming
  organization: Department of Medical Ultrasonics, First Affiliated Hospital, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-sen University, Guangzhou, China
– sequence: 8
  givenname: Jing
  orcidid: 0000-0002-2961-0860
  surname: Qin
  fullname: Qin, Jing
  organization: Centre for Smart Health, School of Nursing, The Hong Kong Polytechnic University, Hong Kong
– sequence: 9
  givenname: Pheng-Ann
  orcidid: 0000-0003-3055-5034
  surname: Heng
  fullname: Heng, Pheng-Ann
  organization: Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong
– sequence: 10
  givenname: Tianfu
  orcidid: 0000-0002-1248-1214
  surname: Wang
  fullname: Wang, Tianfu
  organization: National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Health Science Center, School of Biomedical Engineering, Shenzhen University, Shenzhen, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31021793$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1r3DAQhkVJaTZp74VCEeSSizeakS3Lx5BvSJtCN9CbkOVxcfDKW0kO5N9HYTc55FAQzOV5Bs37HrA9P3li7CuIJYBoTlY_bpYooFliAxJ0-YEtoKp0gVX5Z48tBNa6EELhPjuI8UEIKCvRfGL7EgRC3cgF-3lOtOGnKZFPwyPxS7JpDhR5PwX-K0wx2UT8N_1dZ8CmYfJ88Fye81WwPgZyyY78fkzBxmn23Wf2sbdjpC-7ecjuLy9WZ9fF7d3VzdnpbeFkWaeiBmoRhGwlAXZ1RSSQmh4rJ5XTfVvpzqkOsBfUlwQOdams06rt67bLTx6y4-3eTZj-zRSTWQ_R0ThaT9McDSKoLIGuMnr0Dn2Y5uDz7wxKRK11ziVT33fU3K6pM5swrG14Mq9JZUBtAZdDyYf3xg3bQPLtw2hAmJdKTK7EvFRidpVkUbwTX3f_R_m2VQYiesO1arRWWj4DEAuVkA
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_media_2022_102418
crossref_primary_10_5534_wjmh_230050
crossref_primary_10_1016_j_patcog_2024_110776
crossref_primary_10_1016_j_neucom_2021_05_033
crossref_primary_10_1007_s11760_020_01835_9
crossref_primary_10_1002_mp_16795
crossref_primary_10_1016_j_eswa_2024_123856
crossref_primary_10_1002_mp_15861
crossref_primary_10_1088_1361_6560_ac5a93
crossref_primary_10_3389_feart_2022_783481
crossref_primary_10_1109_JBHI_2022_3147888
crossref_primary_10_1016_j_zemedi_2022_10_005
crossref_primary_10_1007_s11548_020_02231_x
crossref_primary_10_3390_app10196678
crossref_primary_10_1002_EXP_20230007
crossref_primary_10_1016_j_eswa_2023_122128
crossref_primary_10_3389_fonc_2021_618496
crossref_primary_10_3390_jimaging11050148
crossref_primary_10_1016_j_media_2021_102134
crossref_primary_10_1088_1361_6560_acf5c5
crossref_primary_10_3390_bioengineering9080343
crossref_primary_10_1109_TMI_2021_3093982
crossref_primary_10_1109_TCSVT_2024_3514181
crossref_primary_10_1002_mp_15335
crossref_primary_10_1109_ACCESS_2023_3278275
crossref_primary_10_1007_s11263_022_01619_3
crossref_primary_10_1109_TMI_2022_3226268
crossref_primary_10_1007_s00521_021_06134_z
crossref_primary_10_1109_TIM_2023_3315365
crossref_primary_10_1109_TIM_2024_3421436
crossref_primary_10_1007_s00371_023_02965_0
crossref_primary_10_14366_usg_20085
crossref_primary_10_1109_TBME_2024_3467216
crossref_primary_10_1007_s00500_021_06519_1
crossref_primary_10_3390_app12031390
crossref_primary_10_3390_app11020844
crossref_primary_10_1016_j_cmpb_2023_107805
crossref_primary_10_1016_j_cmpb_2023_107647
crossref_primary_10_1016_j_ultras_2020_106304
crossref_primary_10_1177_17562872221128791
crossref_primary_10_1177_14759217221089571
crossref_primary_10_3390_app14072955
crossref_primary_10_1109_TMI_2021_3062902
crossref_primary_10_3389_fphys_2023_1177351
crossref_primary_10_1109_ACCESS_2023_3335045
crossref_primary_10_1016_j_patcog_2023_109925
crossref_primary_10_3748_wjg_v26_i34_5156
crossref_primary_10_1016_j_eswa_2024_124279
crossref_primary_10_1109_TUFFC_2023_3255843
crossref_primary_10_1109_JBHI_2021_3089201
crossref_primary_10_1016_j_bspc_2023_105337
crossref_primary_10_1109_TIP_2019_2955297
crossref_primary_10_3390_bioengineering12040390
crossref_primary_10_1016_j_engappai_2023_107692
crossref_primary_10_1109_TMI_2022_3233648
crossref_primary_10_1109_TETCI_2022_3171311
crossref_primary_10_1016_j_neunet_2020_09_005
crossref_primary_10_1016_j_jksuci_2021_10_002
crossref_primary_10_1109_TMI_2021_3087857
crossref_primary_10_1016_j_eswa_2023_123096
crossref_primary_10_1109_TMI_2021_3139999
crossref_primary_10_1109_TMI_2021_3139637
crossref_primary_10_1016_j_bspc_2024_106658
crossref_primary_10_1016_j_compeleceng_2022_107777
crossref_primary_10_1109_JBHI_2022_3192010
crossref_primary_10_1016_j_patcog_2022_108890
crossref_primary_10_1109_TMI_2021_3058303
crossref_primary_10_1007_s10278_023_00783_3
crossref_primary_10_1016_j_ultras_2023_107103
crossref_primary_10_1109_ACCESS_2020_3025372
crossref_primary_10_1109_TBME_2024_3380058
crossref_primary_10_1016_j_bspc_2024_106021
crossref_primary_10_1016_j_media_2022_102567
crossref_primary_10_1016_j_eswa_2023_119962
crossref_primary_10_1088_1361_6560_acb19a
crossref_primary_10_1109_TMI_2020_2974574
crossref_primary_10_1002_mp_15923
crossref_primary_10_1038_s41598_023_48039_y
crossref_primary_10_1016_j_compbiomed_2023_107374
crossref_primary_10_1109_TMI_2020_3025308
crossref_primary_10_1007_s10462_022_10179_4
crossref_primary_10_3390_app14156550
crossref_primary_10_3389_fonc_2022_772403
crossref_primary_10_1002_pros_24721
crossref_primary_10_3389_fonc_2023_1095353
crossref_primary_10_1016_j_bspc_2022_104374
crossref_primary_10_1016_j_cmpb_2022_106752
crossref_primary_10_3389_fonc_2022_878104
crossref_primary_10_1002_mp_15322
crossref_primary_10_1002_mp_15723
crossref_primary_10_1007_s10278_023_00839_4
crossref_primary_10_1016_j_displa_2024_102753
crossref_primary_10_1016_j_ijmedinf_2023_105279
crossref_primary_10_1109_TUFFC_2022_3162800
crossref_primary_10_1016_j_optcom_2025_131615
crossref_primary_10_1016_j_patcog_2022_108556
crossref_primary_10_1049_cit2_12411
crossref_primary_10_3390_robotics14080100
crossref_primary_10_1016_j_eswa_2023_122024
crossref_primary_10_1016_j_media_2022_102506
crossref_primary_10_1016_j_eswa_2025_127523
crossref_primary_10_1109_TETCI_2024_3377676
crossref_primary_10_1002_mp_15791
crossref_primary_10_3389_fnins_2020_620235
crossref_primary_10_1088_1361_6560_acb988
crossref_primary_10_1016_j_ultrasmedbio_2024_10_005
crossref_primary_10_1109_JBHI_2021_3081111
crossref_primary_10_1002_mp_15679
crossref_primary_10_1109_JBHI_2021_3064366
crossref_primary_10_1109_JBHI_2021_3059453
crossref_primary_10_1016_j_imavis_2025_105668
crossref_primary_10_3390_s23031479
crossref_primary_10_1016_j_neunet_2025_107312
crossref_primary_10_1016_j_cmpb_2025_108619
crossref_primary_10_1016_j_compmedimag_2024_102326
crossref_primary_10_1016_j_media_2022_102620
crossref_primary_10_1109_TMI_2021_3084821
Cites_doi 10.1016/j.media.2013.12.002
10.1016/j.cmpb.2012.04.006
10.1109/CVPR.2017.106
10.1109/TMI.2015.2485299
10.1148/radiol.2431030580
10.1109/TMI.2006.877092
10.1109/TMI.2016.2546227
10.1109/TMI.2017.2777870
10.1118/1.1568975
10.1007/978-3-319-66179-7_42
10.1007/978-3-030-01240-3_17
10.1109/ICCV.2015.164
10.1109/3DV.2016.79
10.1159/000324515
10.1016/j.media.2017.05.001
10.1016/j.neunet.2014.09.003
10.1109/TMI.2003.809057
10.1109/CVPR.2018.00745
10.1016/j.media.2010.11.003
10.1016/j.media.2016.05.004
10.1016/j.brachy.2011.07.005
10.1109/TMI.2005.862744
10.1109/TPAMI.2017.2699184
10.1118/1.1388221
10.1002/mp.12396
10.1109/TMI.2014.2300694
10.1109/TMI.2006.884630
10.1007/11866763_3
10.1109/CVPR.2017.634
10.1109/TMI.2015.2508280
10.1109/CVPR.2015.7298965
10.1117/12.2293300
10.1109/IEMBS.2000.901572
10.1007/978-3-030-00937-3_61
10.1118/1.1586267
10.1109/CVPR.2017.60
10.1016/j.media.2013.04.001
10.1109/ICCV.2015.123
10.1016/j.neuroimage.2009.03.068
10.1109/42.897813
10.1109/TBME.2010.2094195
10.1117/1.JMI.6.1.011003
10.1109/TMI.2004.824237
10.1016/S0090-4295(02)01678-3
10.1109/TMI.2015.2388699
10.1007/978-3-030-00937-3_60
10.1109/TBME.2009.2037491
10.1118/1.4950721
10.1109/TIP.2015.2424311
10.1016/j.media.2018.05.010
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2019.2913184
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 2778
ExternalDocumentID 31021793
10_1109_TMI_2019_2913184
8698868
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Shenzhen Peacock Plan
  grantid: KQTD2016053112051497
  funderid: 10.13039/501100012234
– fundername: Shenzhen University
  grantid: 2018010
  funderid: 10.13039/501100009019
– fundername: Research Grants Council, University Grants Committee
  grantid: 14225616
  funderid: 10.13039/501100002920
– fundername: National Natural Science Foundation of China
  grantid: 61701312; 61571304
  funderid: 10.13039/501100001809
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
NPM
PKN
RIG
Z5M
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c347t-71eb2103b3e12d75ee02e9f25c36c8fb58dc6d12f0ef4e1c2846ac86bf7bd7bd3
IEDL.DBID RIE
ISICitedReferencesCount 156
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000510688600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0062
1558-254X
IngestDate Sun Sep 28 09:34:01 EDT 2025
Mon Jun 30 02:23:16 EDT 2025
Wed Feb 19 02:31:13 EST 2025
Sat Nov 29 05:14:07 EST 2025
Tue Nov 18 22:35:36 EST 2025
Wed Aug 27 02:41:07 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-71eb2103b3e12d75ee02e9f25c36c8fb58dc6d12f0ef4e1c2846ac86bf7bd7bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3871-663X
0000-0003-3055-5034
0000-0002-2961-0860
0000-0002-5708-7018
0000-0002-8428-288X
0000-0002-1248-1214
0000-0002-9146-6003
0000-0003-4653-6524
0000-0001-8628-5489
PMID 31021793
PQID 2322888001
PQPubID 85460
PageCount 11
ParticipantIDs pubmed_primary_31021793
proquest_miscellaneous_2216284185
proquest_journals_2322888001
crossref_citationtrail_10_1109_TMI_2019_2913184
crossref_primary_10_1109_TMI_2019_2913184
ieee_primary_8698868
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
yang (ref28) 2016; 9784
ref50
chen (ref51) 2017
ref46
ref45
ref48
ref42
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
siegel (ref1) 2009; 59
ref40
wu (ref52) 2018
ref35
ref37
ref36
ref30
ref33
ref32
yang (ref41) 2017
ref2
ref39
ref38
ronneberger (ref34) 2015
kingma (ref57) 2014
ref24
ref23
ref26
neter (ref60) 1985
ref25
ref20
yu (ref47) 2015
ref22
ref21
ref27
ref29
cire?an (ref31) 2012
References_xml – ident: ref59
  doi: 10.1016/j.media.2013.12.002
– ident: ref11
  doi: 10.1016/j.cmpb.2012.04.006
– ident: ref48
  doi: 10.1109/CVPR.2017.106
– start-page: 2843
  year: 2012
  ident: ref31
  article-title: Deep neural networks segment neuronal membranes in electron microscopy images
  publication-title: Proc 25th Int Conf Neural Inf Process Syst
– ident: ref4
  doi: 10.1109/TMI.2015.2485299
– ident: ref3
  doi: 10.1148/radiol.2431030580
– year: 1985
  ident: ref60
  publication-title: Applied Linear Statistical Models Regression Analysis of Variance and Experimental Designs
– ident: ref10
  doi: 10.1109/TMI.2006.877092
– ident: ref35
  doi: 10.1109/TMI.2016.2546227
– ident: ref9
  doi: 10.1109/TMI.2017.2777870
– year: 2015
  ident: ref47
  publication-title: Multi-scale context aggregation by dilated convolutions
– ident: ref16
  doi: 10.1118/1.1568975
– ident: ref43
  doi: 10.1007/978-3-319-66179-7_42
– ident: ref54
  doi: 10.1007/978-3-030-01240-3_17
– ident: ref49
  doi: 10.1109/ICCV.2015.164
– year: 2017
  ident: ref51
  publication-title: Rethinking atrous convolution for semantic image segmentation
– ident: ref56
  doi: 10.1109/3DV.2016.79
– start-page: 3
  year: 2018
  ident: ref52
  article-title: Group normalization
  publication-title: Proc Eur Conf Comput Vis
– ident: ref2
  doi: 10.1159/000324515
– ident: ref50
  doi: 10.1016/j.media.2017.05.001
– ident: ref32
  doi: 10.1016/j.neunet.2014.09.003
– ident: ref15
  doi: 10.1109/TMI.2003.809057
– ident: ref53
  doi: 10.1109/CVPR.2018.00745
– ident: ref8
  doi: 10.1016/j.media.2010.11.003
– ident: ref36
  doi: 10.1016/j.media.2016.05.004
– ident: ref6
  doi: 10.1016/j.brachy.2011.07.005
– ident: ref21
  doi: 10.1109/TMI.2005.862744
– ident: ref37
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref14
  doi: 10.1118/1.1388221
– ident: ref30
  doi: 10.1002/mp.12396
– ident: ref24
  doi: 10.1109/TMI.2014.2300694
– ident: ref20
  doi: 10.1109/TMI.2006.884630
– ident: ref19
  doi: 10.1007/11866763_3
– start-page: 1633
  year: 2017
  ident: ref41
  article-title: Fine-grained recurrent neural networks for automatic prostate segmentation in ultrasound images
  publication-title: Proc 31st AAAI Conf Artif Intell
– start-page: 234
  year: 2015
  ident: ref34
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assisted Intervent
– ident: ref46
  doi: 10.1109/CVPR.2017.634
– ident: ref38
  doi: 10.1109/TMI.2015.2508280
– ident: ref33
  doi: 10.1109/CVPR.2015.7298965
– ident: ref39
  doi: 10.1117/12.2293300
– ident: ref12
  doi: 10.1109/IEMBS.2000.901572
– ident: ref42
  doi: 10.1007/978-3-030-00937-3_61
– ident: ref17
  doi: 10.1118/1.1586267
– ident: ref29
  doi: 10.1109/CVPR.2017.60
– ident: ref23
  doi: 10.1016/j.media.2013.04.001
– ident: ref55
  doi: 10.1109/ICCV.2015.123
– ident: ref58
  doi: 10.1016/j.neuroimage.2009.03.068
– volume: 59
  start-page: 225
  year: 2009
  ident: ref1
  article-title: Cancer statistics
  publication-title: CA Cancer J Clinicians
– ident: ref13
  doi: 10.1109/42.897813
– volume: 9784
  year: 2016
  ident: ref28
  article-title: 3D transrectal ultrasound (TRUS) prostate segmentation based on optimal feature learning framework
  publication-title: Proc SPIE
– ident: ref22
  doi: 10.1109/TBME.2010.2094195
– ident: ref40
  doi: 10.1117/1.JMI.6.1.011003
– ident: ref18
  doi: 10.1109/TMI.2004.824237
– ident: ref7
  doi: 10.1016/S0090-4295(02)01678-3
– ident: ref26
  doi: 10.1109/TMI.2015.2388699
– ident: ref45
  doi: 10.1007/978-3-030-00937-3_60
– ident: ref5
  doi: 10.1109/TBME.2009.2037491
– ident: ref27
  doi: 10.1118/1.4950721
– year: 2014
  ident: ref57
  publication-title: Adam A method for stochastic optimization
– ident: ref25
  doi: 10.1109/TIP.2015.2424311
– ident: ref44
  doi: 10.1016/j.media.2018.05.010
SSID ssj0014509
Score 2.6518328
Snippet Automatic prostate segmentation in transrectal ultrasound (TRUS) images is of essential importance for image-guided prostate interventions and treatment...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2768
SubjectTerms 3D segmentation
Artificial neural networks
Attention mechanisms
Biomedical imaging
deep features
feature pyramid network
Image processing
Image segmentation
Medical imaging
Modules
Neural networks
Prostate
Semantics
Shape
Three-dimensional displays
transrectal ultrasound
Two dimensional displays
Ultrasonic imaging
Ultrasound
Title Deep Attentive Features for Prostate Segmentation in 3D Transrectal Ultrasound
URI https://ieeexplore.ieee.org/document/8698868
https://www.ncbi.nlm.nih.gov/pubmed/31021793
https://www.proquest.com/docview/2322888001
https://www.proquest.com/docview/2216284185
Volume 38
WOSCitedRecordID wos000510688600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB9UpLQP1WptU61soS-FxtvsJvvxKLWiDx5CFe4tJLuzImhO7nL-_Z1NcqGFtlDIQyCT7GZnNvObzBfAZ19gIXju0ooo0lwHkxKIdWmdV9KiCIGL0DWb0NOpmc3s9QZ8HXNhELELPsOTeNr58v3creKvsolR1hhlNmFTa93nao0eg7zowzlErBjLlVi7JLmd3FxdxhgueyJsRiIcW_HI2NFaW_mbNuraq_wdaXYa53zn_-a6C68HZMlOe1F4AxvY7MGrX-oN7sGLq8GTvg_TM8Qndtq2MVroGVmEgisyvRmBWHYdU0EIhLIfePc4JCc17L5h8ox1yi1-Jmms24d2US1jY6a3cHv-_ebbRTr0VkidzHWb6oxM6ozLWmImvC4QuUAbROGkcibUhfFO-UwEjiHHzJEWU5Uzqg669nTIA9hq5g2-B1bZipvKWNJzPg-FqkXwxA9fhEx5Y-sEJus1Lt1QeDz2v3goOwOE25IYVEYGlQODEvgy3vHUF934B-1-XPyRblj3BI7WbCyHXbksCT0KsvhJWhL4NF6m_RSdJFWD8xXRiEzRyxKMSeBdz_7x2Wup-fDnMQ_hZZxZH-xyBFvtYoUfYds9t_fLxTEJ7cwcd0L7E7Rb5kw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7StPRx6CPpw23aqtBLIc5KsixLx9A0JDS7BLqB3IwtjUog9YZdb35_R7bXtNAWCj4YPLZkzcjzjecF8NHnmEuuXFoRRaqKYFICsS6tVZVZlCFwGbpmE8VsZi4v7fkW7I-5MIjYBZ_hQTztfPl-4dbxV9nEaGuMNnfgbq6UFH221ugzUHkf0CFjzViu5cYpye1kPj2NUVz2QFpBQhyb8WSxp3Vhs9_0Uddg5e9Ys9M5x0_-b7ZP4fGALdlhLwzPYAubHXj0S8XBHbg_HXzpuzA7Qrxhh20b44VukUUwuCbjmxGMZecxGYRgKPuG338M6UkNu2pYdsQ69RY_lDTWxXW7rFaxNdNzuDj-Mv98kg7dFVKXqaJNC0FGteBZnaGQvsgRuUQbZO4y7Uyoc-Od9kIGjkGhcKTHdOWMrkNRezqyF7DdLBp8BayyFTeVsaTpvAq5rmXwxA-fB6G9sXUCk80al24oPR47YFyXnQnCbUkMKiODyoFBCXwa77jpy278g3Y3Lv5IN6x7AnsbNpbDvlyVhB8l2fwkLQl8GC_TjopukqrBxZpopND0sgRkEnjZs3989kZqXv95zPfw4GQ-PSvPTmdf38DDOMs-9GUPttvlGt_CPXfbXq2W7zrR_QloYuir
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Attentive+Features+for+Prostate+Segmentation+in+3D+Transrectal+Ultrasound&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Wang%2C+Yi&rft.au=Dou%2C+Haoran&rft.au=Hu%2C+Xiaowei&rft.au=Zhu%2C+Lei&rft.date=2019-12-01&rft.issn=1558-254X&rft.eissn=1558-254X&rft.volume=38&rft.issue=12&rft.spage=2768&rft_id=info:doi/10.1109%2FTMI.2019.2913184&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon