Adaptive CCR-ELM with variable-length brain storm optimization algorithm for class-imbalance learning
Class-specific cost regulation extreme learning machine (CCR-ELM) can effectively deal with the class imbalance problems. However, its key parameters, including the number of hidden nodes, the input weights, the biases and the tradeoff factors are normally generated randomly or preset by human. More...
Saved in:
| Published in: | Natural computing Vol. 20; no. 1; pp. 11 - 22 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Dordrecht
Springer Netherlands
01.03.2021
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1567-7818, 1572-9796 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Class-specific cost regulation extreme learning machine (CCR-ELM) can effectively deal with the class imbalance problems. However, its key parameters, including the number of hidden nodes, the input weights, the biases and the tradeoff factors are normally generated randomly or preset by human. Moreover, the number of input weights and biases depend on the size of hidden layer. Inappropriate quantity of hidden nodes may lead to the useless or redundant neuron nodes, and make the whole structure complex, even cause the worse generalization and unstable classification performances. Based on this, an adaptive CCR-ELM with variable-length brain storm optimization algorithm is proposed for the class imbalance learning. Each individual consists of all above parameters of CCR-ELM and its length varies with the number of hidden nodes. A novel mergence operator is presented to incorporate two parent individuals with different length and generate a new individual. The experimental results for nine imbalance datasets show that variable-length brain storm optimization algorithm can find better parameters of CCR-ELM, resulting in the better classification accuracy than other evolutionary optimization algorithms, such as GA, PSO, and VPSO. In addition, the classification performance of the proposed adaptive algorithm is relatively stable under varied imbalance ratios. Applying the proposed algorithm in the fault diagnosis of conveyor belt also proves that ACCR-ELM with VLen-BSO has the better classification performances. |
|---|---|
| AbstractList | Class-specific cost regulation extreme learning machine (CCR-ELM) can effectively deal with the class imbalance problems. However, its key parameters, including the number of hidden nodes, the input weights, the biases and the tradeoff factors are normally generated randomly or preset by human. Moreover, the number of input weights and biases depend on the size of hidden layer. Inappropriate quantity of hidden nodes may lead to the useless or redundant neuron nodes, and make the whole structure complex, even cause the worse generalization and unstable classification performances. Based on this, an adaptive CCR-ELM with variable-length brain storm optimization algorithm is proposed for the class imbalance learning. Each individual consists of all above parameters of CCR-ELM and its length varies with the number of hidden nodes. A novel mergence operator is presented to incorporate two parent individuals with different length and generate a new individual. The experimental results for nine imbalance datasets show that variable-length brain storm optimization algorithm can find better parameters of CCR-ELM, resulting in the better classification accuracy than other evolutionary optimization algorithms, such as GA, PSO, and VPSO. In addition, the classification performance of the proposed adaptive algorithm is relatively stable under varied imbalance ratios. Applying the proposed algorithm in the fault diagnosis of conveyor belt also proves that ACCR-ELM with VLen-BSO has the better classification performances. |
| Author | Guo, Yi-nan Zhang, Pei Chen, Jingjing Cheng, Jian Cheng, Shi Yang, Linkai |
| Author_xml | – sequence: 1 givenname: Jian surname: Cheng fullname: Cheng, Jian organization: School of Information and Control Engineering, China University of Mining and Technology – sequence: 2 givenname: Jingjing surname: Chen fullname: Chen, Jingjing organization: School of Information and Control Engineering, China University of Mining and Technology – sequence: 3 givenname: Yi-nan surname: Guo fullname: Guo, Yi-nan email: guoyinan@cumt.edu.cn organization: School of Information and Control Engineering, China University of Mining and Technology – sequence: 4 givenname: Shi surname: Cheng fullname: Cheng, Shi organization: School of Information and Control Engineering, China University of Mining and Technology – sequence: 5 givenname: Linkai surname: Yang fullname: Yang, Linkai organization: School of Information and Control Engineering, China University of Mining and Technology – sequence: 6 givenname: Pei surname: Zhang fullname: Zhang, Pei organization: School of Information and Control Engineering, China University of Mining and Technology |
| BookMark | eNp9kE1LBCEYgCUK2rb-QCehs6XjjI7HZdk-YCOIOosz87q5zOims0X9-qwNgg57UuF59PU5QYc-eEDonNFLRqm8SozRUhLKFKFK8oqoAzRhlSyIkkocfu-FJLJm9TE6SWlNacGqik0QzDqzGd0b4Pn8kSyW9_jdjS_4zURnmh5ID36Vz000zuM0hjjgkPnBfZrRBY9NvwoxGwO2IeK2NykRNzSmN74F3IOJ3vnVKTqypk9w9rtO0fP14ml-S5YPN3fz2ZK0vJQjEZ01UEAlbFuB7KTouFS2zIPWDKxqVcFrBUYYytrOytoWDTcdq3glShBNwafoYnfvJobXLaRRr8M2-vykLkolJGecl3spVgvBWU15puod1caQUgSrWzf-fHrMMXrNqP5Or3fpdU6vf9JrldXin7qJbjDxY7_Ed1LKsF9B_Jtqj_UFoLKYwQ |
| CitedBy_id | crossref_primary_10_1016_j_dsx_2022_102609 crossref_primary_10_1016_j_knosys_2022_110008 crossref_primary_10_1016_j_apacoust_2022_109003 crossref_primary_10_1109_ACCESS_2023_3284390 crossref_primary_10_1007_s11517_022_02637_6 crossref_primary_10_1016_j_engappai_2022_105100 crossref_primary_10_3390_s23084073 crossref_primary_10_1109_TETCI_2021_3079966 crossref_primary_10_1016_j_conengprac_2023_105534 crossref_primary_10_1109_TIM_2023_3246470 crossref_primary_10_1016_j_bspc_2022_103688 crossref_primary_10_1016_j_eswa_2023_120967 crossref_primary_10_1109_ACCESS_2020_2972631 crossref_primary_10_1155_2023_3854295 crossref_primary_10_1007_s10489_021_02676_w crossref_primary_10_1016_j_aeue_2023_154831 crossref_primary_10_1002_int_22899 crossref_primary_10_3390_machines10040237 crossref_primary_10_1016_j_jmsy_2024_10_025 crossref_primary_10_1007_s12652_022_03901_1 crossref_primary_10_1155_2022_4981022 |
| Cites_doi | 10.1007/s10044-014-0392-8 10.1109/TSMCB.2011.2168604 10.1007/978-3-319-20466-6_39 10.1109/TSMCB.2008.2010506 10.1109/TSMCB.2008.2007853 10.1016/j.neucom.2015.11.095 10.1016/j.asoc.2017.05.051 10.1016/j.knosys.2015.10.012 10.1016/j.neucom.2011.06.010 10.1016/j.neucom.2011.12.062 10.1016/j.neucom.2016.09.120 10.1016/j.neucom.2012.02.003 10.1007/s10115-011-0465-6 10.1109/TCBB.2017.2685320 10.1007/s11063-013-9286-9 10.1016/j.neucom.2012.08.010 10.1002/9781118646106 10.1109/TCYB.2014.2307349 10.1016/j.measurement.2016.10.001 10.1016/j.neucom.2014.03.075 10.1109/TKDE.2005.95 10.1109/CEC.2018.8477735 10.1109/ICIP.2018.8451358 10.1007/978-3-319-61833-3_39 |
| ContentType | Journal Article |
| Copyright | Springer Nature B.V. 2019 Natural Computing is a copyright of Springer, (2019). All Rights Reserved. Springer Nature B.V. 2019. |
| Copyright_xml | – notice: Springer Nature B.V. 2019 – notice: Natural Computing is a copyright of Springer, (2019). All Rights Reserved. – notice: Springer Nature B.V. 2019. |
| DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1007/s11047-019-09735-9 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Computer Science |
| EISSN | 1572-9796 |
| EndPage | 22 |
| ExternalDocumentID | 10_1007_s11047_019_09735_9 |
| GrantInformation_xml | – fundername: National Key Research and Development Program grantid: 2016YFC0801406 – fundername: Six Talent Peak Project in Jiangsu Province grantid: 2017-DZXX-046 – fundername: Research Program of Frontier Discipline of China University of Mining and Technology grantid: 2015XKQY19 – fundername: National Natural Science Foundation of China grantid: 61573361 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | --- -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 203 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5VS 67Z 6NX 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ K6V K7- KDC KOV LAK LLZTM M0N M2P M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P62 P9O PF0 PQQKQ PROAC PT4 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c347t-6dfae2e56fc5e7d76d379f455181ef9c92389ea6a01cdf78f2b3ad153564e6b23 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000625804800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1567-7818 |
| IngestDate | Wed Nov 05 02:38:51 EST 2025 Tue Nov 04 22:27:50 EST 2025 Sat Nov 29 02:53:09 EST 2025 Tue Nov 18 21:50:53 EST 2025 Fri Feb 21 02:49:16 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Brain storm optimization algorithm Variable-length Class-specific cost regulation extreme learning machine The class imbalance problems Adaptive |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c347t-6dfae2e56fc5e7d76d379f455181ef9c92389ea6a01cdf78f2b3ad153564e6b23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2186631803 |
| PQPubID | 54627 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2496731334 proquest_journals_2186631803 crossref_citationtrail_10_1007_s11047_019_09735_9 crossref_primary_10_1007_s11047_019_09735_9 springer_journals_10_1007_s11047_019_09735_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-01 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Natural computing |
| PublicationTitleAbbrev | Nat Comput |
| PublicationYear | 2021 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Guo, Wu, Xie (CR7) 2015; 9140 Xiao, Zhang, Li (CR26) 2017; 261 He, Ma (CR10) 2013 Yang, Yang, Li (CR27) 2017; 59 Cheng, Qin, Chen (CR1) 2014; 4 Li, Mao (CR14) 2014; 17 Ertam, Avci (CR3) 2017; 95 Li, Zhang (CR15) 2014; 50 Huang, Zhou, Ding (CR12) 2012; 42 CR11 Yu, Sun, Yang (CR28) 2016; 92 Wu, Chang (CR24) 2005; 17 Zong, Huang, Chen (CR31) 2013; 101 Ramentol (CR20) 2012; 33 Han, Yao, Ling (CR9) 2013; 116 Zhao, Wang, Dong (CR30) 2012; 87 Rong, Huang, Narasimhan (CR21) 2009; 39 Guo, Zhen, Wang (CR8) 2016; 16 Liu, Wu, Zhou (CR16) 2009; 39 Huang, Song, Gupta (CR13) 2014; 44 CR4 CR6 Guo, Cheng, Luo, Gong, Xue (CR32) 2018; 15 Cheng, Qin, Chen (CR2) 2015; 6728 Wu, Wang, Ye (CR25) 2016; 190 CR23 CR22 Zeng, Qun, Liao (CR29) 2009; 37 Mirza, Lin, Liu (CR18) 2015; 149 Gao, Hong, Chen (CR5) 2011; 74 Mirza, Lin, Toh (CR17) 2013; 38 Nitesh, Bowyer, Lawrence (CR19) 2002; 16 D Li (9735_CR15) 2014; 50 GB Huang (9735_CR13) 2014; 44 GB Huang (9735_CR12) 2012; 42 XP Guo (9735_CR7) 2015; 9140 YN Guo (9735_CR8) 2016; 16 F Ertam (9735_CR3) 2017; 95 9735_CR22 9735_CR23 E Ramentol (9735_CR20) 2012; 33 ZQ Zeng (9735_CR29) 2009; 37 9735_CR4 B Mirza (9735_CR17) 2013; 38 LX Yang (9735_CR27) 2017; 59 XY Liu (9735_CR16) 2009; 39 DH Wu (9735_CR25) 2016; 190 HL Yu (9735_CR28) 2016; 92 S Cheng (9735_CR1) 2014; 4 9735_CR6 QJ Li (9735_CR14) 2014; 17 WD Xiao (9735_CR26) 2017; 261 F Han (9735_CR9) 2013; 116 WW Zong (9735_CR31) 2013; 101 9735_CR11 JW Zhao (9735_CR30) 2012; 87 M Gao (9735_CR5) 2011; 74 B Mirza (9735_CR18) 2015; 149 G Wu (9735_CR24) 2005; 17 VC Nitesh (9735_CR19) 2002; 16 S Cheng (9735_CR2) 2015; 6728 YN Guo (9735_CR32) 2018; 15 HB He (9735_CR10) 2013 HJ Rong (9735_CR21) 2009; 39 |
| References_xml | – volume: 17 start-page: 679 issue: 4 year: 2014 end-page: 693 ident: CR14 article-title: A review of boosting methods for imbalanced data classification publication-title: Pattern Anal Appl doi: 10.1007/s10044-014-0392-8 – volume: 42 start-page: 513 issue: 2 year: 2012 end-page: 529 ident: CR12 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Trans Syst Man Cybern Part B doi: 10.1109/TSMCB.2011.2168604 – ident: CR22 – volume: 9140 start-page: 365 issue: 4 year: 2015 end-page: 372 ident: CR7 article-title: An adaptive brain storm optimization algorithm for multiobjective optimization problems publication-title: Lect Notes Comput Sci doi: 10.1007/978-3-319-20466-6_39 – ident: CR4 – volume: 39 start-page: 1067 issue: 4 year: 2009 ident: CR21 article-title: Online sequential fuzzy extreme learning machine for function approximation and classification problems publication-title: IEEE Trans Syst Man Cybern Part B doi: 10.1109/TSMCB.2008.2010506 – volume: 39 start-page: 539 issue: 2 year: 2009 end-page: 550 ident: CR16 article-title: Exploratory undersampling for class-imbalance learning publication-title: IEEE Trans Syst Man Cybern Part B doi: 10.1109/TSMCB.2008.2007853 – volume: 50 start-page: 14 issue: 18 year: 2014 end-page: 18 ident: CR15 article-title: Stock price prediction based on ELM and FOA publication-title: Comput Eng Appl – volume: 190 start-page: 35 year: 2016 end-page: 49 ident: CR25 article-title: Mixed-kernel based weighted extreme learning machine for inertial sensor based human activity recognition with imbalanced dataset publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.11.095 – ident: CR6 – volume: 59 start-page: 546 year: 2017 end-page: 555 ident: CR27 article-title: Incremental laplacian regularization extreme learning machine for online learning publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.05.051 – volume: 92 start-page: 55 year: 2016 end-page: 70 ident: CR28 article-title: ODOC-ELM: optimal decision outputs compensation-based extreme learning machine for classifying imbalanced data publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2015.10.012 – volume: 74 start-page: 3456 issue: 17 year: 2011 end-page: 3466 ident: CR5 article-title: A combined smote and PSO based RBF classifier for two-class imbalanced problems publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.06.010 – volume: 116 start-page: 87 year: 2013 end-page: 93 ident: CR9 article-title: An improved evolutionary extreme learning machine based on particle swarm optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.12.062 – volume: 16 start-page: 321 issue: 1 year: 2002 end-page: 357 ident: CR19 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J Artif Intell Res – volume: 16 start-page: 1 issue: 4 year: 2016 end-page: 22 ident: CR8 article-title: Cultural particle swarm optimization algorithms for uncertain multi-objective problems with interval parameters publication-title: Nat Comput – volume: 261 start-page: 70 year: 2017 end-page: 82 ident: CR26 article-title: Class-specific cost regulation extreme learning machine for imbalanced classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.120 – ident: CR23 – volume: 87 start-page: 79 issue: 15 year: 2012 end-page: 89 ident: CR30 article-title: Online sequential extreme learning machine with forgetting mechanism publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.02.003 – volume: 6728 start-page: 1 year: 2015 end-page: 14 ident: CR2 article-title: Brain storm optimization algorithm: a review publication-title: Artif Intell Rev – volume: 33 start-page: 245 issue: 2 year: 2012 end-page: 265 ident: CR20 article-title: SMOTE-RS: a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using smote and rough sets theory publication-title: Knowl Inf Syst doi: 10.1007/s10115-011-0465-6 – volume: 15 start-page: 1891 issue: 6 year: 2018 end-page: 1903 ident: CR32 article-title: Robust dynamic multi-objective vehicle routing optimization method publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2017.2685320 – volume: 38 start-page: 465 issue: 3 year: 2013 end-page: 486 ident: CR17 article-title: Weighted online sequential extreme learning machine for class imbalance learning publication-title: Neural Process Lett doi: 10.1007/s11063-013-9286-9 – volume: 101 start-page: 229 issue: 3 year: 2013 end-page: 242 ident: CR31 article-title: Weighted extreme learning machine for imbalance learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.08.010 – volume: 37 start-page: 2489 issue: 11 year: 2009 end-page: 2495 ident: CR29 article-title: A classfication method for imbalance data set based on kernel smote publication-title: Acta Electron Sin – year: 2013 ident: CR10 publication-title: Imbalanced learning: foundations, algorithms, and applications doi: 10.1002/9781118646106 – volume: 44 start-page: 2405 issue: 12 year: 2014 end-page: 2417 ident: CR13 article-title: Semi-supervised and unsupervised extreme learning machines publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2014.2307349 – ident: CR11 – volume: 95 start-page: 135 year: 2017 end-page: 142 ident: CR3 article-title: A new approach for internet traffic classification: GA-WK-ELM publication-title: Measurement doi: 10.1016/j.measurement.2016.10.001 – volume: 149 start-page: 316 issue: Part A year: 2015 end-page: 329 ident: CR18 article-title: Ensemble of subset online sequential extreme learning machine for class imbalance and concept drift publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.03.075 – volume: 17 start-page: 786 issue: 6 year: 2005 end-page: 795 ident: CR24 article-title: KBA: kernel boundary alignment considering imbalanced data distribution publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2005.95 – volume: 4 start-page: 3230 issue: 3 year: 2014 end-page: 3237 ident: CR1 article-title: Maintaining population diversity in brain storm optimization algorithm publication-title: Proc IEEE Congr Evolut Comput – volume: 38 start-page: 465 issue: 3 year: 2013 ident: 9735_CR17 publication-title: Neural Process Lett doi: 10.1007/s11063-013-9286-9 – volume: 42 start-page: 513 issue: 2 year: 2012 ident: 9735_CR12 publication-title: IEEE Trans Syst Man Cybern Part B doi: 10.1109/TSMCB.2011.2168604 – volume: 50 start-page: 14 issue: 18 year: 2014 ident: 9735_CR15 publication-title: Comput Eng Appl – ident: 9735_CR11 – volume: 190 start-page: 35 year: 2016 ident: 9735_CR25 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.11.095 – volume: 15 start-page: 1891 issue: 6 year: 2018 ident: 9735_CR32 publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2017.2685320 – volume: 39 start-page: 1067 issue: 4 year: 2009 ident: 9735_CR21 publication-title: IEEE Trans Syst Man Cybern Part B doi: 10.1109/TSMCB.2008.2010506 – volume: 16 start-page: 1 issue: 4 year: 2016 ident: 9735_CR8 publication-title: Nat Comput – volume-title: Imbalanced learning: foundations, algorithms, and applications year: 2013 ident: 9735_CR10 doi: 10.1002/9781118646106 – volume: 4 start-page: 3230 issue: 3 year: 2014 ident: 9735_CR1 publication-title: Proc IEEE Congr Evolut Comput – ident: 9735_CR23 doi: 10.1109/CEC.2018.8477735 – volume: 92 start-page: 55 year: 2016 ident: 9735_CR28 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2015.10.012 – volume: 95 start-page: 135 year: 2017 ident: 9735_CR3 publication-title: Measurement doi: 10.1016/j.measurement.2016.10.001 – ident: 9735_CR4 – volume: 16 start-page: 321 issue: 1 year: 2002 ident: 9735_CR19 publication-title: J Artif Intell Res – volume: 37 start-page: 2489 issue: 11 year: 2009 ident: 9735_CR29 publication-title: Acta Electron Sin – volume: 74 start-page: 3456 issue: 17 year: 2011 ident: 9735_CR5 publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.06.010 – volume: 44 start-page: 2405 issue: 12 year: 2014 ident: 9735_CR13 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2014.2307349 – volume: 59 start-page: 546 year: 2017 ident: 9735_CR27 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.05.051 – volume: 33 start-page: 245 issue: 2 year: 2012 ident: 9735_CR20 publication-title: Knowl Inf Syst doi: 10.1007/s10115-011-0465-6 – volume: 101 start-page: 229 issue: 3 year: 2013 ident: 9735_CR31 publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.08.010 – volume: 116 start-page: 87 year: 2013 ident: 9735_CR9 publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.12.062 – volume: 9140 start-page: 365 issue: 4 year: 2015 ident: 9735_CR7 publication-title: Lect Notes Comput Sci doi: 10.1007/978-3-319-20466-6_39 – volume: 17 start-page: 786 issue: 6 year: 2005 ident: 9735_CR24 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2005.95 – volume: 6728 start-page: 1 year: 2015 ident: 9735_CR2 publication-title: Artif Intell Rev – volume: 87 start-page: 79 issue: 15 year: 2012 ident: 9735_CR30 publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.02.003 – volume: 17 start-page: 679 issue: 4 year: 2014 ident: 9735_CR14 publication-title: Pattern Anal Appl doi: 10.1007/s10044-014-0392-8 – volume: 39 start-page: 539 issue: 2 year: 2009 ident: 9735_CR16 publication-title: IEEE Trans Syst Man Cybern Part B doi: 10.1109/TSMCB.2008.2007853 – volume: 149 start-page: 316 issue: Part A year: 2015 ident: 9735_CR18 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.03.075 – ident: 9735_CR22 doi: 10.1109/ICIP.2018.8451358 – volume: 261 start-page: 70 year: 2017 ident: 9735_CR26 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.120 – ident: 9735_CR6 doi: 10.1007/978-3-319-61833-3_39 |
| SSID | ssj0021551 |
| Score | 2.3817685 |
| Snippet | Class-specific cost regulation extreme learning machine (CCR-ELM) can effectively deal with the class imbalance problems. However, its key parameters,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 11 |
| SubjectTerms | Adaptive algorithms Artificial Intelligence Artificial neural networks Belt conveyors Classification Complex Systems Computer Science Evolutionary algorithms Evolutionary Biology Fault diagnosis Machine learning Neural networks Nodes Optimization Optimization algorithms Parameters Processor Architectures Theory of Computation |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH7o6MGLOi44buTgQdFA26RJc5RB8aCDuOGttFlEmI2ZcX6_eZ3UQVFBby1J2pKXt6R57_sAjqxx1mUJp7EqU8qTxHmdiyIqmc14xoQWFZD207XsdLLnZ3UbisLGdbZ7fSRZWep5sVuFKhBh0Y2SLKVqEZa8u8uQsOHu_uljm4VBQIWS6k2A9P4olMp8_4zP7mgeY345Fq28zeXa_75zHVZDdEnOZ8uhCQu2vwFrNXMDCYq8Ac1wNSbHAXf6ZBPsuSmGaP1Iu31HL65vCP6kJVO_m8b6KoqcK_6-RFIJgkmVPTLw_XuhkpMU3ZfByI_oER8IE41hOX3tlZg7qS0J9BQvW_B4efHQvqKBhYFqxuWECuMKm9hUOJ1aaaQwTCrHEckttk5pHyFmyhaiiGJtnMxcUrLCeEOaCm5FmbBtaPQHfbsDpIxZWiKmvOGCG6EKwRIdGWVSU2jpTAviWhi5DhDlyJTRzefgyji5uZ_cvJrcXLXg9GPMcAbQ8Wvv_VrGeVDWcY60XMLbtoh938yVkMzv5XkLzmqRz5t_ftnu37rvwUqCCTNVgts-NCajN3sAy3o6eR2PDqs1_g4VQvSc priority: 102 providerName: Springer Nature |
| Title | Adaptive CCR-ELM with variable-length brain storm optimization algorithm for class-imbalance learning |
| URI | https://link.springer.com/article/10.1007/s11047-019-09735-9 https://www.proquest.com/docview/2186631803 https://www.proquest.com/docview/2496731334 |
| Volume | 20 |
| WOSCitedRecordID | wos000625804800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-9796 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021551 issn: 1567-7818 databaseCode: RSV dateStart: 20020301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7x2MNeeOxDlEflwx52tWttYjt2fEJQFSEBVVVYhPYSJX4AEn1AC78fT-pSgYALl0iRHTnSjMef7ZnvA_jhrHc-Z4KmusqoYMyHOZckVHGXi5xLI2si7fNj1enkFxe6Gw_cxjGtchYT60BthwbPyP-idpIMDpjw3dEtRdUovF2NEhqLsByQTYopXSes-7ThQjhQ86WGYKDCyhSLZqalczVHQYIlPFrxjOrnC9Mcbb64IK3XnYPVj_7xGqxExEn2pi6yDgtu8AXW45wek5-RePrXV3B7thxh-COtVo-2j08IntKSh7CdxgIriqIr4b1CVQmCWZV9Mgz9-7GUk5Q3l2H8yVWfBCRMDOJyet2vMHnSOBL1KS6_wb-D9lnrkEYZBmq4UBMqrS8dc5n0JnPKKmm50l4glVvqvDYBIubalbJMUmO9yj2reGlDJM2kcLJi_DssDYYDtwGkSnlWIam8FVJYqUvJmUmstpktjfK2AenMBoWJHOUolXFTzNmV0W5FsFtR263QDfj99M1oytDxbu_tmbGKOFvHxdxSrzcLLRUPm3nRgD8zb5g3vz3Y5vuDbcFnhhkydUbbNixN7u7dDnwyD5Pr8V0TlvfbnW6vCYtHijZrxw7PbvY_PHun54-V9vym |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bTxQxFD4hYKIvIl7iCmofNNFow0zbaacPxJAVAmHZEIOGt7HTC5LsDXbF-Kf8jfTMdtholDcefJx0Jk2n3_l62p7zHYBX3gUfSiZoruuCCsZCtLkso4r7UpRcWtkIaX_pqX6_PDnRR0vwq82FwbDKlhMbonZji2fkm1g7SUYAZvzD5Jxi1Si8XW1LaMxhceB__ohbtunW_sc4v68Z29057u7RVFWAWi7UjEoXjGe-kMEWXjklHVc6CFQmy33QNno8pfZGmiy3LqgysJobF4mhkMLLGoUOIuWvCFQWw1BBdnS9wUP3o9FnjeSj4kqYknTmqXqNJkKGKUNa8YLq3xfChXf7x4Vss87trv5vf-gB3E8eNdmem8AaLPnRQ1hLnDUlb5Kw9ttH4LedmSC9k273E93pHRI8hSaXJhphPfAUi8rE5xqrZhCMGh2ScXx_mFJViRmcxvHOvg1J9PSJxX0HPRvWGBxqPUn1N04fw-dbGe4TWB6NR_4pkDrnRY2i-U5I4aQ2kjObOe0KZ6wKrgN5O-eVTRrsWApkUC3UoxEnVcRJ1eCk0h14d_3NZK5AcuPbGy04qsRG02qBjL83Cy0VzzkXHXjfom_R_O_Ont3c2Uu4u3d82Kt6-_2DdbjHMBqoid7bgOXZxXf_HO7Yy9nZ9OJFY0YEvt42Kq8ASW9WQw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1baxQxFD6UKuKLWi-4tmoeFBQNnUkyyeRBpGy7WLoui6gUX6aZXGphb-2uFf-av86c2UwXRfvWBx-HzBAy-c5JTnLO9wE88y74UDJBc10XVDAWos1lGVXcl6Lk0sqGSPtzXw0G5eGhHq7Bz7YWBtMqW5_YOGo3tXhGvo3aSTICMOPbIaVFDHd7b2enFBWk8Ka1ldNYQuTA__gew7f5m_3dONfPGevtfey-o0lhgFou1IJKF4xnvpDBFl45JR1XOghkKct90DbufkrtjTRZbl1QZWA1Ny46iUIKL2skPYju_5qKMSamEw6LLxfBHm5FGq7W6IhUXBVTwc6ybK_hR8iwfEgrXlD9-6K42un-cTnbrHm92__z37oDt9JOm-wsTWMD1vzkLmwkXzYnLxLh9st74HecmaHbJ93uB7rXf0_wdJqcm2ic9chTFJuJzzWqaRDMJh2TaXx_nEpYiRkdx_Euvo5JjACIxXiEnoxrTBq1niRdjuP78OlKhvsA1ifTiX8IpM55USOZvhNSOKmN5MxmTrvCGauC60Dezn9lEzc7SoSMqhWrNGKmipipGsxUugOvLr6ZLZlJLn17qwVKlbzUvFqh5O_NQkvFc85FB163SFw1_7uzR5d39hRuRDBW_f3BwSbcZJgk1CT1bcH64uybfwzX7fniZH72pLEoAkdXDcpfYXNfLw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+CCR-ELM+with+variable-length+brain+storm+optimization+algorithm+for+class-imbalance+learning&rft.jtitle=Natural+computing&rft.au=Cheng%2C+Jian&rft.au=Chen%2C+Jingjing&rft.au=Yi-nan+Guo&rft.au=Cheng%2C+Shi&rft.date=2021-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1567-7818&rft.eissn=1572-9796&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1007%2Fs11047-019-09735-9&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-7818&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-7818&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-7818&client=summon |