SpineParseNet: Spine Parsing for Volumetric MR Image by a Two-Stage Segmentation Framework With Semantic Image Representation

Spine parsing (i.e., multi-class segmentation of vertebrae and intervertebral discs (IVDs)) for volumetric magnetic resonance (MR) image plays a significant role in various spinal disease diagnoses and treatments of spine disorders, yet is still a challenge due to the inter-class similarity and intr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging Jg. 40; H. 1; S. 262 - 273
Hauptverfasser: Pang, Shumao, Pang, Chunlan, Zhao, Lei, Chen, Yangfan, Su, Zhihai, Zhou, Yujia, Huang, Meiyan, Yang, Wei, Lu, Hai, Feng, Qianjin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0278-0062, 1558-254X, 1558-254X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Spine parsing (i.e., multi-class segmentation of vertebrae and intervertebral discs (IVDs)) for volumetric magnetic resonance (MR) image plays a significant role in various spinal disease diagnoses and treatments of spine disorders, yet is still a challenge due to the inter-class similarity and intra-class variation of spine images. Existing fully convolutional network based methods failed to explicitly exploit the dependencies between different spinal structures. In this article, we propose a novel two-stage framework named SpineParseNet to achieve automated spine parsing for volumetric MR images. The SpineParseNet consists of a 3D graph convolutional segmentation network (GCSN) for 3D coarse segmentation and a 2D residual U-Net (ResUNet) for 2D segmentation refinement. In 3D GCSN, region pooling is employed to project the image representation to graph representation, in which each node representation denotes a specific spinal structure. The adjacency matrix of the graph is designed according to the connection of spinal structures. The graph representation is evolved by graph convolutions. Subsequently, the proposed region unpooling module re-projects the evolved graph representation to a semantic image representation, which facilitates the 3D GCSN to generate reliable coarse segmentation. Finally, the 2D ResUNet refines the segmentation. Experiments on T2-weighted volumetric MR images of 215 subjects show that SpineParseNet achieves impressive performance with mean Dice similarity coefficients of 87.32 ± 4.75%, 87.78 ± 4.64%, and 87.49 ± 3.81% for the segmentations of 10 vertebrae, 9 IVDs, and all 19 spinal structures respectively. The proposed method has great potential in clinical spinal disease diagnoses and treatments.
AbstractList Spine parsing (i.e., multi-class segmentation of vertebrae and intervertebral discs (IVDs)) for volumetric magnetic resonance (MR) image plays a significant role in various spinal disease diagnoses and treatments of spine disorders, yet is still a challenge due to the inter-class similarity and intra-class variation of spine images. Existing fully convolutional network based methods failed to explicitly exploit the dependencies between different spinal structures. In this article, we propose a novel two-stage framework named SpineParseNet to achieve automated spine parsing for volumetric MR images. The SpineParseNet consists of a 3D graph convolutional segmentation network (GCSN) for 3D coarse segmentation and a 2D residual U-Net (ResUNet) for 2D segmentation refinement. In 3D GCSN, region pooling is employed to project the image representation to graph representation, in which each node representation denotes a specific spinal structure. The adjacency matrix of the graph is designed according to the connection of spinal structures. The graph representation is evolved by graph convolutions. Subsequently, the proposed region unpooling module re-projects the evolved graph representation to a semantic image representation, which facilitates the 3D GCSN to generate reliable coarse segmentation. Finally, the 2D ResUNet refines the segmentation. Experiments on T2-weighted volumetric MR images of 215 subjects show that SpineParseNet achieves impressive performance with mean Dice similarity coefficients of 87.32 ± 4.75%, 87.78 ± 4.64%, and 87.49 ± 3.81% for the segmentations of 10 vertebrae, 9 IVDs, and all 19 spinal structures respectively. The proposed method has great potential in clinical spinal disease diagnoses and treatments.
