Deep Attentive Features for Prostate Segmentation in 3D Transrectal Ultrasound
Automatic prostate segmentation in transrectal ultrasound (TRUS) images is of essential importance for image-guided prostate interventions and treatment planning. However, developing such automatic solutions remains very challenging due to the missing/ambiguous boundary and inhomogeneous intensity d...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on medical imaging Jg. 38; H. 12; S. 2768 - 2778 |
|---|---|
| Hauptverfasser: | , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0278-0062, 1558-254X, 1558-254X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Automatic prostate segmentation in transrectal ultrasound (TRUS) images is of essential importance for image-guided prostate interventions and treatment planning. However, developing such automatic solutions remains very challenging due to the missing/ambiguous boundary and inhomogeneous intensity distribution of the prostate in TRUS, as well as the large variability in prostate shapes. This paper develops a novel 3D deep neural network equipped with attention modules for better prostate segmentation in TRUS by fully exploiting the complementary information encoded in different layers of the convolutional neural network (CNN). Our attention module utilizes the attention mechanism to selectively leverage the multi-level features integrated from different layers to refine the features at each individual layer, suppressing the non-prostate noise at shallow layers of the CNN and increasing more prostate details into features at deep layers. Experimental results on challenging 3D TRUS volumes show that our method attains satisfactory segmentation performance. The proposed attention mechanism is a general strategy to aggregate multi-level deep features and has the potential to be used for other medical image segmentation tasks. The code is publicly available at https://github.com/wulalago/DAF3D. |
|---|---|
| AbstractList | Automatic prostate segmentation in transrectal ultrasound (TRUS) images is of essential importance for image-guided prostate interventions and treatment planning. However, developing such automatic solutions remains very challenging due to the missing/ambiguous boundary and inhomogeneous intensity distribution of the prostate in TRUS, as well as the large variability in prostate shapes. This paper develops a novel 3D deep neural network equipped with attention modules for better prostate segmentation in TRUS by fully exploiting the complementary information encoded in different layers of the convolutional neural network (CNN). Our attention module utilizes the attention mechanism to selectively leverage the multi-level features integrated from different layers to refine the features at each individual layer, suppressing the non-prostate noise at shallow layers of the CNN and increasing more prostate details into features at deep layers. Experimental results on challenging 3D TRUS volumes show that our method attains satisfactory segmentation performance. The proposed attention mechanism is a general strategy to aggregate multi-level deep features and has the potential to be used for other medical image segmentation tasks. The code is publicly available at https://github.com/wulalago/DAF3D.Automatic prostate segmentation in transrectal ultrasound (TRUS) images is of essential importance for image-guided prostate interventions and treatment planning. However, developing such automatic solutions remains very challenging due to the missing/ambiguous boundary and inhomogeneous intensity distribution of the prostate in TRUS, as well as the large variability in prostate shapes. This paper develops a novel 3D deep neural network equipped with attention modules for better prostate segmentation in TRUS by fully exploiting the complementary information encoded in different layers of the convolutional neural network (CNN). Our attention module utilizes the attention mechanism to selectively leverage the multi-level features integrated from different layers to refine the features at each individual layer, suppressing the non-prostate noise at shallow layers of the CNN and increasing more prostate details into features at deep layers. Experimental results on challenging 3D TRUS volumes show that our method attains satisfactory segmentation performance. The proposed attention mechanism is a general strategy to aggregate multi-level deep features and has the potential to be used for other medical image segmentation tasks. The code is publicly available at https://github.com/wulalago/DAF3D. Automatic prostate segmentation in transrectal ultrasound (TRUS) images is of essential importance for image-guided prostate interventions and treatment planning. However, developing such automatic solutions remains very challenging due to the missing/ambiguous boundary and inhomogeneous intensity distribution of the prostate in TRUS, as well as the large variability in prostate shapes. This paper develops a novel 3D deep neural network equipped with attention modules for better prostate segmentation in TRUS by fully exploiting the complementary information encoded in different layers of the convolutional neural network (CNN). Our attention module utilizes the attention mechanism to selectively leverage the multi-level features integrated from different layers to refine the features at each individual layer, suppressing the non-prostate noise at shallow layers of the CNN and increasing more prostate details into features at deep layers. Experimental results on challenging 3D TRUS volumes show that our method attains satisfactory segmentation performance. The proposed attention mechanism is a general strategy to aggregate multi-level deep features and has the potential to be used for other medical image segmentation tasks. The code is publicly available at https://github.com/wulalago/DAF3D. |
| Author | Wang, Yi Ni, Dong Zhu, Lei Yang, Xin Heng, Pheng-Ann Hu, Xiaowei Dou, Haoran Qin, Jing Xu, Ming Wang, Tianfu |
| Author_xml | – sequence: 1 givenname: Yi orcidid: 0000-0002-8428-288X surname: Wang fullname: Wang, Yi organization: National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Health Science Center, School of Biomedical Engineering, Shenzhen University, Shenzhen, China – sequence: 2 givenname: Dong orcidid: 0000-0002-9146-6003 surname: Ni fullname: Ni, Dong email: nidong@szu.edu.cn organization: National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Health Science Center, School of Biomedical Engineering, Shenzhen University, Shenzhen, China – sequence: 3 givenname: Haoran orcidid: 0000-0001-8628-5489 surname: Dou fullname: Dou, Haoran organization: National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Health Science Center, School of Biomedical Engineering, Shenzhen