Bregman Divergence-Based Regularization for Transfer Subspace Learning

The regularization principals [31] lead approximation schemes to deal with various learning problems, e.g., the regularization of the norm in a reproducing kernel Hilbert space for the ill-posed problem. In this paper, we present a family of subspace learning algorithms based on a new form of regula...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on knowledge and data engineering Vol. 22; no. 7; pp. 929 - 942
Main Authors: Si, Si, Tao, Dacheng, Geng, Bo
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.07.2010
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1041-4347, 1558-2191
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The regularization principals [31] lead approximation schemes to deal with various learning problems, e.g., the regularization of the norm in a reproducing kernel Hilbert space for the ill-posed problem. In this paper, we present a family of subspace learning algorithms based on a new form of regularization, which transfers the knowledge gained in training samples to testing samples. In particular, the new regularization minimizes the Bregman divergence between the distribution of training samples and that of testing samples in the selected subspace, so it boosts the performance when training and testing samples are not independent and identically distributed. To test the effectiveness of the proposed regularization, we introduce it to popular subspace learning algorithms, e.g., principal components analysis (PCA) for cross-domain face modeling; and Fisher's linear discriminant analysis (FLDA), locality preserving projections (LPP), marginal Fisher's analysis (MFA), and discriminative locality alignment (DLA) for cross-domain face recognition and text categorization. Finally, we present experimental evidence on both face image data sets and text data sets, suggesting that the proposed Bregman divergence-based regularization is effective to deal with cross-domain learning problems.
AbstractList The regularization principals [CHECK END OF SENTENCE] lead approximation schemes to deal with various learning problems, e.g., the regularization of the norm in a reproducing kernel Hilbert space for the ill-posed problem. In this paper, we present a family of subspace learning algorithms based on a new form of regularization, which transfers the knowledge gained in training samples to testing samples. In particular, the new regularization minimizes the Bregman divergence between the distribution of training samples and that of testing samples in the selected subspace, so it boosts the performance when training and testing samples are not independent and identically distributed. To test the effectiveness of the proposed regularization, we introduce it to popular subspace learning algorithms, e.g., principal components analysis (PCA) for cross-domain face modeling; and Fisher's linear discriminant analysis (FLDA), locality preserving projections (LPP), marginal Fisher's analysis (MFA), and discriminative locality alignment (DLA) for cross-domain face recognition and text categorization. Finally, we present experimental evidence on both face image data sets and text data sets, suggesting that the proposed Bregman divergence-based regularization is effective to deal with cross-domain learning problems.
The regularization principals [31] lead approximation schemes to deal with various learning problems, e.g., the regularization of the norm in a reproducing kernel Hilbert space for the ill-posed problem. In this paper, we present a family of subspace learning algorithms based on a new form of regularization, which transfers the knowledge gained in training samples to testing samples. In particular, the new regularization minimizes the Bregman divergence between the distribution of training samples and that of testing samples in the selected subspace, so it boosts the performance when training and testing samples are not independent and identically distributed. To test the effectiveness of the proposed regularization, we introduce it to popular subspace learning algorithms, e.g., principal components analysis (PCA) for cross-domain face modeling; and Fisher's linear discriminant analysis (FLDA), locality preserving projections (LPP), marginal Fisher's analysis (MFA), and discriminative locality alignment (DLA) for cross-domain face recognition and text categorization. Finally, we present experimental evidence on both face image data sets and text data sets, suggesting that the proposed Bregman divergence-based regularization is effective to deal with cross-domain learning problems.