Spine parsing (i.e., multi-class segmentation of vertebrae and intervertebral discs (IVDs)) for volumetric magnetic resonance (MR) image plays a significant role in various spinal disease diagnoses and treatments of spine disorders, yet is still a challenge due to the inter-class similarity and intra-class variation of spine images. Existing fully convolutional network based methods failed to explicitly exploit the dependencies between different spinal structures. In this article, we propose a novel two-stage framework named SpineParseNet to achieve automated spine parsing for volumetric MR images. The SpineParseNet consists of a 3D graph convolutional segmentation network (GCSN) for 3D coarse segmentation and a 2D residual U-Net (ResUNet) for 2D segmentation refinement. In 3D GCSN, region pooling is employed to project the image representation to graph representation, in which each node representation denotes a specific spinal structure. The adjacency matrix of the graph is designed according to the connection of spinal structures. The graph representation is evolved by graph convolutions. Subsequently, the proposed region unpooling module re-projects the evolved graph representation to a semantic image representation, which facilitates the 3D GCSN to generate reliable coarse segmentation. Finally, the 2D ResUNet refines the segmentation. Experiments on T2-weighted volumetric MR images of 215 subjects show that SpineParseNet achieves impressive performance with mean Dice similarity coefficients of 87.32 ± 4.75%, 87.78 ± 4.64%, and 87.49 ± 3.81% for the segmentations of 10 vertebrae, 9 IVDs, and all 19 spinal structures respectively. The proposed method has great potential in clinical spinal disease diagnoses and treatments.Spine parsing (i.e., multi-class segmentation of vertebrae and intervertebral discs (IVDs)) for volumetric magnetic resonance (MR) image plays a significant role in various spinal disease diagnoses and treatments of spine disorders, yet is still a challenge due to the inter-class similarity and intra-class variation of spine images. Existing fully convolutional network based methods failed to explicitly exploit the dependencies between different spinal structures. In this article, we propose a novel two-stage framework named SpineParseNet to achieve automated spine parsing for volumetric MR images. The SpineParseNet consists of a 3D graph convolutional segmentation network (GCSN) for 3D coarse segmentation and a 2D residual U-Net (ResUNet) for 2D segmentation refinement. In 3D GCSN, region pooling is employed to project the image representation to graph representation, in which each node representation denotes a specific spinal structure. The adjacency matrix of the graph is designed according to the connection of spinal structures. The graph representation is evolved by graph convolutions. Subsequently, the proposed region unpooling module re-projects the evolved graph representation to a semantic image representation, which facilitates the 3D GCSN to generate reliable coarse segmentation. Finally, the 2D ResUNet refines the segmentation. Experiments on T2-weighted volumetric MR images of 215 subjects show that SpineParseNet achieves impressive performance with mean Dice similarity coefficients of 87.32 ± 4.75%, 87.78 ± 4.64%, and 87.49 ± 3.81% for the segmentations of 10 vertebrae, 9 IVDs, and all 19 spinal structures respectively. The proposed method has great potential in clinical spinal disease diagnoses and treatments.
Author Zhou, Yujia
Pang, Chunlan
Chen, Yangfan
Pang, Shumao
Feng, Qianjin
Zhao, Lei
Su, Zhihai
Huang, Meiyan
Yang, Wei
Lu, Hai
Author_xml – sequence: 1
  givenname: Shumao
  orcidid: 0000-0003-0409-8562
  surname: Pang
  fullname: Pang, Shumao
  email: pangshumao@126.com
  organization: Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
– sequence: 2
  givenname: Chunlan
  surname: Pang
  fullname: Pang, Chunlan
  email: pangchl@sysucc.org.cn
  organization: Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
– sequence: 3
  givenname: Lei
  surname: Zhao
  fullname: Zhao, Lei
  email: lei6730@smu.edu.cn
  organization: Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
– sequence: 4
  givenname: Yangfan
  surname: Chen
  fullname: Chen, Yangfan
  email: cyangfan4@gmail.com
  organization: Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
– sequence: 5
  givenname: Zhihai
  surname: Su
  fullname: Su, Zhihai
  email: 13265092954@163.com
  organization: Department of Spinal Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
– sequence: 6
  givenname: Yujia
  surname: Zhou
  fullname: Zhou, Yujia
  email: zyj.shmily08@gmail.com
  organization: Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
– sequence: 7
  givenname: Meiyan
  surname: Huang
  fullname: Huang, Meiyan
  email: huangmeiyan11@gmail.com
  organization: Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
– sequence: 8
  givenname: Wei
  orcidid: 0000-0002-2161-3231
  surname: Yang
  fullname: Yang, Wei
  email: weiyanggm@gmail.com
  organization: Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
– sequence: 9
  givenname: Hai
  surname: Lu
  fullname: Lu, Hai
  email: hailu_nanfang@163.com
  organization: Department of Spinal Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
– sequence: 10
  givenname: Qianjin
  orcidid: 0000-0001-8647-0596
  surname: Feng
  fullname: Feng, Qianjin
  email: fengqj99@fimmu.com
  organization: Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32956047$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAURi1URKcteyQkZIkNm0xv_MiDXVXRMlJbUGcK7CwnczO4JPZgO6q66H8nITMsumBlffI5V77-jsiBdRYJeZPCPE2hPF1dL-YMGMw5MAlF_oLMUimLhEnx44DMgOVFApCxQ3IUwj1AKiSUr8ghZ6XMQOQz8rTcGotftQ94g_Ej_RvpmI3d0MZ5-s21fYfRm5pe39JFpzdIq0eq6erBJcs4xiVuOrRRR-MsvfC6wwfnf9HvJv4c7jpt4yBP5i1uPYY9fEJeNroN-Hp3HpO7i0-r88_J1ZfLxfnZVVJzkcdEFjzNBANe4bqoM8kzxhtZsnRdi5xnouJNKZhuygpQsrKuRFHnzRq51ByEkPyYfJjmbr373WOIqjOhxrbVFl0fFBNCFLlkfETfP0PvXe_t8LqBykUhhWDFQL3bUX3V4Vptvem0f1T7jx2AbAJq70Lw2KjaTDtHr02rUlBjg2poUI0Nql2DgwjPxP3s_yhvJ8Ug4j-8ZDDQnP8BQ1-kog
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_media_2021_102258
crossref_primary_10_1007_s11547_025_01996_y
crossref_primary_10_1088_1361_6560_ad111b
crossref_primary_10_1002_jor_25303
crossref_primary_10_1038_s41598_024_84301_7
crossref_primary_10_1109_TMI_2024_3367868
crossref_primary_10_1007_s11760_025_04531_8
crossref_primary_10_1016_j_compbiomed_2022_106079
crossref_primary_10_1016_j_media_2023_103061
crossref_primary_10_1186_s41747_023_00385_2
crossref_primary_10_1109_TCSVT_2023_3338860
crossref_primary_10_3390_bioengineering11101031
crossref_primary_10_1007_s11548_024_03219_7
crossref_primary_10_1016_j_compbiomed_2022_106190
crossref_primary_10_1002_ima_23174
crossref_primary_10_1016_j_compmedimag_2023_102244
crossref_primary_10_1109_TMI_2022_3179128
crossref_primary_10_1016_j_compmedimag_2023_102245
crossref_primary_10_1002_mp_16302
crossref_primary_10_1016_j_mri_2025_110505
crossref_primary_10_1007_s11760_024_03548_9
crossref_primary_10_1016_j_bspc_2025_107809
crossref_primary_10_1155_2022_4792532
crossref_primary_10_3390_math11143091
crossref_primary_10_1007_s10462_024_10918_9
crossref_primary_10_1016_j_media_2023_102786
crossref_primary_10_1016_j_media_2021_102261
crossref_primary_10_1007_s11831_022_09805_9
crossref_primary_10_1016_j_compbiomed_2024_108282
crossref_primary_10_1038_s41597_024_03090_w
crossref_primary_10_1016_j_compmedimag_2025_102531
crossref_primary_10_1109_ACCESS_2022_3160179
crossref_primary_10_1155_2021_9654059
crossref_primary_10_1186_s13018_024_05002_5
crossref_primary_10_1016_j_bspc_2025_108137
crossref_primary_10_1016_j_media_2024_103283
crossref_primary_10_1007_s10278_025_01424_7
crossref_primary_10_1088_1361_6501_ad876d
crossref_primary_10_1109_TIP_2021_3136619
crossref_primary_10_3390_bioengineering10080963
crossref_primary_10_1016_j_compbiomed_2024_108570
crossref_primary_10_3390_healthcare11040484
crossref_primary_10_1016_j_iot_2025_101709
crossref_primary_10_1109_TIP_2024_3431451
crossref_primary_10_1109_TMI_2024_3501365
crossref_primary_10_1016_j_bspc_2025_107956
crossref_primary_10_1002_jmri_28735
crossref_primary_10_1109_TIM_2024_3500060
crossref_primary_10_1111_os_13431
crossref_primary_10_3389_fphys_2023_1027076
crossref_primary_10_3390_math10050796
crossref_primary_10_7759_cureus_25686
crossref_primary_10_3390_ijerph191912857
crossref_primary_10_1016_j_bspc_2023_104918
crossref_primary_10_1088_1742_6596_2089_1_012013
crossref_primary_10_1016_j_artmed_2025_103247
crossref_primary_10_1038_s41551_025_01497_3
crossref_primary_10_1007_s11517_023_02963_3
crossref_primary_10_1007_s11263_024_02015_9
crossref_primary_10_1016_j_compbiomed_2023_106839
crossref_primary_10_1016_j_bspc_2023_105682
crossref_primary_10_1016_j_image_2023_117013
crossref_primary_10_3390_math10122099
crossref_primary_10_1109_ACCESS_2021_3131216
crossref_primary_10_3389_fnagi_2022_841297
crossref_primary_10_1016_j_media_2024_103380
crossref_primary_10_1007_s00521_025_11481_2
crossref_primary_10_1007_s42452_025_07138_3
crossref_primary_10_1016_j_jbo_2024_100649
crossref_primary_10_1002_mp_16467
crossref_primary_10_1002_jmri_28877
crossref_primary_10_1016_j_patcog_2025_111417
crossref_primary_10_1109_TIP_2024_3482189
crossref_primary_10_1177_02841851231204214
crossref_primary_10_1016_j_media_2023_102906
crossref_primary_10_1088_1361_6560_acaae9
crossref_primary_10_1016_j_bspc_2023_105278
crossref_primary_10_1088_1361_6560_acef9f
crossref_primary_10_3389_fpubh_2022_926229
crossref_primary_10_3390_math10101665
crossref_primary_10_1016_j_eswa_2023_122330
crossref_primary_10_1016_j_artmed_2024_102771
crossref_primary_10_1109_JIOT_2024_3520994
crossref_primary_10_32604_cmes_2024_056424
crossref_primary_10_1177_08953996241299998
crossref_primary_10_1109_TIM_2022_3171613
crossref_primary_10_1109_ACCESS_2025_3555879
crossref_primary_10_1016_j_bspc_2025_108169
crossref_primary_10_1016_j_jvcir_2023_103991
crossref_primary_10_1109_JBHI_2022_3214999
crossref_primary_10_3389_fpubh_2022_863307
crossref_primary_10_1016_j_bspc_2022_104021
crossref_primary_10_1088_1361_6560_acb199
crossref_primary_10_1016_j_compmedimag_2022_102125
crossref_primary_10_1038_s41746_025_01964_w
crossref_primary_10_1038_s41598_024_79244_y
crossref_primary_10_1007_s10462_025_11185_y
Cites_doi 10.1109/TMI.2017.2667578
10.1109/COMPSAC.2019.00109
10.1109/CVPR.2017.195
10.1162/neco.1997.9.8.1735
10.1007/978-3-319-14148-0_18
10.1109/TMI.2013.2244903
10.1109/JBHI.2020.2969084
10.1109/JBHI.2018.2872810
10.1007/978-3-319-41827-8_10
10.1109/CVPR.2016.90
10.1016/j.neuroimage.2006.01.015
10.1016/j.media.2019.02.005
10.1016/j.media.2018.08.005
10.1016/j.media.2018.01.004
10.1088/0031-9155/57/24/8357
10.1109/CVPR.2019.00763
10.1016/j.spinee.2019.01.001
10.1109/ACCESS.2019.2962608
10.1109/ISBI.2018.8363715
10.1016/j.media.2012.06.006
10.1109/ISBI.2019.8759413
10.1007/978-3-319-43775-0_34
10.1006/cviu.1997.0608
10.1109/TBME.2012.2225833
10.1109/TMI.2019.2906727
10.1109/TMI.2015.2403285
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2020.3025087
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 273
ExternalDocumentID 32956047
10_1109_TMI_2020_3025087
9201093
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Science and Technology Project of Guangzhou
  grantid: 201704020033
– fundername: National Natural Science Foundation of China
  grantid: 81974275; U1501256; 81801780; 62001207
  funderid: 10.13039/501100001809
– fundername: China Postdoctoral Science Foundation
  grantid: 2020M672712
  funderid: 10.13039/501100002858
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
NPM
PKN
RIG
Z5M
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c347t-583164203bed8c653623f5921dc47364b3f942af9b0e529cb48c7fde35a304453
IEDL.DBID RIE
ISICitedReferencesCount 122
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604883800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0062
1558-254X
IngestDate Sun Sep 28 00:06:49 EDT 2025
Sun Jun 29 15:27:56 EDT 2025
Wed Feb 19 02:30:01 EST 2025
Sat Nov 29 05:14:08 EST 2025
Tue Nov 18 22:53:28 EST 2025
Wed Aug 27 02:32:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-583164203bed8c653623f5921dc47364b3f942af9b0e529cb48c7fde35a304453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2161-3231
0000-0003-0409-8562
0000-0001-8647-0596
PMID 32956047
PQID 2474854428
PQPubID 85460
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TMI_2020_3025087
crossref_primary_10_1109_TMI_2020_3025087
ieee_primary_9201093
pubmed_primary_32956047
proquest_journals_2474854428
proquest_miscellaneous_2444875235
PublicationCentury 2000
PublicationDate 2021-Jan.
2021-1-00
2021-Jan
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan.
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
kingma (ref34) 2014
ref12
kipf (ref28) 2016; abs 1609 2907
ref15
chen (ref25) 2018
ref14
lee (ref33) 2017
ref31
ref30
ref11
sekuboyina (ref13) 2017
ref10
ref2
ref1
ref17
ronneberger (ref24) 2015
ref19
ref18
sekuboyina (ref16) 2017
çiçek (ref32) 2016
korez (ref9) 2015
ref23
ref26
ref20
ref22
ref21
ref27
ref29
ref8
ref7
ref4
ref3
ref6
ref5
References_xml – ident: ref10
  doi: 10.1109/TMI.2017.2667578
– start-page: 424
  year: 2016
  ident: ref32
  article-title: 3D U-Net: Learning dense volumetric segmentation from sparse annotation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
– ident: ref17
  doi: 10.1109/COMPSAC.2019.00109
– ident: ref30
  doi: 10.1109/CVPR.2017.195
– volume: abs 1609 2907
  year: 2016
  ident: ref28
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: CoRR
– ident: ref26
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref3
  doi: 10.1007/978-3-319-14148-0_18
– ident: ref7
  doi: 10.1109/TMI.2013.2244903
– ident: ref20
  doi: 10.1109/JBHI.2020.2969084
– ident: ref21
  doi: 10.1109/JBHI.2018.2872810
– ident: ref4
  doi: 10.1007/978-3-319-41827-8_10
– ident: ref23
  doi: 10.1109/CVPR.2016.90
– ident: ref31
  doi: 10.1016/j.neuroimage.2006.01.015
– ident: ref19
  doi: 10.1016/j.media.2019.02.005
– year: 2014
  ident: ref34
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc 3rd Int Conf Learn Representations
– ident: ref27
  doi: 10.1016/j.media.2018.08.005
– start-page: 801
  year: 2018
  ident: ref25
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– year: 2017
  ident: ref16
  article-title: A localisation-segmentation approach for multi-label annotation of lumbar vertebrae using deep nets
  publication-title: arXiv 1703 04347
– ident: ref15
  doi: 10.1016/j.media.2018.01.004
– ident: ref6
  doi: 10.1088/0031-9155/57/24/8357
– ident: ref29
  doi: 10.1109/CVPR.2019.00763
– ident: ref1
  doi: 10.1016/j.spinee.2019.01.001
– ident: ref22
  doi: 10.1109/ACCESS.2019.2962608
– ident: ref14
  doi: 10.1109/ISBI.2018.8363715
– ident: ref8
  doi: 10.1016/j.media.2012.06.006
– ident: ref18
  doi: 10.1109/ISBI.2019.8759413
– start-page: 117
  year: 2015
  ident: ref9
  article-title: Deformable model-based segmentation of intervertebral discs from MR spine images by using the SSC descriptor
  publication-title: Proc Int Workshop Challenge Comput Methods Clin Appl Spine Imag
– ident: ref12
  doi: 10.1007/978-3-319-43775-0_34
– start-page: 108
  year: 2017
  ident: ref13
  article-title: Attention-driven deep learning for pathological spine segmentation
  publication-title: Proc Int Workshop Challenge Comput Methods Clin Appl Musculoskeletal Imag
– start-page: 234
  year: 2015
  ident: ref24
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
– ident: ref2
  doi: 10.1006/cviu.1997.0608
– ident: ref5
  doi: 10.1109/TBME.2012.2225833
– ident: ref35
  doi: 10.1109/TMI.2019.2906727
– ident: ref11
  doi: 10.1109/TMI.2015.2403285
– year: 2017
  ident: ref33
  article-title: Superhuman accuracy on the SNEMI3D connectomics challenge
  publication-title: arXiv 1706 00120 [cs]
SSID ssj0014509
Score 2.6297758
Snippet Spine parsing (i.e., multi-class segmentation of vertebrae and intervertebral discs (IVDs)) for volumetric magnetic resonance (MR) image plays a significant...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 262
SubjectTerms 3D segmentation
Computed tomography
Deep learning
graph convolution
Graph representations
Graphical representations
Image processing
Image representation
Image segmentation
Intervertebral discs
Learning systems
Magnetic resonance imaging
Medical treatment
Semantics
Spine
Three-dimensional displays
Two dimensional displays
Vertebrae
Title SpineParseNet: Spine Parsing for Volumetric MR Image by a Two-Stage Segmentation Framework With Semantic Image Representation
URI https://ieeexplore.ieee.org/document/9201093
https://www.ncbi.nlm.nih.gov/pubmed/32956047
https://www.proquest.com/docview/2474854428
https://www.proquest.com/docview/2444875235
Volume 40
WOSCitedRecordID wos000604883800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FUJwKNBSCJTKSFyQCOv4sY57Q4gVldhV1S6wt8h2HKjEZqs226oH_nvHzkM9ABKnxPI4ifSNY3-eF8AbX5WZ1VymVFiXCst9qnOjUqorQ6WzGS1j1ZIvajbLFwt9vAHvhlgY7310PvPvw2205Zcrtw5HZSMdTLeab8KmUqqN1RosBkK27hwsZIylY9abJKkezadHSAQZ8tOw4Oeh7h5ngReEmip3VqNYXuXvO8244kwe_d-3PobtbmdJPrSq8AQ2fL0DD-_kG9yB-9POkr4Lv0_P8XqMtNbPfHNIYpOENkoS3MmSb_G_FRL4k-kJOVrij4fYG2LI_HqV4h4Vm6f-x7KLXarJpHfzIt_Pmp_Yt0TQcHA78iR63PbCT-Hr5NP84-e0K8WQOi5UE2KzkFcxyq0vczeWuOzxSmqWlU4oPkaMKy2YqbSlXjLtrMidqkrPpeFUCMn3YKte1f45EFPmNtPaCkFNYFe6otpIqUyZlcbkLIFRD0nhujzloVzGryLyFaoLxLMIeBYdngm8HUactzk6_iG7G7Aa5DqYEtjvUS-6SXxZMKFELgUStAReD904_YJNxdR-tQ4yIlA-xmUCz1ptGZ7dK9mLP7_zJTxgwUEmnufsw1Zzsfav4J67as4uLw5Qxxf5QdTxW7T_9Ko
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB6VgjgeOFqOQAEj8YLUsI6PTcwbQqy6YndVtQv0LfIVqMRmqzYL4oH_jsc51AdA4imxPE4ifePMjOcCeOkrlxnFZUqFsakw3Keq0HlKVaWptCajLnYtmeWLRXFyog63YH_IhfHex-Az_xpvoy_fre0Gj8pGCl23il-Bq1IIlrXZWoPPQMg2oINhzVg6Zr1TkqrRcj4NpiALFiqK_AI773GGlgF2Vbkkj2KDlb_rmlHmTO7839fehdudbknetsxwD7Z8vQO3LlUc3IHr886Xvgu_js_C9TAYtn7hmzckDgmOAyUJuiz5FP9cWMKfzI_IdBV-PcT8JJosf6zToKWG4bH_suqyl2oy6QO9yOfT5muYWwXYwuJ25VGMue2J78PHyfvlu4O0a8aQWi7yBrOzgmXFKDfeFXYsg-DjlVQsc1bkfBxQrpRgulKGesmUNaKweeU8l5pTISR_ANv1uvaPgGhXmEwpIwTVaF-piiotZa5d5rQuWAKjHpLSdpXKsWHGtzJaLFSVAc8S8Sw7PBN4Naw4a6t0_IN2F7Ea6DqYEtjrUS-7bXxRMpGLAnmtSODFMB02IHpVdO3XG6QRaPQxLhN42HLL8OyeyR7_-Z3P4cbBcj4rZ9PFhydwk2G4TDzd2YPt5nzjn8I1-705vTh_Fjn9N9AH9wk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SpineParseNet%3A+Spine+Parsing+for+Volumetric+MR+Image+by+a+Two-Stage+Segmentation+Framework+With+Semantic+Image+Representation&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Pang%2C+Shumao&rft.au=Pang%2C+Chunlan&rft.au=Zhao%2C+Lei&rft.au=Chen%2C+Yangfan&rft.date=2021-01-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=40&rft.issue=1&rft.spage=262&rft.epage=273&rft_id=info:doi/10.1109%2FTMI.2020.3025087&rft_id=info%3Apmid%2F32956047&rft.externalDocID=9201093
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon