Two-Phase Bidirectional Dual-Relay Selection Strategy for Wireless Relay Networks

In this article, we introduce a new bi-directional dual-relay selection strategy with its bit error rate (BER) performance analysis. During the first step of the proposed strategy, two relays out of a set of N relay-nodes are selected in a way to optimize the system performance in terms of BER, base...

Full description

Saved in:
Bibliographic Details
Published in:Computers, materials & continua Vol. 69; no. 1; pp. 539 - 553
Main Authors: Alabed, Samer, Maaz, Issam, Al-Rabayah, Mohammad
Format: Journal Article
Language:English
Published: Henderson Tech Science Press 2021
Subjects:
ISSN:1546-2226, 1546-2218, 1546-2226
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this article, we introduce a new bi-directional dual-relay selection strategy with its bit error rate (BER) performance analysis. During the first step of the proposed strategy, two relays out of a set of N relay-nodes are selected in a way to optimize the system performance in terms of BER, based on the suggested algorithm which checks if the selected relays using the max-min criterion are the best ones. In the second step, the chosen relay-nodes perform an orthogonal space-time coding scheme using the two-phase relaying protocol to establish a bi-directional communication between the communicating terminals, leading to a significant improvement in the achievable coding and diversity gain. To further improve the overall system performance, the selected relay-nodes apply also a digital network coding scheme. Furthermore, this paper discusses the analytical approximation of the BER performance of the proposed strategy, where we prove that the analytical results match almost perfectly the simulated ones. Finally, our simulation results show that the proposed strategy outperforms the current state-of-the-art ones.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1546-2226
1546-2218
1546-2226
DOI:10.32604/cmc.2021.018061