Author Dacheng Tao
Si Si
Bo Geng
Author_xml – sequence: 1
  givenname: Si
  surname: Si
  fullname: Si, Si
– sequence: 2
  givenname: Dacheng
  surname: Tao
  fullname: Tao, Dacheng
– sequence: 3
  givenname: Bo
  surname: Geng
  fullname: Geng, Bo
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22886081$$DView record in Pascal Francis
BookMark eNp10c9LwzAUB_AgE9ymR09eCiKeOpP0V3J0v1QcCDrPIUtfS0aXzqQV9K83tdOD4Cnv8Mk37-WN0MDUBhA6J3hCCOY368f5YkIx5hNC0yM0JEnCQko4GfgaxySMozg7QSPnthhjljEyRMuphXInTTDX72BLMArCqXSQB89QtpW0-lM2ujZBUdtgbaVxBdjgpd24vVQQrEBao015io4LWTk4O5xj9LpcrGf34erp7mF2uwqVf7oJY86UwpQBjdKcboDRjJOEbYosYixXMiHepRQKHuUJL3BMMY1kmmNIuerqMbruc_e2fmvBNWKnnYKqkgbq1oksiTLK_fheXv6R27q1xjcnCKYZ4Twl2Kurg5JOyarwAyrtxN7qnbQfglLGUsyId1HvlK2ds1AIpZvvj2ms1JWPFN0KRLcC0a1A9D2Ef279BP_nL3qvAeDXxjzNEsaiL_PhkDY
CODEN ITKEEH
CitedBy_id crossref_primary_10_1145_2086737_2086742
crossref_primary_10_1109_TNNLS_2019_2944455
crossref_primary_10_1016_j_sigpro_2012_09_003
crossref_primary_10_1109_TIP_2020_3013167
crossref_primary_10_1109_TPAMI_2012_70
crossref_primary_10_1109_TSMC_2019_2932000
crossref_primary_10_1080_01431161_2024_2304537
crossref_primary_10_1007_s12652_020_02350_y
crossref_primary_10_1016_j_sigpro_2012_09_005
crossref_primary_10_1007_s11263_013_0693_1
crossref_primary_10_1109_TIP_2012_2207397
crossref_primary_10_1007_s00521_024_09755_2
crossref_primary_10_3906_elk_1503_245
crossref_primary_10_1080_01431161_2024_2365817
crossref_primary_10_1016_j_ins_2018_10_014
crossref_primary_10_1016_j_patcog_2010_06_013
crossref_primary_10_1016_j_patcog_2020_107803
crossref_primary_10_1007_s10044_024_01233_8
crossref_primary_10_1016_j_neucom_2022_05_042
crossref_primary_10_1016_j_dsp_2021_103121
crossref_primary_10_1016_j_patcog_2023_109379
crossref_primary_10_1016_j_asoc_2018_08_042
crossref_primary_10_1016_j_patcog_2021_107870
crossref_primary_10_1007_s10994_016_5577_5
crossref_primary_10_1007_s44336_024_00003_8
crossref_primary_10_1109_TCYB_2018_2816981
crossref_primary_10_1016_j_imavis_2019_08_006
crossref_primary_10_1016_j_neucom_2012_08_056
crossref_primary_10_1109_TMM_2012_2187436
crossref_primary_10_1109_TNNLS_2022_3183326
crossref_primary_10_1109_LSP_2020_3025061
crossref_primary_10_1109_TNNLS_2018_2868854
crossref_primary_10_1007_s42979_020_00280_2
crossref_primary_10_1016_j_engappai_2012_05_008
crossref_primary_10_1016_j_neucom_2013_08_007
crossref_primary_10_1109_TIP_2011_2114354
crossref_primary_10_1016_j_neucom_2022_01_036
crossref_primary_10_1109_TCBB_2016_2609918
crossref_primary_10_1109_TCYB_2015_2480966
crossref_primary_10_1145_3108257
crossref_primary_10_2118_214312_PA
crossref_primary_10_1007_s12065_019_00211_y
crossref_primary_10_1109_TNNLS_2021_3134673
crossref_primary_10_3390_electronics9111757
crossref_primary_10_1016_j_patcog_2022_108918
crossref_primary_10_1007_s11063_019_10187_6
crossref_primary_10_1109_ACCESS_2019_2943188
crossref_primary_10_1109_TPAMI_2022_3228937
crossref_primary_10_3390_bios8030060
crossref_primary_10_1109_TCSVT_2023_3346444
crossref_primary_10_1109_TIP_2015_2510498
crossref_primary_10_1186_s40537_016_0043_6
crossref_primary_10_1109_LGRS_2019_2923647
crossref_primary_10_1016_j_neucom_2013_09_044
crossref_primary_10_1007_s10115_020_01466_z
crossref_primary_10_1109_TCYB_2018_2831457
crossref_primary_10_1109_TKDE_2013_111
crossref_primary_10_1016_j_eswa_2023_122117
crossref_primary_10_1016_j_patcog_2012_02_007
crossref_primary_10_1109_TAES_2024_3446752
crossref_primary_10_1007_s00500_019_03990_9
crossref_primary_10_1109_TBDATA_2021_3077832
crossref_primary_10_1007_s11042_022_12504_z
crossref_primary_10_1109_TIP_2011_2161482
crossref_primary_10_1109_TNNLS_2017_2690970
crossref_primary_10_1016_j_neucom_2014_06_012
crossref_primary_10_1016_j_compind_2018_07_001
crossref_primary_10_1109_ACCESS_2019_2907571
crossref_primary_10_1109_TAI_2022_3163114
crossref_primary_10_1190_geo2020_0391_1
crossref_primary_10_1016_j_jksues_2021_07_011
crossref_primary_10_1016_j_dsp_2020_102906
crossref_primary_10_1109_TNNLS_2018_2868709
crossref_primary_10_1109_TKDE_2025_3530524
crossref_primary_10_1016_j_eswa_2024_123770
crossref_primary_10_3390_sym17040515
crossref_primary_10_1016_j_neucom_2019_02_013
crossref_primary_10_1109_TIP_2017_2740564
crossref_primary_10_1016_j_patcog_2024_111038
crossref_primary_10_1007_s11235_020_00675_9
crossref_primary_10_1016_j_ins_2012_03_012
crossref_primary_10_1088_1741_2552_aab2f2
crossref_primary_10_1016_j_ins_2014_03_093
crossref_primary_10_1109_TCSVT_2016_2539541
crossref_primary_10_1016_j_patcog_2014_05_001
crossref_primary_10_1007_s11263_023_01865_z
crossref_primary_10_1007_s10489_022_03213_z
crossref_primary_10_1109_TNNLS_2021_3139119
crossref_primary_10_1016_j_engappai_2018_05_001
crossref_primary_10_1007_s10115_021_01586_0
crossref_primary_10_1109_JAS_2022_106004
crossref_primary_10_1108_OIR_01_2021_0059
crossref_primary_10_1109_TIP_2016_2516947
crossref_primary_10_1016_j_sigpro_2012_07_018
crossref_primary_10_1117_1_3465582
crossref_primary_10_1109_ACCESS_2021_3111586
crossref_primary_10_1109_JPROC_2020_3004555
crossref_primary_10_1109_TCYB_2018_2874219
crossref_primary_10_1109_TNNLS_2018_2863240
crossref_primary_10_1007_s11063_011_9190_0
crossref_primary_10_1007_s11431_024_2857_7
crossref_primary_10_1016_j_neucom_2010_09_013
crossref_primary_10_1109_TSMC_2019_2937002
crossref_primary_10_1016_j_patcog_2016_08_007
crossref_primary_10_1155_2015_329753
crossref_primary_10_1007_s11042_019_08474_4
crossref_primary_10_1109_TIP_2016_2609820
crossref_primary_10_1007_s00530_010_0225_6
crossref_primary_10_1109_TCYB_2013_2281451
crossref_primary_10_1016_j_neucom_2011_01_008
crossref_primary_10_1002_sam_10099
crossref_primary_10_1109_TCYB_2020_2980815
crossref_primary_10_1109_TSMCB_2010_2057422
crossref_primary_10_1016_j_knosys_2021_107192
crossref_primary_10_1007_s00500_020_05105_1
crossref_primary_10_1007_s10462_016_9533_3
crossref_primary_10_1109_MCI_2020_2976187
crossref_primary_10_1109_TCSS_2020_3013938
crossref_primary_10_1016_j_dsp_2022_103594
crossref_primary_10_1109_TPAMI_2025_3541207
crossref_primary_10_1109_TNNLS_2016_2538282
crossref_primary_10_1109_TCSVT_2013_2255413
crossref_primary_10_1109_TKDE_2022_3177896
crossref_primary_10_1016_j_knosys_2022_109022
crossref_primary_10_1049_iet_ipr_2019_1712
crossref_primary_10_1016_j_ymssp_2021_108648
crossref_primary_10_1109_TCSS_2020_3017013
crossref_primary_10_1007_s10489_020_01710_7
crossref_primary_10_1016_j_image_2020_115782
crossref_primary_10_1007_s13042_020_01203_6
crossref_primary_10_1109_TAFFC_2017_2705696
crossref_primary_10_1007_s13042_021_01339_z
crossref_primary_10_1016_j_knosys_2022_108851
crossref_primary_10_1109_TIP_2023_3261758
crossref_primary_10_1109_ACCESS_2018_2878313
crossref_primary_10_3233_IDA_194516
crossref_primary_10_1109_TGRS_2013_2246837
crossref_primary_10_1109_TCYB_2016_2565898
crossref_primary_10_1109_TGRS_2013_2259245
crossref_primary_10_1016_j_infsof_2021_106588
crossref_primary_10_1016_j_neucom_2015_11_113
crossref_primary_10_1016_j_patcog_2023_109654
crossref_primary_10_1109_ACCESS_2020_3012152
crossref_primary_10_1109_TIP_2022_3216781
crossref_primary_10_1109_ACCESS_2019_2958736
crossref_primary_10_1109_JSTARS_2015_2500961
crossref_primary_10_1109_TMM_2022_3145235
crossref_primary_10_1109_TNNLS_2022_3151683
crossref_primary_10_1016_j_neucom_2019_01_069
crossref_primary_10_1109_TSMCB_2012_2225102
crossref_primary_10_1109_TCSVT_2015_2450331
crossref_primary_10_1109_TNNLS_2020_2964790
crossref_primary_10_1109_TIP_2016_2588330
crossref_primary_10_1080_00051144_2019_1576966
crossref_primary_10_1162_neco_a_01053
crossref_primary_10_1016_j_ins_2015_10_028
crossref_primary_10_1016_j_patcog_2010_08_002
crossref_primary_10_1049_iet_cvi_2018_5145
crossref_primary_10_1016_j_engappai_2024_108445
crossref_primary_10_1007_s10115_016_0944_x
crossref_primary_10_1016_j_eswa_2020_114078
crossref_primary_10_1016_j_patrec_2015_07_009
crossref_primary_10_1007_s10489_023_05067_5
crossref_primary_10_1016_j_neucom_2019_01_056
crossref_primary_10_1109_TCBB_2019_2914103
crossref_primary_10_1016_j_neucom_2015_03_020
crossref_primary_10_1007_s10994_011_5276_1
crossref_primary_10_3390_math13020226
crossref_primary_10_1109_TNNLS_2021_3118542
crossref_primary_10_1007_s00521_020_04847_1
crossref_primary_10_1016_j_knosys_2019_03_021
crossref_primary_10_1109_TIP_2011_2105496
crossref_primary_10_3390_s23177567
crossref_primary_10_1109_TPAMI_2016_2615921
crossref_primary_10_1109_TMI_2012_2218118
crossref_primary_10_1016_j_jai_2023_11_003
crossref_primary_10_1007_s11063_019_10075_z
crossref_primary_10_1109_TKDE_2018_2843342
crossref_primary_10_1016_j_compeleceng_2021_107041
crossref_primary_10_3390_app10031166
crossref_primary_10_1016_j_patcog_2012_07_018
crossref_primary_10_1007_s00371_017_1468_4
crossref_primary_10_1109_TNNLS_2012_2197827
crossref_primary_10_1016_j_neucom_2011_07_018
crossref_primary_10_1016_j_knosys_2018_08_026
crossref_primary_10_3233_JIFS_181237
crossref_primary_10_1016_j_cviu_2015_06_003
crossref_primary_10_1007_s11063_011_9175_z
crossref_primary_10_1109_TIP_2019_2952739
crossref_primary_10_1109_TPAMI_2018_2866846
crossref_primary_10_1007_s00521_018_3846_x
crossref_primary_10_1109_TNET_2017_2669339
crossref_primary_10_1109_TIP_2014_2365725
crossref_primary_10_1109_TPAMI_2018_2814042
crossref_primary_10_1109_TASE_2022_3218132
crossref_primary_10_1109_TGRS_2017_2761839
crossref_primary_10_1109_TCYB_2019_2962000
crossref_primary_10_1016_j_neucom_2013_06_010
crossref_primary_10_1109_ACCESS_2020_3002666
crossref_primary_10_1007_s10489_021_02564_3
crossref_primary_10_1109_TKDE_2013_97
crossref_primary_10_3233_JIFS_212068
crossref_primary_10_1007_s11063_015_9494_6
crossref_primary_10_1016_j_patrec_2012_06_014
crossref_primary_10_1109_TEVC_2023_3346406
crossref_primary_10_1007_s10115_022_01784_4
crossref_primary_10_1016_j_neucom_2013_03_043
crossref_primary_10_1007_s13042_021_01428_z
crossref_primary_10_1016_j_ins_2011_08_002
crossref_primary_10_1109_TPAMI_2019_2945942
crossref_primary_10_1007_s41315_021_00169_0
crossref_primary_10_1007_s11432_017_9367_6
crossref_primary_10_1109_TNNLS_2017_2705760
crossref_primary_10_1109_TKDE_2014_2373376
crossref_primary_10_1109_TCSVT_2019_2900467
crossref_primary_10_1109_TMM_2020_3007340
crossref_primary_10_1109_TAFFC_2018_2800046
crossref_primary_10_1109_TIP_2021_3092818
crossref_primary_10_1145_1899412_1899415
crossref_primary_10_1109_TIP_2018_2839528
crossref_primary_10_1007_s40747_016_0024_6
crossref_primary_10_1007_s11042_020_09883_6
crossref_primary_10_1016_j_sigpro_2012_11_027
crossref_primary_10_1007_s12652_021_03426_z
crossref_primary_10_1109_TMM_2025_3535346
crossref_primary_10_1007_s11063_019_10090_0
crossref_primary_10_1007_s11263_014_0696_6
crossref_primary_10_1109_TIP_2012_2218825
crossref_primary_10_1111_tgis_13080
crossref_primary_10_1016_j_sigpro_2016_07_018
crossref_primary_10_1109_TIP_2015_2462023
crossref_primary_10_1145_2240136_2240139
crossref_primary_10_1016_j_knosys_2019_105222
crossref_primary_10_3390_wevj14010014
crossref_primary_10_1016_j_patcog_2013_01_010
crossref_primary_10_1080_1206212X_2021_1885786
crossref_primary_10_1109_TPAMI_2020_2994749
crossref_primary_10_1109_TSMC_2017_2735997
crossref_primary_10_1007_s42044_020_00062_2
crossref_primary_10_1007_s10115_012_0601_y
crossref_primary_10_1109_TCSVT_2016_2515309
crossref_primary_10_1007_s00521_012_1084_1
crossref_primary_10_1016_j_neucom_2019_03_101
crossref_primary_10_1007_s40305_024_00579_4
crossref_primary_10_1109_TPAMI_2023_3237667
crossref_primary_10_1007_s10462_023_10547_8
crossref_primary_10_1109_TASLP_2019_2955252
crossref_primary_10_1007_s12652_019_01662_y
crossref_primary_10_1016_j_specom_2023_103019
crossref_primary_10_1109_TIP_2011_2158225
crossref_primary_10_3390_electronics11050810
crossref_primary_10_1016_j_knosys_2023_110303
crossref_primary_10_1016_j_neucom_2019_04_025
crossref_primary_10_1109_TIP_2016_2612827
crossref_primary_10_1145_3379344
crossref_primary_10_1109_TKDE_2017_2669193
crossref_primary_10_1002_tee_22739
crossref_primary_10_1016_j_compeleceng_2022_107941
crossref_primary_10_1016_j_patrec_2013_07_017
crossref_primary_10_1016_j_sigpro_2012_01_028
crossref_primary_10_1145_3291124
crossref_primary_10_1007_s10618_011_0244_8
crossref_primary_10_1016_j_conengprac_2021_104853
crossref_primary_10_1109_TPAMI_2017_2666805
crossref_primary_10_1016_j_inffus_2018_07_011
crossref_primary_10_1186_s12859_022_05128_5
crossref_primary_10_1016_j_patrec_2013_02_002
Cites_doi 10.1109/TKDE.2008.212
10.1007/978-3-540-88682-2_55
10.1109/CVPR.2005.170
10.1109/TKDE.2007.190669
10.1023/A:1007379606734
10.1109/ICPR.2008.4760987
10.1145/1273496.1273521
10.1109/TPAMI.2007.1096
10.1145/1015330.1015425
10.1109/CVPR.2009.5206695
10.1109/34.879790
10.1109/TKDE.2007.190692
10.1016/B978-1-55860-377-6.50048-7
10.1109/TPAMI.2005.55
10.1037/h0071325
10.1111/j.1469-1809.1936.tb02137.x
10.1109/TSMCB.2007.911536
10.1145/1273496.1273507
10.1109/TPAMI.2007.1037
10.1007/978-3-642-72201-1_25
10.1109/TIP.2006.881945
10.1162/neco.1995.7.2.219
10.1109/34.598228
10.1109/TPAMI.2008.70
10.1109/ICCV.2007.4408856
10.1109/CVPR.2007.383346
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2010
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2010
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TKDE.2009.126
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1558-2191
EndPage 942
ExternalDocumentID 2716976551
22886081
10_1109_TKDE_2009_126
4967588
Genre orig-research
GroupedDBID -~X
.DC
0R~
1OL
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TAF
TN5
UHB
VH1
AAYXX
CITATION
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c347t-498cc028e236d2be8279158bf7388dca51c3462ef93d59f042023a6d0e69c2023
IEDL.DBID RIE
ISICitedReferencesCount 355
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000277717500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Wed Oct 01 14:42:19 EDT 2025
Mon Jun 30 02:34:16 EDT 2025
Mon Jul 21 09:16:16 EDT 2025
Sat Nov 29 08:12:43 EST 2025
Tue Nov 18 22:26:24 EST 2025
Wed Aug 27 02:52:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Image processing
regularization
Modeling
Learning
Alignment
Vector space
Classification
Facies
Hilbert space
Ill posed problem
Learning algorithm
Dimensionality reduction
Discriminant analysis
Face recognition
Locality
Image databank
Text
Pattern recognition
Character recognition
Knowledge transfer
Fisher information
Dimension reduction
and Bregman divergence
Artificial intelligence
Principal component analysis
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-498cc028e236d2be8279158bf7388dca51c3462ef93d59f042023a6d0e69c2023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1027199610
PQPubID 85438
PageCount 14
ParticipantIDs proquest_miscellaneous_753729126
crossref_citationtrail_10_1109_TKDE_2009_126
proquest_journals_1027199610
crossref_primary_10_1109_TKDE_2009_126
pascalfrancis_primary_22886081
ieee_primary_4967588
PublicationCentury 2000
PublicationDate 2010-07-01
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2010
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Graham (ref33) 1998
ref12
Huang (ref24) 2006
ref34
ref15
ref37
Belkin (ref4) 2006; 7
ref31
Zhang (ref39)
ref30
ref11
ref2
ref1
ref17
Zhang (ref10) 2006; 18
ref38
Do (ref13) 2006
ref18
Torrey (ref9)
Torkkola (ref16) 2003; 3
Pan (ref14)
ref23
ref26
ref25
ref20
Tikhonov (ref35) 1963; 4
Obozinski (ref3) 2006
ref22
ref21
Rosenstein (ref19)
Ando (ref36) 2006; 19
ref27
Vapnik (ref32) 1998
ref29
ref8
ref7
ref6
ref5
ref40
He (ref28) 2003; 16
References_xml – ident: ref38
  doi: 10.1109/TKDE.2008.212
– ident: ref34
  doi: 10.1007/978-3-540-88682-2_55
– ident: ref29
  doi: 10.1109/CVPR.2005.170
– ident: ref8
  doi: 10.1109/TKDE.2007.190669
– ident: ref6
  doi: 10.1023/A:1007379606734
– ident: ref40
  doi: 10.1109/ICPR.2008.4760987
– ident: ref1
  doi: 10.1145/1273496.1273521
– ident: ref20
  doi: 10.1109/TPAMI.2007.1096
– ident: ref25
  doi: 10.1145/1015330.1015425
– ident: ref37
  doi: 10.1109/CVPR.2009.5206695
– volume: 18
  start-page: 1585
  volume-title: Advances in Neural Information Processing Systems
  year: 2006
  ident: ref10
  article-title: Learning Multiple Related Tasks Using Latent Independent Component Analysis
– ident: ref30
  doi: 10.1109/34.879790
– start-page: 1671
  volume-title: Proc. IEEE Int’l Joint Conf. Neural Networks
  ident: ref39
  article-title: A Unifying Framework for Spectral Analysis Based Dimensionality Reduction
– ident: ref21
  doi: 10.1109/TKDE.2007.190692
– year: 2006
  ident: ref3
  article-title: Multi-Task Feature Selection
– ident: ref5
  doi: 10.1016/B978-1-55860-377-6.50048-7
– start-page: 601
  volume-title: Advances in Neural Information Processing Systems
  year: 2006
  ident: ref24
  article-title: Correcting Sample Selection Bias by Unlabeled Data
– ident: ref15
  doi: 10.1109/TPAMI.2005.55
– ident: ref22
  doi: 10.1037/h0071325
– ident: ref27
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– volume: 4
  start-page: 1624
  year: 1963
  ident: ref35
  article-title: Regularization of Incorrectly Posed Problems
  publication-title: Soviet Math Dokl
– ident: ref11
  doi: 10.1109/TSMCB.2007.911536
– ident: ref17
  doi: 10.1145/1273496.1273507
– start-page: 677
  volume-title: Proc. 23rd Nat’l Conf. Artificial Intelligence
  ident: ref14
  article-title: Transfer Learning via Dimensionality Reduction
– ident: ref26
  doi: 10.1109/TPAMI.2007.1037
– volume-title: Proc. Neural Information Processing Systems 2005 Workshop Inductive Transfer: 10 Years Later
  ident: ref19
  article-title: To Transfer or Not to Transfer
– start-page: 446
  volume-title: Face Recognition: From Theory to Applications
  year: 1998
  ident: ref33
  article-title: Characterizing Virtual Eigensignatures for General Purpose Face Recognition
  doi: 10.1007/978-3-642-72201-1_25
– ident: ref12
  doi: 10.1109/TIP.2006.881945
– volume: 16
  volume-title: Advances in Neural Information Processing Systems
  year: 2003
  ident: ref28
  article-title: Locality Preserving Projections
– volume: 19
  start-page: 25
  volume-title: Advances in Neural Information Processing Systems
  year: 2006
  ident: ref36
  article-title: Learning on Graph with Laplacian Regularization
– ident: ref31
  doi: 10.1162/neco.1995.7.2.219
– volume-title: Proc. AAAI Workshop Transfer Learning for Complex Tasks
  ident: ref9
  article-title: Transfer in Reinforcement Learning via Markov Logic Networks
– volume-title: Statistical Learning Theory
  year: 1998
  ident: ref32
– ident: ref7
  doi: 10.1109/34.598228
– volume: 3
  start-page: 1415
  year: 2003
  ident: ref16
  article-title: Feature Extraction by Non Parametric Mutual Information Maximization
  publication-title: J. Machine Learning Research
– ident: ref2
  doi: 10.1109/TPAMI.2008.70
– ident: ref18
  doi: 10.1109/ICCV.2007.4408856
– start-page: 299
  volume-title: Advances in Neural Information Processing System
  year: 2006
  ident: ref13
  article-title: Transfer Learning for Text Classification
– ident: ref23
  doi: 10.1109/CVPR.2007.383346
– volume: 7
  start-page: 2399
  year: 2006
  ident: ref4
  article-title: Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples
  publication-title: J. Machine Learning Research
SSID ssj0008781
Score 2.4983907
Snippet The regularization principals [31] lead approximation schemes to deal with various learning problems, e.g., the regularization of the norm in a reproducing...
The regularization principals [CHECK END OF SENTENCE] lead approximation schemes to deal with various learning problems, e.g., the regularization of the norm...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 929
SubjectTerms Algorithm design and analysis
Algorithms
and Bregman divergence
Applied sciences
Artificial intelligence
Computer science; control theory; systems
Data processing. List processing. Character string processing
Dimensionality reduction
Discriminant analysis
Exact sciences and technology
Face recognition
Hilbert space
Independent component analysis
Information systems. Data bases
Kernel
Learning
Linear discriminant analysis
Memory organisation. Data processing
Pattern recognition. Digital image processing. Computational geometry
Principal component analysis
Regularization
Semisupervised learning
Software
Speech and sound recognition and synthesis. Linguistics
Studies
Subspaces
Testing
Text categorization
Texts
Training
Title Bregman Divergence-Based Regularization for Transfer Subspace Learning
URI https://ieeexplore.ieee.org/document/4967588
https://www.proquest.com/docview/1027199610
https://www.proquest.com/docview/753729126
Volume 22
WOSCitedRecordID wos000277717500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5a8aAHX1WM1rIH8WRsnvs4qm0RBBFR6C0ku5siaCpJ6-93dpNGRT14C-yQDTM7OzPZ2e8DOPVV5vkqj92MxsrFeEtdLrjvMiWoinkupYos2QS7u-PTqbjvwHl7F0ZrbZvP9IV5tGf5ai6X5lfZMBImveVd6DJG67ta7a7LmSUkxeoCa6IwYp94msPH29G4Rqb0DYbCl_hjCVVMO2RaoUbymsrix65sQ81k-38fuQNbTUpJLus1sAsdXezB9oqugTTeuwebX7AHezC5KvXsNS3IyHRmWEhO9wpDmiIPlp6-bC5oEsxqiY1ouXkZ7jNYZWvS4LLO9uFpMn68vnEbUgVXolYWbiS4lJhU6CCkKsg0D5jwY57lLORcyTT2UY4GOhehikWOPo1RPaXK01RI83wAa8W80IdAWKiyOMyiOKR5pJTkQqXawNVgSYlZgXDgfKXqRDaI44b44iWxlYcnEmMZQ4QpErSMA2et-FsNtfGXYM-ovRVqNO7A4Jsd2_Eg4Jxi6uNAf2XYpPHUCmcImOnE9j0HSDuMPmYOTtJCz5dVgiUd1iA489HvMx_DRt1UYLp4-7C2KJf6BNbl--K5Kgd2nX4At0HlIA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4ScCBxwBRnjkgTpT1lTQ58tg0BEwIDWm3qk3SCQk6tAe_HyftCgg4cKsUq6nsOLYb5_sATnyVeb7KqZsxqlyMt8zlgvturARTlOdSqsiSTcTdLu_3xcMcnNV3YbTWtvlMn5tHe5avhnJqfpU1I2HSWz4PizSKAq-8rVXvuzy2lKRYX2BVFEbxJ6Jms3d73SqxKX2DovAlAllKFdMQmY5RJ3lJZvFjX7bBpr3-v8_cgLUqqSQX5SrYhDldNGB9RthAKv9twOoX9MEtaF-O9OA1Lci16c2woJzuJQY1RR4tQf2ouqJJMK8lNqbl5mW402CdrUmFzDrYhqd2q3fVcStaBVeiViZuJLiUmFboIGQqyDQPYuFTnuVxyLmSKfVRjgU6F6GiIkevxrieMuVpJqR53oGFYljoXSBxqDIaZhENWR4pJblQqTaANVhUYl4gHDibqTqRFea4ob54SWzt4YnEWMZQYYoELePAaS3-VoJt_CW4ZdReC1Uad-Domx3r8SDgnGHy48DBzLBJ5atjnCGITS-27zlA6mH0MnN0khZ6OB0nWNRhFYIz7_0-8zEsd3r3d8ndTfd2H1bKFgPT03sAC5PRVB_CknyfPI9HR3bNfgDHEehn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bregman+Divergence-Based+Regularization+for+Transfer+Subspace+Learning&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Si+Si&rft.au=Dacheng+Tao&rft.au=Bo+Geng&rft.date=2010-07-01&rft.issn=1041-4347&rft.volume=22&rft.issue=7&rft.spage=929&rft.epage=942&rft_id=info:doi/10.1109%2FTKDE.2009.126&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2009_126
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon