Adaptive CCR-ELM with variable-length brain storm optimization algorithm for class-imbalance learning

Class-specific cost regulation extreme learning machine (CCR-ELM) can effectively deal with the class imbalance problems. However, its key parameters, including the number of hidden nodes, the input weights, the biases and the tradeoff factors are normally generated randomly or preset by human. More...

Full description

Saved in:
Bibliographic Details
Published in:Natural computing Vol. 20; no. 1; pp. 11 - 22
Main Authors: Cheng, Jian, Chen, Jingjing, Guo, Yi-nan, Cheng, Shi, Yang, Linkai, Zhang, Pei
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01.03.2021
Springer Nature B.V
Subjects:
ISSN:1567-7818, 1572-9796
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Class-specific cost regulation extreme learning machine (CCR-ELM) can effectively deal with the class imbalance problems. However, its key parameters, including the number of hidden nodes, the input weights, the biases and the tradeoff factors are normally generated randomly or preset by human. Moreover, the number of input weights and biases depend on the size of hidden layer. Inappropriate quantity of hidden nodes may lead to the useless or redundant neuron nodes, and make the whole structure complex, even cause the worse generalization and unstable classification performances. Based on this, an adaptive CCR-ELM with variable-length brain storm optimization algorithm is proposed for the class imbalance learning. Each individual consists of all above parameters of CCR-ELM and its length varies with the number of hidden nodes. A novel mergence operator is presented to incorporate two parent individuals with different length and generate a new individual. The experimental results for nine imbalance datasets show that variable-length brain storm optimization algorithm can find better parameters of CCR-ELM, resulting in the better classification accuracy than other evolutionary optimization algorithms, such as GA, PSO, and VPSO. In addition, the classification performance of the proposed adaptive algorithm is relatively stable under varied imbalance ratios. Applying the proposed algorithm in the fault diagnosis of conveyor belt also proves that ACCR-ELM with VLen-BSO has the better classification performances.
AbstractList Class-specific cost regulation extreme learning machine (CCR-ELM) can effectively deal with the class imbalance problems. However, its key parameters, including the number of hidden nodes, the input weights, the biases and the tradeoff factors are normally generated randomly or preset by human. Moreover, the number of input weights and biases depend on the size of hidden layer. Inappropriate quantity of hidden nodes may lead to the useless or redundant neuron nodes, and make the whole structure complex, even cause the worse generalization and unstable classification performances. Based on this, an adaptive CCR-ELM with variable-length brain storm optimization algorithm is proposed for the class imbalance learning. Each individual consists of all above parameters of CCR-ELM and its length varies with the number of hidden nodes. A novel mergence operator is presented to incorporate two parent individuals with different length and generate a new individual. The experimental results for nine imbalance datasets show that variable-length brain storm optimization algorithm can find better parameters of CCR-ELM, resulting in the better classification accuracy than other evolutionary optimization algorithms, such as GA, PSO, and VPSO. In addition, the classification performance of the proposed adaptive algorithm is relatively stable under varied imbalance ratios. Applying the proposed algorithm in the fault diagnosis of conveyor belt also proves that ACCR-ELM with VLen-BSO has the better classification performances.
Author Guo, Yi-nan
Zhang, Pei
Chen, Jingjing
Cheng, Jian
Cheng, Shi
Yang, Linkai
Author_xml – sequence: 1
  givenname: Jian
  surname: Cheng
  fullname: Cheng, Jian
  organization: School of Information and Control Engineering, China University of Mining and Technology
– sequence: 2
  givenname: Jingjing
  surname: Chen
  fullname: Chen, Jingjing
  organization: School of Information and Control Engineering, China University of Mining and Technology
– sequence: 3
  givenname: Yi-nan
  surname: Guo
  fullname: Guo, Yi-nan
  email: guoyinan@cumt.edu.cn
  organization: School of Information and Control Engineering, China University of Mining and Technology
– sequence: 4
  givenname: Shi
  surname: Cheng
  fullname: Cheng, Shi
  organization: School of Information and Control Engineering, China University of Mining and Technology
– sequence: 5
  givenname: Linkai
  surname: Yang
  fullname: Yang, Linkai
  organization: School of Information and Control Engineering, China University of Mining and Technology
– sequence: 6
  givenname: Pei
  surname: Zhang
  fullname: Zhang, Pei
  organization: School of Information and Control Engineering, China University of Mining and Technology
BookMark eNp9kE1LBCEYgCUK2rb-QCehs6XjjI7HZdk-YCOIOosz87q5zOims0X9-qwNgg57UuF59PU5QYc-eEDonNFLRqm8SozRUhLKFKFK8oqoAzRhlSyIkkocfu-FJLJm9TE6SWlNacGqik0QzDqzGd0b4Pn8kSyW9_jdjS_4zURnmh5ID36Vz000zuM0hjjgkPnBfZrRBY9NvwoxGwO2IeK2NykRNzSmN74F3IOJ3vnVKTqypk9w9rtO0fP14ml-S5YPN3fz2ZK0vJQjEZ01UEAlbFuB7KTouFS2zIPWDKxqVcFrBUYYytrOytoWDTcdq3glShBNwafoYnfvJobXLaRRr8M2-vykLkolJGecl3spVgvBWU15puod1caQUgSrWzf-fHrMMXrNqP5Or3fpdU6vf9JrldXin7qJbjDxY7_Ed1LKsF9B_Jtqj_UFoLKYwQ
CitedBy_id crossref_primary_10_1016_j_dsx_2022_102609
crossref_primary_10_1016_j_knosys_2022_110008
crossref_primary_10_1016_j_apacoust_2022_109003
crossref_primary_10_1109_ACCESS_2023_3284390
crossref_primary_10_1007_s11517_022_02637_6
crossref_primary_10_1016_j_engappai_2022_105100
crossref_primary_10_3390_s23084073
crossref_primary_10_1109_TETCI_2021_3079966
crossref_primary_10_1016_j_conengprac_2023_105534
crossref_primary_10_1109_TIM_2023_3246470
crossref_primary_10_1016_j_bspc_2022_103688
crossref_primary_10_1016_j_eswa_2023_120967
crossref_primary_10_1109_ACCESS_2020_2972631
crossref_primary_10_1155_2023_3854295
crossref_primary_10_1007_s10489_021_02676_w
crossref_primary_10_1016_j_aeue_2023_154831
crossref_primary_10_1002_int_22899
crossref_primary_10_3390_machines10040237
crossref_primary_10_1016_j_jmsy_2024_10_025
crossref_primary_10_1007_s12652_022_03901_1
crossref_primary_10_1155_2022_4981022
Cites_doi 10.1007/s10044-014-0392-8
10.1109/TSMCB.2011.2168604
10.1007/978-3-319-20466-6_39
10.1109/TSMCB.2008.2010506
10.1109/TSMCB.2008.2007853
10.1016/j.neucom.2015.11.095
10.1016/j.asoc.2017.05.051
10.1016/j.knosys.2015.10.012
10.1016/j.neucom.2011.06.010
10.1016/j.neucom.2011.12.062
10.1016/j.neucom.2016.09.120
10.1016/j.neucom.2012.02.003
10.1007/s10115-011-0465-6
10.1109/TCBB.2017.2685320
10.1007/s11063-013-9286-9
10.1016/j.neucom.2012.08.010
10.1002/9781118646106
10.1109/TCYB.2014.2307349
10.1016/j.measurement.2016.10.001
10.1016/j.neucom.2014.03.075
10.1109/TKDE.2005.95
10.1109/CEC.2018.8477735
10.1109/ICIP.2018.8451358
10.1007/978-3-319-61833-3_39
ContentType Journal Article
Copyright Springer Nature B.V. 2019
Natural Computing is a copyright of Springer, (2019). All Rights Reserved.
Springer Nature B.V. 2019.
Copyright_xml – notice: Springer Nature B.V. 2019
– notice: Natural Computing is a copyright of Springer, (2019). All Rights Reserved.
– notice: Springer Nature B.V. 2019.
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11047-019-09735-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Computer Science
EISSN 1572-9796
EndPage 22
ExternalDocumentID 10_1007_s11047_019_09735_9
GrantInformation_xml – fundername: National Key Research and Development Program
  grantid: 2016YFC0801406
– fundername: Six Talent Peak Project in Jiangsu Province
  grantid: 2017-DZXX-046
– fundername: Research Program of Frontier Discipline of China University of Mining and Technology
  grantid: 2015XKQY19
– fundername: National Natural Science Foundation of China
  grantid: 61573361
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID ---
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
203
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5VS
67Z
6NX
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
LAK
LLZTM
M0N
M2P
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P62
P9O
PF0
PQQKQ
PROAC
PT4
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c347t-6dfae2e56fc5e7d76d379f455181ef9c92389ea6a01cdf78f2b3ad153564e6b23
IEDL.DBID M2P
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000625804800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1567-7818
IngestDate Wed Nov 05 02:38:51 EST 2025
Tue Nov 04 22:27:50 EST 2025
Sat Nov 29 02:53:09 EST 2025
Tue Nov 18 21:50:53 EST 2025
Fri Feb 21 02:49:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Brain storm optimization algorithm
Variable-length
Class-specific cost regulation extreme learning machine
The class imbalance problems
Adaptive
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-6dfae2e56fc5e7d76d379f455181ef9c92389ea6a01cdf78f2b3ad153564e6b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2186631803
PQPubID 54627
PageCount 12
ParticipantIDs proquest_journals_2496731334
proquest_journals_2186631803
crossref_citationtrail_10_1007_s11047_019_09735_9
crossref_primary_10_1007_s11047_019_09735_9
springer_journals_10_1007_s11047_019_09735_9
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Natural computing
PublicationTitleAbbrev Nat Comput
PublicationYear 2021
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Guo, Wu, Xie (CR7) 2015; 9140
Xiao, Zhang, Li (CR26) 2017; 261
He, Ma (CR10) 2013
Yang, Yang, Li (CR27) 2017; 59
Cheng, Qin, Chen (CR1) 2014; 4
Li, Mao (CR14) 2014; 17
Ertam, Avci (CR3) 2017; 95
Li, Zhang (CR15) 2014; 50
Huang, Zhou, Ding (CR12) 2012; 42
CR11
Yu, Sun, Yang (CR28) 2016; 92
Wu, Chang (CR24) 2005; 17
Zong, Huang, Chen (CR31) 2013; 101
Ramentol (CR20) 2012; 33
Han, Yao, Ling (CR9) 2013; 116
Zhao, Wang, Dong (CR30) 2012; 87
Rong, Huang, Narasimhan (CR21) 2009; 39
Guo, Zhen, Wang (CR8) 2016; 16
Liu, Wu, Zhou (CR16) 2009; 39
Huang, Song, Gupta (CR13) 2014; 44
CR4
CR6
Guo, Cheng, Luo, Gong, Xue (CR32) 2018; 15
Cheng, Qin, Chen (CR2) 2015; 6728
Wu, Wang, Ye (CR25) 2016; 190
CR23
CR22
Zeng, Qun, Liao (CR29) 2009; 37
Mirza, Lin, Liu (CR18) 2015; 149
Gao, Hong, Chen (CR5) 2011; 74
Mirza, Lin, Toh (CR17) 2013; 38
Nitesh, Bowyer, Lawrence (CR19) 2002; 16
D Li (9735_CR15) 2014; 50
GB Huang (9735_CR13) 2014; 44
GB Huang (9735_CR12) 2012; 42
XP Guo (9735_CR7) 2015; 9140
YN Guo (9735_CR8) 2016; 16
F Ertam (9735_CR3) 2017; 95
9735_CR22
9735_CR23
E Ramentol (9735_CR20) 2012; 33
ZQ Zeng (9735_CR29) 2009; 37
9735_CR4
B Mirza (9735_CR17) 2013; 38
LX Yang (9735_CR27) 2017; 59
XY Liu (9735_CR16) 2009; 39
DH Wu (9735_CR25) 2016; 190
HL Yu (9735_CR28) 2016; 92
S Cheng (9735_CR1) 2014; 4
9735_CR6
QJ Li (9735_CR14) 2014; 17
WD Xiao (9735_CR26) 2017; 261
F Han (9735_CR9) 2013; 116
WW Zong (9735_CR31) 2013; 101
9735_CR11
JW Zhao (9735_CR30) 2012; 87
M Gao (9735_CR5) 2011; 74
B Mirza (9735_CR18) 2015; 149
G Wu (9735_CR24) 2005; 17
VC Nitesh (9735_CR19) 2002; 16
S Cheng (9735_CR2) 2015; 6728
YN Guo (9735_CR32) 2018; 15
HB He (9735_CR10) 2013
HJ Rong (9735_CR21) 2009; 39
References_xml – volume: 17
  start-page: 679
  issue: 4
  year: 2014
  end-page: 693
  ident: CR14
  article-title: A review of boosting methods for imbalanced data classification
  publication-title: Pattern Anal Appl
  doi: 10.1007/s10044-014-0392-8
– volume: 42
  start-page: 513
  issue: 2
  year: 2012
  end-page: 529
  ident: CR12
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Trans Syst Man Cybern Part B
  doi: 10.1109/TSMCB.2011.2168604
– ident: CR22
– volume: 9140
  start-page: 365
  issue: 4
  year: 2015
  end-page: 372
  ident: CR7
  article-title: An adaptive brain storm optimization algorithm for multiobjective optimization problems
  publication-title: Lect Notes Comput Sci
  doi: 10.1007/978-3-319-20466-6_39
– ident: CR4
– volume: 39
  start-page: 1067
  issue: 4
  year: 2009
  ident: CR21
  article-title: Online sequential fuzzy extreme learning machine for function approximation and classification problems
  publication-title: IEEE Trans Syst Man Cybern Part B
  doi: 10.1109/TSMCB.2008.2010506
– volume: 39
  start-page: 539
  issue: 2
  year: 2009
  end-page: 550
  ident: CR16
  article-title: Exploratory undersampling for class-imbalance learning
  publication-title: IEEE Trans Syst Man Cybern Part B
  doi: 10.1109/TSMCB.2008.2007853
– volume: 50
  start-page: 14
  issue: 18
  year: 2014
  end-page: 18
  ident: CR15
  article-title: Stock price prediction based on ELM and FOA
  publication-title: Comput Eng Appl
– volume: 190
  start-page: 35
  year: 2016
  end-page: 49
  ident: CR25
  article-title: Mixed-kernel based weighted extreme learning machine for inertial sensor based human activity recognition with imbalanced dataset
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.095
– ident: CR6
– volume: 59
  start-page: 546
  year: 2017
  end-page: 555
  ident: CR27
  article-title: Incremental laplacian regularization extreme learning machine for online learning
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.05.051
– volume: 92
  start-page: 55
  year: 2016
  end-page: 70
  ident: CR28
  article-title: ODOC-ELM: optimal decision outputs compensation-based extreme learning machine for classifying imbalanced data
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.10.012
– volume: 74
  start-page: 3456
  issue: 17
  year: 2011
  end-page: 3466
  ident: CR5
  article-title: A combined smote and PSO based RBF classifier for two-class imbalanced problems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.06.010
– volume: 116
  start-page: 87
  year: 2013
  end-page: 93
  ident: CR9
  article-title: An improved evolutionary extreme learning machine based on particle swarm optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.12.062
– volume: 16
  start-page: 321
  issue: 1
  year: 2002
  end-page: 357
  ident: CR19
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J Artif Intell Res
– volume: 16
  start-page: 1
  issue: 4
  year: 2016
  end-page: 22
  ident: CR8
  article-title: Cultural particle swarm optimization algorithms for uncertain multi-objective problems with interval parameters
  publication-title: Nat Comput
– volume: 261
  start-page: 70
  year: 2017
  end-page: 82
  ident: CR26
  article-title: Class-specific cost regulation extreme learning machine for imbalanced classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.120
– ident: CR23
– volume: 87
  start-page: 79
  issue: 15
  year: 2012
  end-page: 89
  ident: CR30
  article-title: Online sequential extreme learning machine with forgetting mechanism
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.02.003
– volume: 6728
  start-page: 1
  year: 2015
  end-page: 14
  ident: CR2
  article-title: Brain storm optimization algorithm: a review
  publication-title: Artif Intell Rev
– volume: 33
  start-page: 245
  issue: 2
  year: 2012
  end-page: 265
  ident: CR20
  article-title: SMOTE-RS: a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using smote and rough sets theory
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-011-0465-6
– volume: 15
  start-page: 1891
  issue: 6
  year: 2018
  end-page: 1903
  ident: CR32
  article-title: Robust dynamic multi-objective vehicle routing optimization method
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2017.2685320
– volume: 38
  start-page: 465
  issue: 3
  year: 2013
  end-page: 486
  ident: CR17
  article-title: Weighted online sequential extreme learning machine for class imbalance learning
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-013-9286-9
– volume: 101
  start-page: 229
  issue: 3
  year: 2013
  end-page: 242
  ident: CR31
  article-title: Weighted extreme learning machine for imbalance learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.08.010
– volume: 37
  start-page: 2489
  issue: 11
  year: 2009
  end-page: 2495
  ident: CR29
  article-title: A classfication method for imbalance data set based on kernel smote
  publication-title: Acta Electron Sin
– year: 2013
  ident: CR10
  publication-title: Imbalanced learning: foundations, algorithms, and applications
  doi: 10.1002/9781118646106
– volume: 44
  start-page: 2405
  issue: 12
  year: 2014
  end-page: 2417
  ident: CR13
  article-title: Semi-supervised and unsupervised extreme learning machines
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2014.2307349
– ident: CR11
– volume: 95
  start-page: 135
  year: 2017
  end-page: 142
  ident: CR3
  article-title: A new approach for internet traffic classification: GA-WK-ELM
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.10.001
– volume: 149
  start-page: 316
  issue: Part A
  year: 2015
  end-page: 329
  ident: CR18
  article-title: Ensemble of subset online sequential extreme learning machine for class imbalance and concept drift
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.03.075
– volume: 17
  start-page: 786
  issue: 6
  year: 2005
  end-page: 795
  ident: CR24
  article-title: KBA: kernel boundary alignment considering imbalanced data distribution
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2005.95
– volume: 4
  start-page: 3230
  issue: 3
  year: 2014
  end-page: 3237
  ident: CR1
  article-title: Maintaining population diversity in brain storm optimization algorithm
  publication-title: Proc IEEE Congr Evolut Comput
– volume: 38
  start-page: 465
  issue: 3
  year: 2013
  ident: 9735_CR17
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-013-9286-9
– volume: 42
  start-page: 513
  issue: 2
  year: 2012
  ident: 9735_CR12
  publication-title: IEEE Trans Syst Man Cybern Part B
  doi: 10.1109/TSMCB.2011.2168604
– volume: 50
  start-page: 14
  issue: 18
  year: 2014
  ident: 9735_CR15
  publication-title: Comput Eng Appl
– ident: 9735_CR11
– volume: 190
  start-page: 35
  year: 2016
  ident: 9735_CR25
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.095
– volume: 15
  start-page: 1891
  issue: 6
  year: 2018
  ident: 9735_CR32
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2017.2685320
– volume: 39
  start-page: 1067
  issue: 4
  year: 2009
  ident: 9735_CR21
  publication-title: IEEE Trans Syst Man Cybern Part B
  doi: 10.1109/TSMCB.2008.2010506
– volume: 16
  start-page: 1
  issue: 4
  year: 2016
  ident: 9735_CR8
  publication-title: Nat Comput
– volume-title: Imbalanced learning: foundations, algorithms, and applications
  year: 2013
  ident: 9735_CR10
  doi: 10.1002/9781118646106
– volume: 4
  start-page: 3230
  issue: 3
  year: 2014
  ident: 9735_CR1
  publication-title: Proc IEEE Congr Evolut Comput
– ident: 9735_CR23
  doi: 10.1109/CEC.2018.8477735
– volume: 92
  start-page: 55
  year: 2016
  ident: 9735_CR28
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.10.012
– volume: 95
  start-page: 135
  year: 2017
  ident: 9735_CR3
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.10.001
– ident: 9735_CR4
– volume: 16
  start-page: 321
  issue: 1
  year: 2002
  ident: 9735_CR19
  publication-title: J Artif Intell Res
– volume: 37
  start-page: 2489
  issue: 11
  year: 2009
  ident: 9735_CR29
  publication-title: Acta Electron Sin
– volume: 74
  start-page: 3456
  issue: 17
  year: 2011
  ident: 9735_CR5
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.06.010
– volume: 44
  start-page: 2405
  issue: 12
  year: 2014
  ident: 9735_CR13
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2014.2307349
– volume: 59
  start-page: 546
  year: 2017
  ident: 9735_CR27
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.05.051
– volume: 33
  start-page: 245
  issue: 2
  year: 2012
  ident: 9735_CR20
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-011-0465-6
– volume: 101
  start-page: 229
  issue: 3
  year: 2013
  ident: 9735_CR31
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.08.010
– volume: 116
  start-page: 87
  year: 2013
  ident: 9735_CR9
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.12.062
– volume: 9140
  start-page: 365
  issue: 4
  year: 2015
  ident: 9735_CR7
  publication-title: Lect Notes Comput Sci
  doi: 10.1007/978-3-319-20466-6_39
– volume: 17
  start-page: 786
  issue: 6
  year: 2005
  ident: 9735_CR24
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2005.95
– volume: 6728
  start-page: 1
  year: 2015
  ident: 9735_CR2
  publication-title: Artif Intell Rev
– volume: 87
  start-page: 79
  issue: 15
  year: 2012
  ident: 9735_CR30
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.02.003
– volume: 17
  start-page: 679
  issue: 4
  year: 2014
  ident: 9735_CR14
  publication-title: Pattern Anal Appl
  doi: 10.1007/s10044-014-0392-8
– volume: 39
  start-page: 539
  issue: 2
  year: 2009
  ident: 9735_CR16
  publication-title: IEEE Trans Syst Man Cybern Part B
  doi: 10.1109/TSMCB.2008.2007853
– volume: 149
  start-page: 316
  issue: Part A
  year: 2015
  ident: 9735_CR18
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.03.075
– ident: 9735_CR22
  doi: 10.1109/ICIP.2018.8451358
– volume: 261
  start-page: 70
  year: 2017
  ident: 9735_CR26
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.120
– ident: 9735_CR6
  doi: 10.1007/978-3-319-61833-3_39
SSID ssj0021551
Score 2.3817685
Snippet Class-specific cost regulation extreme learning machine (CCR-ELM) can effectively deal with the class imbalance problems. However, its key parameters,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11
SubjectTerms Adaptive algorithms
Artificial Intelligence
Artificial neural networks
Belt conveyors
Classification
Complex Systems
Computer Science
Evolutionary algorithms
Evolutionary Biology
Fault diagnosis
Machine learning
Neural networks
Nodes
Optimization
Optimization algorithms
Parameters
Processor Architectures
Theory of Computation
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH7o6MGLOi44buTgQdFA26RJc5RB8aCDuOGttFlEmI2ZcX6_eZ3UQVFBby1J2pKXt6R57_sAjqxx1mUJp7EqU8qTxHmdiyIqmc14xoQWFZD207XsdLLnZ3UbisLGdbZ7fSRZWep5sVuFKhBh0Y2SLKVqEZa8u8uQsOHu_uljm4VBQIWS6k2A9P4olMp8_4zP7mgeY345Fq28zeXa_75zHVZDdEnOZ8uhCQu2vwFrNXMDCYq8Ac1wNSbHAXf6ZBPsuSmGaP1Iu31HL65vCP6kJVO_m8b6KoqcK_6-RFIJgkmVPTLw_XuhkpMU3ZfByI_oER8IE41hOX3tlZg7qS0J9BQvW_B4efHQvqKBhYFqxuWECuMKm9hUOJ1aaaQwTCrHEckttk5pHyFmyhaiiGJtnMxcUrLCeEOaCm5FmbBtaPQHfbsDpIxZWiKmvOGCG6EKwRIdGWVSU2jpTAviWhi5DhDlyJTRzefgyji5uZ_cvJrcXLXg9GPMcAbQ8Wvv_VrGeVDWcY60XMLbtoh938yVkMzv5XkLzmqRz5t_ftnu37rvwUqCCTNVgts-NCajN3sAy3o6eR2PDqs1_g4VQvSc
  priority: 102
  providerName: Springer Nature
Title Adaptive CCR-ELM with variable-length brain storm optimization algorithm for class-imbalance learning
URI https://link.springer.com/article/10.1007/s11047-019-09735-9
https://www.proquest.com/docview/2186631803
https://www.proquest.com/docview/2496731334
Volume 20
WOSCitedRecordID wos000625804800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9796
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021551
  issn: 1567-7818
  databaseCode: RSV
  dateStart: 20020301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7x2MNeeOxDlEflwx52tWttYjt2fEJQFSEBVVVYhPYSJX4AEn1AC78fT-pSgYALl0iRHTnSjMef7ZnvA_jhrHc-Z4KmusqoYMyHOZckVHGXi5xLI2si7fNj1enkFxe6Gw_cxjGtchYT60BthwbPyP-idpIMDpjw3dEtRdUovF2NEhqLsByQTYopXSes-7ThQjhQ86WGYKDCyhSLZqalczVHQYIlPFrxjOrnC9Mcbb64IK3XnYPVj_7xGqxExEn2pi6yDgtu8AXW45wek5-RePrXV3B7thxh-COtVo-2j08IntKSh7CdxgIriqIr4b1CVQmCWZV9Mgz9-7GUk5Q3l2H8yVWfBCRMDOJyet2vMHnSOBL1KS6_wb-D9lnrkEYZBmq4UBMqrS8dc5n0JnPKKmm50l4glVvqvDYBIubalbJMUmO9yj2reGlDJM2kcLJi_DssDYYDtwGkSnlWIam8FVJYqUvJmUmstpktjfK2AenMBoWJHOUolXFTzNmV0W5FsFtR263QDfj99M1oytDxbu_tmbGKOFvHxdxSrzcLLRUPm3nRgD8zb5g3vz3Y5vuDbcFnhhkydUbbNixN7u7dDnwyD5Pr8V0TlvfbnW6vCYtHijZrxw7PbvY_PHun54-V9vym
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bTxQxFD4hYKIvIl7iCmofNNFow0zbaacPxJAVAmHZEIOGt7HTC5LsDXbF-Kf8jfTMdtholDcefJx0Jk2n3_l62p7zHYBX3gUfSiZoruuCCsZCtLkso4r7UpRcWtkIaX_pqX6_PDnRR0vwq82FwbDKlhMbonZji2fkm1g7SUYAZvzD5Jxi1Si8XW1LaMxhceB__ohbtunW_sc4v68Z29057u7RVFWAWi7UjEoXjGe-kMEWXjklHVc6CFQmy33QNno8pfZGmiy3LqgysJobF4mhkMLLGoUOIuWvCFQWw1BBdnS9wUP3o9FnjeSj4kqYknTmqXqNJkKGKUNa8YLq3xfChXf7x4Vss87trv5vf-gB3E8eNdmem8AaLPnRQ1hLnDUlb5Kw9ttH4LedmSC9k273E93pHRI8hSaXJhphPfAUi8rE5xqrZhCMGh2ScXx_mFJViRmcxvHOvg1J9PSJxX0HPRvWGBxqPUn1N04fw-dbGe4TWB6NR_4pkDrnRY2i-U5I4aQ2kjObOe0KZ6wKrgN5O-eVTRrsWApkUC3UoxEnVcRJ1eCk0h14d_3NZK5AcuPbGy04qsRG02qBjL83Cy0VzzkXHXjfom_R_O_Ont3c2Uu4u3d82Kt6-_2DdbjHMBqoid7bgOXZxXf_HO7Yy9nZ9OJFY0YEvt42Kq8ASW9WQw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1baxQxFD6UKuKLWi-4tmoeFBQNnUkyyeRBpGy7WLoui6gUX6aZXGphb-2uFf-av86c2UwXRfvWBx-HzBAy-c5JTnLO9wE88y74UDJBc10XVDAWos1lGVXcl6Lk0sqGSPtzXw0G5eGhHq7Bz7YWBtMqW5_YOGo3tXhGvo3aSTICMOPbIaVFDHd7b2enFBWk8Ka1ldNYQuTA__gew7f5m_3dONfPGevtfey-o0lhgFou1IJKF4xnvpDBFl45JR1XOghkKct90DbufkrtjTRZbl1QZWA1Ny46iUIKL2skPYju_5qKMSamEw6LLxfBHm5FGq7W6IhUXBVTwc6ybK_hR8iwfEgrXlD9-6K42un-cTnbrHm92__z37oDt9JOm-wsTWMD1vzkLmwkXzYnLxLh9st74HecmaHbJ93uB7rXf0_wdJqcm2ic9chTFJuJzzWqaRDMJh2TaXx_nEpYiRkdx_Euvo5JjACIxXiEnoxrTBq1niRdjuP78OlKhvsA1ifTiX8IpM55USOZvhNSOKmN5MxmTrvCGauC60Dezn9lEzc7SoSMqhWrNGKmipipGsxUugOvLr6ZLZlJLn17qwVKlbzUvFqh5O_NQkvFc85FB163SFw1_7uzR5d39hRuRDBW_f3BwSbcZJgk1CT1bcH64uybfwzX7fniZH72pLEoAkdXDcpfYXNfLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+CCR-ELM+with+variable-length+brain+storm+optimization+algorithm+for+class-imbalance+learning&rft.jtitle=Natural+computing&rft.au=Cheng%2C+Jian&rft.au=Chen%2C+Jingjing&rft.au=Yi-nan+Guo&rft.au=Cheng%2C+Shi&rft.date=2021-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1567-7818&rft.eissn=1572-9796&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1007%2Fs11047-019-09735-9&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-7818&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-7818&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-7818&client=summon