University, Shenzhen, China – sequence: 4 givenname: Xiaowei orcidid: 0000-0002-5708-7018 surname: Hu fullname: Hu, Xiaowei organization: Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong – sequence: 5 givenname: Lei orcidid: 0000-0003-3871-663X surname: Zhu fullname: Zhu, Lei organization: Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong – sequence: 6 givenname: Xin orcidid: 0000-0003-4653-6524 surname: Yang fullname: Yang, Xin organization: Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong – sequence: 7 givenname: Ming surname: Xu fullname: Xu, Ming organization: Department of Medical Ultrasonics, First Affiliated Hospital, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-sen University, Guangzhou, China – sequence: 8 givenname: Jing orcidid: 0000-0002-2961-0860 surname: Qin fullname: Qin, Jing organization: Centre for Smart Health, School of Nursing, The Hong Kong Polytechnic University, Hong Kong – sequence: 9 givenname: Pheng-Ann orcidid: 0000-0003-3055-5034 surname: Heng fullname: Heng, Pheng-Ann organization: Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong – sequence: 10 givenname: Tianfu orcidid: 0000-0002-1248-1214 surname: Wang fullname: Wang, Tianfu organization: National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Health Science Center, School of Biomedical Engineering, Shenzhen University, Shenzhen, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31021793$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1r3DAQhkVJaTZp74VCEeSSizeakS3Lx5BvSJtCN9CbkOVxcfDKW0kO5N9HYTc55FAQzOV5Bs37HrA9P3li7CuIJYBoTlY_bpYooFliAxJ0-YEtoKp0gVX5Z48tBNa6EELhPjuI8UEIKCvRfGL7EgRC3cgF-3lOtOGnKZFPwyPxS7JpDhR5PwX-K0wx2UT8N_1dZ8CmYfJ88Fye81WwPgZyyY78fkzBxmn23Wf2sbdjpC-7ecjuLy9WZ9fF7d3VzdnpbeFkWaeiBmoRhGwlAXZ1RSSQmh4rJ5XTfVvpzqkOsBfUlwQOdams06rt67bLTx6y4-3eTZj-zRSTWQ_R0ThaT9McDSKoLIGuMnr0Dn2Y5uDz7wxKRK11ziVT33fU3K6pM5swrG14Mq9JZUBtAZdDyYf3xg3bQPLtw2hAmJdKTK7EvFRidpVkUbwTX3f_R_m2VQYiesO1arRWWj4DEAuVkA |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_1016_j_media_2022_102418 crossref_primary_10_5534_wjmh_230050 crossref_primary_10_1016_j_patcog_2024_110776 crossref_primary_10_1016_j_neucom_2021_05_033 crossref_primary_10_1007_s11760_020_01835_9 crossref_primary_10_1002_mp_16795 crossref_primary_10_1016_j_eswa_2024_123856 crossref_primary_10_1002_mp_15861 crossref_primary_10_1088_1361_6560_ac5a93 crossref_primary_10_3389_feart_2022_783481 crossref_primary_10_1109_JBHI_2022_3147888 crossref_primary_10_1016_j_zemedi_2022_10_005 crossref_primary_10_1007_s11548_020_02231_x crossref_primary_10_3390_app10196678 crossref_primary_10_1002_EXP_20230007 crossref_primary_10_1016_j_eswa_2023_122128 crossref_primary_10_3389_fonc_2021_618496 crossref_primary_10_3390_jimaging11050148 crossref_primary_10_1016_j_media_2021_102134 crossref_primary_10_1088_1361_6560_acf5c5 crossref_primary_10_3390_bioengineering9080343 crossref_primary_10_1109_TMI_2021_3093982 crossref_primary_10_1109_TCSVT_2024_3514181 crossref_primary_10_1002_mp_15335 crossref_primary_10_1109_ACCESS_2023_3278275 crossref_primary_10_1007_s11263_022_01619_3 crossref_primary_10_1109_TMI_2022_3226268 crossref_primary_10_1007_s00521_021_06134_z crossref_primary_10_1109_TIM_2023_3315365 crossref_primary_10_1109_TIM_2024_3421436 crossref_primary_10_1007_s00371_023_02965_0 crossref_primary_10_14366_usg_20085 crossref_primary_10_1109_TBME_2024_3467216 crossref_primary_10_1007_s00500_021_06519_1 crossref_primary_10_3390_app12031390 crossref_primary_10_3390_app11020844 crossref_primary_10_1016_j_cmpb_2023_107805 crossref_primary_10_1016_j_cmpb_2023_107647 crossref_primary_10_1016_j_ultras_2020_106304 crossref_primary_10_1177_17562872221128791 crossref_primary_10_1177_14759217221089571 crossref_primary_10_3390_app14072955 crossref_primary_10_1109_TMI_2021_3062902 crossref_primary_10_3389_fphys_2023_1177351 crossref_primary_10_1109_ACCESS_2023_3335045 crossref_primary_10_1016_j_patcog_2023_109925 crossref_primary_10_3748_wjg_v26_i34_5156 crossref_primary_10_1016_j_eswa_2024_124279 crossref_primary_10_1109_TUFFC_2023_3255843 crossref_primary_10_1109_JBHI_2021_3089201 crossref_primary_10_1016_j_bspc_2023_105337 crossref_primary_10_1109_TIP_2019_2955297 crossref_primary_10_3390_bioengineering12040390 crossref_primary_10_1016_j_engappai_2023_107692 crossref_primary_10_1109_TMI_2022_3233648 crossref_primary_10_1109_TETCI_2022_3171311 crossref_primary_10_1016_j_neunet_2020_09_005 crossref_primary_10_1016_j_jksuci_2021_10_002 crossref_primary_10_1109_TMI_2021_3087857 crossref_primary_10_1016_j_eswa_2023_123096 crossref_primary_10_1109_TMI_2021_3139999 crossref_primary_10_1109_TMI_2021_3139637 crossref_primary_10_1016_j_bspc_2024_106658 crossref_primary_10_1016_j_compeleceng_2022_107777 crossref_primary_10_1109_JBHI_2022_3192010 crossref_primary_10_1016_j_patcog_2022_108890 crossref_primary_10_1109_TMI_2021_3058303 crossref_primary_10_1007_s10278_023_00783_3 crossref_primary_10_1016_j_ultras_2023_107103 crossref_primary_10_1109_ACCESS_2020_3025372 crossref_primary_10_1109_TBME_2024_3380058 crossref_primary_10_1016_j_bspc_2024_106021 crossref_primary_10_1016_j_media_2022_102567 crossref_primary_10_1016_j_eswa_2023_119962 crossref_primary_10_1088_1361_6560_acb19a crossref_primary_10_1109_TMI_2020_2974574 crossref_primary_10_1002_mp_15923 crossref_primary_10_1038_s41598_023_48039_y crossref_primary_10_1016_j_compbiomed_2023_107374 crossref_primary_10_1109_TMI_2020_3025308 crossref_primary_10_1007_s10462_022_10179_4 crossref_primary_10_3390_app14156550 crossref_primary_10_3389_fonc_2022_772403 crossref_primary_10_1002_pros_24721 crossref_primary_10_3389_fonc_2023_1095353 crossref_primary_10_1016_j_bspc_2022_104374 crossref_primary_10_1016_j_cmpb_2022_106752 crossref_primary_10_3389_fonc_2022_878104 crossref_primary_10_1002_mp_15322 crossref_primary_10_1002_mp_15723 crossref_primary_10_1007_s10278_023_00839_4 crossref_primary_10_1016_j_displa_2024_102753 crossref_primary_10_1016_j_ijmedinf_2023_105279 crossref_primary_10_1109_TUFFC_2022_3162800 crossref_primary_10_1016_j_optcom_2025_131615 crossref_primary_10_1016_j_patcog_2022_108556 crossref_primary_10_1049_cit2_12411 crossref_primary_10_3390_robotics14080100 crossref_primary_10_1016_j_eswa_2023_122024 crossref_primary_10_1016_j_media_2022_102506 crossref_primary_10_1016_j_eswa_2025_127523 crossref_primary_10_1109_TETCI_2024_3377676 crossref_primary_10_1002_mp_15791 crossref_primary_10_3389_fnins_2020_620235 crossref_primary_10_1088_1361_6560_acb988 crossref_primary_10_1016_j_ultrasmedbio_2024_10_005 crossref_primary_10_1109_JBHI_2021_3081111 crossref_primary_10_1002_mp_15679 crossref_primary_10_1109_JBHI_2021_3064366 crossref_primary_10_1109_JBHI_2021_3059453 crossref_primary_10_1016_j_imavis_2025_105668 crossref_primary_10_3390_s23031479 crossref_primary_10_1016_j_neunet_2025_107312 crossref_primary_10_1016_j_cmpb_2025_108619 crossref_primary_10_1016_j_compmedimag_2024_102326 crossref_primary_10_1016_j_media_2022_102620 crossref_primary_10_1109_TMI_2021_3084821 |
| Cites_doi | 10.1016/j.media.2013.12.002 10.1016/j.cmpb.2012.04.006 10.1109/CVPR.2017.106 10.1109/TMI.2015.2485299 10.1148/radiol.2431030580 10.1109/TMI.2006.877092 10.1109/TMI.2016.2546227 10.1109/TMI.2017.2777870 10.1118/1.1568975 10.1007/978-3-319-66179-7_42 10.1007/978-3-030-01240-3_17 10.1109/ICCV.2015.164 10.1109/3DV.2016.79 10.1159/000324515 10.1016/j.media.2017.05.001 10.1016/j.neunet.2014.09.003 10.1109/TMI.2003.809057 10.1109/CVPR.2018.00745 10.1016/j.media.2010.11.003 10.1016/j.media.2016.05.004 10.1016/j.brachy.2011.07.005 10.1109/TMI.2005.862744 10.1109/TPAMI.2017.2699184 10.1118/1.1388221 10.1002/mp.12396 10.1109/TMI.2014.2300694 10.1109/TMI.2006.884630 10.1007/11866763_3 10.1109/CVPR.2017.634 10.1109/TMI.2015.2508280 10.1109/CVPR.2015.7298965 10.1117/12.2293300 10.1109/IEMBS.2000.901572 10.1007/978-3-030-00937-3_61 10.1118/1.1586267 10.1109/CVPR.2017.60 10.1016/j.media.2013.04.001 10.1109/ICCV.2015.123 10.1016/j.neuroimage.2009.03.068 10.1109/42.897813 10.1109/TBME.2010.2094195 10.1117/1.JMI.6.1.011003 10.1109/TMI.2004.824237 10.1016/S0090-4295(02)01678-3 10.1109/TMI.2015.2388699 10.1007/978-3-030-00937-3_60 10.1109/TBME.2009.2037491 10.1118/1.4950721 10.1109/TIP.2015.2424311 10.1016/j.media.2018.05.010 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/TMI.2019.2913184 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-254X |
| EndPage | 2778 |
| ExternalDocumentID | 31021793 10_1109_TMI_2019_2913184 8698868 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Shenzhen Peacock Plan grantid: KQTD2016053112051497 funderid: 10.13039/501100012234 – fundername: Shenzhen University grantid: 2018010 funderid: 10.13039/501100009019 – fundername: Research Grants Council, University Grants Committee grantid: 14225616 funderid: 10.13039/501100002920 – fundername: National Natural Science Foundation of China grantid: 61701312; 61571304 funderid: 10.13039/501100001809 |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION AAYOK NPM PKN RIG Z5M 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c347t-71eb2103b3e12d75ee02e9f25c36c8fb58dc6d12f0ef4e1c2846ac86bf7bd7bd3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 156 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000510688600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0062 1558-254X |
| IngestDate | Sun Sep 28 09:34:01 EDT 2025 Mon Jun 30 02:23:16 EDT 2025 Wed Feb 19 02:31:13 EST 2025 Sat Nov 29 05:14:07 EST 2025 Tue Nov 18 22:35:36 EST 2025 Wed Aug 27 02:41:07 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c347t-71eb2103b3e12d75ee02e9f25c36c8fb58dc6d12f0ef4e1c2846ac86bf7bd7bd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3871-663X 0000-0003-3055-5034 0000-0002-2961-0860 0000-0002-5708-7018 0000-0002-8428-288X 0000-0002-1248-1214 0000-0002-9146-6003 0000-0003-4653-6524 0000-0001-8628-5489 |
| PMID | 31021793 |
| PQID | 2322888001 |
| PQPubID | 85460 |
| PageCount | 11 |
| ParticipantIDs | pubmed_primary_31021793 proquest_miscellaneous_2216284185 proquest_journals_2322888001 crossref_citationtrail_10_1109_TMI_2019_2913184 crossref_primary_10_1109_TMI_2019_2913184 ieee_primary_8698868 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-12-01 |
| PublicationDateYYYYMMDD | 2019-12-01 |
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 yang (ref28) 2016; 9784 ref50 chen (ref51) 2017 ref46 ref45 ref48 ref42 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 siegel (ref1) 2009; 59 ref40 wu (ref52) 2018 ref35 ref37 ref36 ref30 ref33 ref32 yang (ref41) 2017 ref2 ref39 ref38 ronneberger (ref34) 2015 kingma (ref57) 2014 ref24 ref23 ref26 neter (ref60) 1985 ref25 ref20 yu (ref47) 2015 ref22 ref21 ref27 ref29 cire?an (ref31) 2012 |
| References_xml | – ident: ref59 doi: 10.1016/j.media.2013.12.002 – ident: ref11 doi: 10.1016/j.cmpb.2012.04.006 – ident: ref48 doi: 10.1109/CVPR.2017.106 – start-page: 2843 year: 2012 ident: ref31 article-title: Deep neural networks segment neuronal membranes in electron microscopy images publication-title: Proc 25th Int Conf Neural Inf Process Syst – ident: ref4 doi: 10.1109/TMI.2015.2485299 – ident: ref3 doi: 10.1148/radiol.2431030580 – year: 1985 ident: ref60 publication-title: Applied Linear Statistical Models Regression Analysis of Variance and Experimental Designs – ident: ref10 doi: 10.1109/TMI.2006.877092 – ident: ref35 doi: 10.1109/TMI.2016.2546227 – ident: ref9 doi: 10.1109/TMI.2017.2777870 – year: 2015 ident: ref47 publication-title: Multi-scale context aggregation by dilated convolutions – ident: ref16 doi: 10.1118/1.1568975 – ident: ref43 doi: 10.1007/978-3-319-66179-7_42 – ident: ref54 doi: 10.1007/978-3-030-01240-3_17 – ident: ref49 doi: 10.1109/ICCV.2015.164 – year: 2017 ident: ref51 publication-title: Rethinking atrous convolution for semantic image segmentation – ident: ref56 doi: 10.1109/3DV.2016.79 – start-page: 3 year: 2018 ident: ref52 article-title: Group normalization publication-title: Proc Eur Conf Comput Vis – ident: ref2 doi: 10.1159/000324515 – ident: ref50 doi: 10.1016/j.media.2017.05.001 – ident: ref32 doi: 10.1016/j.neunet.2014.09.003 – ident: ref15 doi: 10.1109/TMI.2003.809057 – ident: ref53 doi: 10.1109/CVPR.2018.00745 – ident: ref8 doi: 10.1016/j.media.2010.11.003 – ident: ref36 doi: 10.1016/j.media.2016.05.004 – ident: ref6 doi: 10.1016/j.brachy.2011.07.005 – ident: ref21 doi: 10.1109/TMI.2005.862744 – ident: ref37 doi: 10.1109/TPAMI.2017.2699184 – ident: ref14 doi: 10.1118/1.1388221 – ident: ref30 doi: 10.1002/mp.12396 – ident: ref24 doi: 10.1109/TMI.2014.2300694 – ident: ref20 doi: 10.1109/TMI.2006.884630 – ident: ref19 doi: 10.1007/11866763_3 – start-page: 1633 year: 2017 ident: ref41 article-title: Fine-grained recurrent neural networks for automatic prostate segmentation in ultrasound images publication-title: Proc 31st AAAI Conf Artif Intell – start-page: 234 year: 2015 ident: ref34 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: Proc Int Conf Med Image Comput Comput -Assisted Intervent – ident: ref46 doi: 10.1109/CVPR.2017.634 – ident: ref38 doi: 10.1109/TMI.2015.2508280 – ident: ref33 doi: 10.1109/CVPR.2015.7298965 – ident: ref39 doi: 10.1117/12.2293300 – ident: ref12 doi: 10.1109/IEMBS.2000.901572 – ident: ref42 doi: 10.1007/978-3-030-00937-3_61 – ident: ref17 doi: 10.1118/1.1586267 – ident: ref29 doi: 10.1109/CVPR.2017.60 – ident: ref23 doi: 10.1016/j.media.2013.04.001 – ident: ref55 doi: 10.1109/ICCV.2015.123 – ident: ref58 doi: 10.1016/j.neuroimage.2009.03.068 – volume: 59 start-page: 225 year: 2009 ident: ref1 article-title: Cancer statistics publication-title: CA Cancer J Clinicians – ident: ref13 doi: 10.1109/42.897813 – volume: 9784 year: 2016 ident: ref28 article-title: 3D transrectal ultrasound (TRUS) prostate segmentation based on optimal feature learning framework publication-title: Proc SPIE – ident: ref22 doi: 10.1109/TBME.2010.2094195 – ident: ref40 doi: 10.1117/1.JMI.6.1.011003 – ident: ref18 doi: 10.1109/TMI.2004.824237 – ident: ref7 doi: 10.1016/S0090-4295(02)01678-3 – ident: ref26 doi: 10.1109/TMI.2015.2388699 – ident: ref45 doi: 10.1007/978-3-030-00937-3_60 – ident: ref5 doi: 10.1109/TBME.2009.2037491 – ident: ref27 doi: 10.1118/1.4950721 – year: 2014 ident: ref57 publication-title: Adam A method for stochastic optimization – ident: ref25 doi: 10.1109/TIP.2015.2424311 – ident: ref44 doi: 10.1016/j.media.2018.05.010 |
| SSID | ssj0014509 |
| Score | 2.6518328 |
| Snippet | Automatic prostate segmentation in transrectal ultrasound (TRUS) images is of essential importance for image-guided prostate interventions and treatment... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2768 |
| SubjectTerms | 3D segmentation Artificial neural networks Attention mechanisms Biomedical imaging deep features feature pyramid network Image processing Image segmentation Medical imaging Modules Neural networks Prostate Semantics Shape Three-dimensional displays transrectal ultrasound Two dimensional displays Ultrasonic imaging Ultrasound |
| Title | Deep Attentive Features for Prostate Segmentation in 3D Transrectal Ultrasound |
| URI | https://ieeexplore.ieee.org/document/8698868 https://www.ncbi.nlm.nih.gov/pubmed/31021793 https://www.proquest.com/docview/2322888001 https://www.proquest.com/docview/2216284185 |
| Volume | 38 |
| WOSCitedRecordID | wos000510688600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_aIqIPVlutqbWs4ItgetndZD8eSz9QsEfBFu4tJJuJFNpcucv173cmyYUKKhTyEMhudrMzm_nNzhfA51phWXlZxGll0zhVpY0LEltxZgMmpgyF71Pm_7DTqZvN_OUGfB1jYRCxcz7DI77tbPnVPKz4qGzijHfOuE3YtNb2sVqjxSDNencOxRljE6PWJsnET64uvrMPlz9SXhILcykezRWtrdd_SKOuvMq_kWYncc63nzbX1_BqQJbiuGeFN7CBzQ68fJRvcAeeXwyW9F2YniLei-O2ZW-hBxQMBVekegsCseKSQ0EIhIqf-OtuCE5qxE0j9KnohBv_Jmms69t2USy5MNNbuD4_uzr5Fg-1FeKgU9vGVpJKLRNdapSqshliotDXKgvaBFeXmauCqaSqE6xTlIGkmCmCM2Vty4ou_Q62mnmD70GQxlNplZEel5qUT0UKV1onUVJXksBJBJP1GudhSDzO9S9u804BSXxOBMqZQPlAoAi-jD3u-6Qb_2m7y4s_thvWPYKDNRnzYVcuc0KPijR-4pYIPo2PaT-xkaRocL6iNkoa-liCMRHs9eQf373mmv2_j_kBXvDMemeXA9hqFyv8CM_CQ3uzXBwS087cYce0vwHbC-VY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qFa0PfrS2plZdwReh6WU_sh-PxVpavDsKXqFvIdlMpFBz5S7Xv7-zSS4oaEHIQyC72c3ObOY3O18AnyuBRel4HqvSqFiJwsQ5ia04NR4TXfjcdSnzx2Y6tVdX7mIDDodYGERsnc_wKNy2tvxy7lfhqGxktbNW20fwOFVK8C5aa7AZqLRz6BAhZ2yixdoombjRbHIevLjckXCcmDgU45GhprVx8g951BZY-TfWbGXO6cv_m-0reNFjS3bcMcNr2MB6G57_lnFwG55Oelv6DkxPEG_ZcdMEf6E7ZAEMrkj5ZgRj2UUIBiEYyn7gz199eFLNrmsmT1gr3sKPksa6vGkW-TKUZnoDl6ffZl_P4r66QuylMk1sOCnVPJGFRC5KkyImAl0lUi-1t1WR2tLrkosqwUoh9yTHdO6tLipTlHTJXdis5zW-BUY6TylFSpqc0iqci-S2MJYjp64kg5MIRus1znyfejxUwLjJWhUkcRkRKAsEynoCRfBl6HHbpd14oO1OWPyhXb_uERysyZj1-3KZEX4UpPMTt0TwaXhMOyqYSfIa5ytqI7imjyUgE8FeR_7h3Wuu2f_7mB_h2dlsMs7G59Pv72ArzLJzfTmAzWaxwvfwxN8118vFh5Z17wGIlOe3 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Attentive+Features+for+Prostate+Segmentation+in+3D+Transrectal+Ultrasound&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Wang%2C+Yi&rft.au=Ni%2C+Dong&rft.au=Dou%2C+Haoran&rft.au=Hu%2C+Xiaowei&rft.date=2019-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=38&rft.issue=12&rft.spage=2768&rft_id=info:doi/10.1109%2FTMI.2019.2913184&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |