An enhanced binary dragonfly algorithm based on a V-shaped transfer function for optimization of pump scheduling program in water supply systems (case study of Iran)

•A binary dragonfly algorithm (BDA) with a new transfer function is proposed.•The proposed BDA is applied to minimize the energy consumption of pumping stations.•Results show the high performance of BDA comparing to the excited models. With the continual growth of population and shortage of energy r...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering failure analysis Ročník 123; s. 105323
Hlavní autoři: Jafari-Asl, Jafar, Azizyan, Gholamreza, Monfared, Seyed Arman Hashemi, Rashki, Mohsen, Andrade-Campos, Antonio G.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.05.2021
Témata:
ISSN:1350-6307, 1873-1961
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A binary dragonfly algorithm (BDA) with a new transfer function is proposed.•The proposed BDA is applied to minimize the energy consumption of pumping stations.•Results show the high performance of BDA comparing to the excited models. With the continual growth of population and shortage of energy resources, the optimal consumption of these resources is of particular importance. One of these energy sources is electricity, with a significant amount being used in pumping stations for water distribution systems (WDS). Determining the proper pumping schedule can make significant savings in energy consumption and particularly in costs. This study aims to present an improved population-based nature-inspired optimization algorithmfor pumping scheduling program in WDS. To address this issue, the binary dragonfly algorithm based on a new transfer-function coupled with the EPANET hydraulic simulation model is developed to reduce the energy consumption of pumping stations. The proposed model was firstly implemented and evaluated on a benchmark test example, then on a real water pumping station. Comparison of the proposed method and the genetic algorithm (GA), evolutionary algorithm (EA), ant colony optimization (ACO), artificial bee colony (ABC), particle swarm optimization (PSO), and firefly (FF) was conducted on the benchmark test example, while the obtained results indicate that the proposed framework is more computationally efficient and reliable. The results of the real case study show that while considering all different constraints of the problem, the proposed model can decrease the cost of energy up to 27% in comparison with the current state of operation.
AbstractList •A binary dragonfly algorithm (BDA) with a new transfer function is proposed.•The proposed BDA is applied to minimize the energy consumption of pumping stations.•Results show the high performance of BDA comparing to the excited models. With the continual growth of population and shortage of energy resources, the optimal consumption of these resources is of particular importance. One of these energy sources is electricity, with a significant amount being used in pumping stations for water distribution systems (WDS). Determining the proper pumping schedule can make significant savings in energy consumption and particularly in costs. This study aims to present an improved population-based nature-inspired optimization algorithmfor pumping scheduling program in WDS. To address this issue, the binary dragonfly algorithm based on a new transfer-function coupled with the EPANET hydraulic simulation model is developed to reduce the energy consumption of pumping stations. The proposed model was firstly implemented and evaluated on a benchmark test example, then on a real water pumping station. Comparison of the proposed method and the genetic algorithm (GA), evolutionary algorithm (EA), ant colony optimization (ACO), artificial bee colony (ABC), particle swarm optimization (PSO), and firefly (FF) was conducted on the benchmark test example, while the obtained results indicate that the proposed framework is more computationally efficient and reliable. The results of the real case study show that while considering all different constraints of the problem, the proposed model can decrease the cost of energy up to 27% in comparison with the current state of operation.
ArticleNumber 105323
Author Jafari-Asl, Jafar
Azizyan, Gholamreza
Monfared, Seyed Arman Hashemi
Rashki, Mohsen
Andrade-Campos, Antonio G.
Author_xml – sequence: 1
  givenname: Jafar
  surname: Jafari-Asl
  fullname: Jafari-Asl, Jafar
  organization: Department of Civil Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran
– sequence: 2
  givenname: Gholamreza
  surname: Azizyan
  fullname: Azizyan, Gholamreza
  email: G.azizyan@eng.usb.ac.ir
  organization: Department of Civil Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran
– sequence: 3
  givenname: Seyed Arman Hashemi
  surname: Monfared
  fullname: Monfared, Seyed Arman Hashemi
  organization: Department of Civil Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran
– sequence: 4
  givenname: Mohsen
  surname: Rashki
  fullname: Rashki, Mohsen
  organization: Department of Architecture Engineering, Faculty of Arts and Architecture, University of Sistan and Baluchestan, Zahedan, Iran
– sequence: 5
  givenname: Antonio G.
  surname: Andrade-Campos
  fullname: Andrade-Campos, Antonio G.
  organization: Centre for Mechanical Technology & Automation, GRIDS Research Group, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
BookMark eNqNkctu3CAYhVGVSJ1c3oHs0oWnYHzBq2g0StNIkbpps0W_uXgY2WABbjR9n75nmEwXUVdZAT-cc3Q-LtCZ804jdEPJmhLafN2vtRsM2BEcjOuSlDTPa1ayT2hFecsK2jX0LO9ZTYqGkfYzuohxTwhpy46u0N-Nw9rtwEmtcG8dhANWAQbvzHjAMA4-2LSbcA8xP_AOA34u4g7mfEoBXDQ6YLM4mWy-ND5gPyc72T_wNvAGz8s04yh3Wi2jdQOegx8CTNg6_AIpq-MyzzkrHmLSU8S3MkfhmBZ1OMofc8iXK3RuYIz6-t96iX59u_-5_V48_Xh43G6eCsmqNhUVV9o0Uhteg1Gd5NATVQHrZMdMR0rOOyNLXvYlUXVlKGv7vpKKqaaRXPOaXaK7k68MPsagjZA2vTXJXe0oKBFH6mIv3lEXR-riRD07dP85zMFOmeqHtNuTVueKv60OIkqrjz9jg5ZJKG8_4PIKp1KrUw
CitedBy_id crossref_primary_10_1680_jmaen_2022_020
crossref_primary_10_3390_w15020286
crossref_primary_10_3390_w15122217
crossref_primary_10_1016_j_enconman_2023_116902
crossref_primary_10_1155_2022_3391881
crossref_primary_10_1155_acis_7696962
crossref_primary_10_1186_s44147_023_00256_y
crossref_primary_10_1007_s00521_022_08074_8
crossref_primary_10_3390_app14125207
crossref_primary_10_1080_01969722_2024_2343990
crossref_primary_10_1080_10255842_2022_2034795
crossref_primary_10_3390_w16060874
crossref_primary_10_1007_s40996_023_01201_y
crossref_primary_10_1016_j_egyr_2022_09_016
crossref_primary_10_3390_math12131994
crossref_primary_10_1061_JSDCCC_SCENG_1625
crossref_primary_10_3233_JIFS_224245
crossref_primary_10_1371_journal_pone_0277954
crossref_primary_10_1007_s11269_024_04043_z
crossref_primary_10_3390_electronics12143123
crossref_primary_10_1007_s11269_022_03163_8
crossref_primary_10_1007_s13042_022_01703_7
crossref_primary_10_1007_s11269_023_03632_8
crossref_primary_10_1007_s12065_024_00922_x
crossref_primary_10_1109_ACCESS_2025_3606573
crossref_primary_10_1080_10406026_2024_2356096
crossref_primary_10_3390_pr10101935
crossref_primary_10_1016_j_istruc_2021_11_048
Cites_doi 10.1061/(ASCE)WR.1943-5452.0001198
10.1007/s00521-015-1920-1
10.1061/(ASCE)0733-9496(2008)134:4(337)
10.1061/(ASCE)0733-9437(2004)130:5(357)
10.1016/j.rser.2013.09.010
10.1007/s11269-020-02588-3
10.1061/(ASCE)0733-9496(2004)130:2(160)
10.1007/s11269-014-0721-0
10.1002/j.1551-8833.1993.tb06024.x
10.1016/j.advengsoft.2013.12.007
10.1016/j.swevo.2012.09.002
10.1007/s11269-017-1577-x
10.1016/j.eswa.2017.04.033
10.1007/s40899-020-00426-3
10.1080/1573062X.2013.795233
10.1002/ird.412
10.1061/(ASCE)0733-9496(1994)120:1(17)
10.1007/BFb0027177
10.1016/j.asoc.2020.107036
10.1155/2019/9293617
10.1162/EVCO_a_00035
10.1016/j.mcm.2012.09.015
10.1061/(ASCE)0733-9496(1989)115:2(148)
10.1016/j.ejor.2019.12.008
10.1061/(ASCE)0733-9496(1992)118:4(406)
10.1007/s00521-020-04866-y
10.1061/(ASCE)0733-9496(1996)122:5(374)
10.1007/978-3-030-26458-1_11
10.1016/j.knosys.2018.08.003
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engfailanal.2021.105323
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-1961
ExternalDocumentID 10_1016_j_engfailanal_2021_105323
S1350630721001114
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
WUQ
XPP
XSW
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c347t-48def6cef85afd9c8ab0d4a39c93f902889fc282b20d54f137bb4cd3d66c8e853
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000633003000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1350-6307
IngestDate Tue Nov 18 22:36:42 EST 2025
Sat Nov 29 07:02:49 EST 2025
Sat Feb 17 16:07:50 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Binary dragonfly algorithm
Water supply system
Energy cost
Transfer function
Pump scheduling program
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c347t-48def6cef85afd9c8ab0d4a39c93f902889fc282b20d54f137bb4cd3d66c8e853
OpenAccessLink http://hdl.handle.net/10773/36749
ParticipantIDs crossref_citationtrail_10_1016_j_engfailanal_2021_105323
crossref_primary_10_1016_j_engfailanal_2021_105323
elsevier_sciencedirect_doi_10_1016_j_engfailanal_2021_105323
PublicationCentury 2000
PublicationDate May 2021
2021-05-00
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationTitle Engineering failure analysis
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References D.A. Savic, G.A. Walters, M. Schwab, Multiobjective genetic algorithms for pump scheduling in water supply, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), Springer Verlag, 1997: pp. 227–235. doi: 10.1007/bfb0027177.
M. López-Ibáñez, Operational Optimisation of Water Distribution Networks, Edinburgh Napier University, 2009.
Moradi-Jalal, Rodin, Mariño (b0075) 2004; 130
L.A. Rossman, EPANET 2 USERS MANUAL, 2000.
L. de O. Turci, J. Wang, I. Brahmia, Adaptive and Improved Multi-population Based Nature-inspired Optimization Algorithms for Water Pump Station Scheduling, Water Resour. Manag. 34 (2020) 2869–2885. doi: 10.1007/s11269-020-02588-3.
Ormsbee, Walski, Chase, Sharp (b0030) 1989; 115
Jafari-Asl, Ben Seghier, Ohadi, van Gelder (b0055) 2021; 101
Rahman, Rashid (b0125) 2019
Afshar, Rajabpour (b0020) 2009; 58
Makaremi, Haghighi, Ghafouri (b0090) 2017; 31
Patel, Raja (b0110) 2020
Sree Ranjini, Murugan (b0140) 2017; 83
Cimorelli, D’Aniello, Cozzolino (b0115) 2020; 146
Lansey, Awumah (b0040) 1994; 120
van Zyl, Savic, Walters (b0080) 2004; 130
Chase, Ormsbee (b0035) 1993; 85
Debnath, Baishya, Sen, Arif (b0145) 2020
Jowitt, Germanopoulos (b0025) 1992; 118
Duc Dai, Van Tinh (b0095) 2019
Mirjalili, Lewis (b0160) 2013; 9
Mafarja, Aljarah, Heidari, Faris, Fournier-Viger, Li, Mirjalili (b0155) 2018; 161
Pasha, Lansey (b0010) 2014; 28
Nitivattananon, Sadowski, Quimpo (b0045) 1996; 122
V. Savsani, V. Patel, M. Tawhid, Biogeography Based Optimization for Water Pump Switching Problem, in: Model. Optim. Sci. Technol., Springer, 2020: pp. 183–202. doi: 10.1007/978-3-030-26458-1_11.
Jafari-Asl, Sami Kashkooli, Bahrami (b0060) 2020; 6
López-Ibáñez, Prasad, Paechter (b0085) 2008; 134
Bagirov, Barton, Mala-Jetmarova, Al Nuaimat, Ahmed, Sultanova, Yearwood (b0185) 2013; 57
Ohadi, Jafari-Asl (b0050) 2020; 77
Coelho, Andrade-Campos (b0170) 2014; 30
Meraihi, Ramdane-Cherif, Acheli, Mahseur (b0130) 2020; 32
Moayedi, Abdullahi, Nguyen, Rashid (b0150) 2019
Mirjalili (b0135) 2016; 27
Hashemi, Tabesh, Ataeekia (b0180) 2014; 11
Mackle, Savic, Walters (b0070) 1995
Mirjalili, Mirjalili, Lewis (b0065) 2014; 69
López-Ibáñez, Devi Prasad, Paechter (b0175) 2011; 19
Bahrami (b0190) 2016
Androutsopoulos, Manousakis, Madas (b0120) 2020; 284
Lansey (10.1016/j.engfailanal.2021.105323_b0040) 1994; 120
Rahman (10.1016/j.engfailanal.2021.105323_b0125) 2019
Moradi-Jalal (10.1016/j.engfailanal.2021.105323_b0075) 2004; 130
Nitivattananon (10.1016/j.engfailanal.2021.105323_b0045) 1996; 122
Pasha (10.1016/j.engfailanal.2021.105323_b0010) 2014; 28
Afshar (10.1016/j.engfailanal.2021.105323_b0020) 2009; 58
Coelho (10.1016/j.engfailanal.2021.105323_b0170) 2014; 30
Jowitt (10.1016/j.engfailanal.2021.105323_b0025) 1992; 118
Duc Dai (10.1016/j.engfailanal.2021.105323_b0095) 2019
10.1016/j.engfailanal.2021.105323_b0105
10.1016/j.engfailanal.2021.105323_b0005
Patel (10.1016/j.engfailanal.2021.105323_b0110) 2020
Ohadi (10.1016/j.engfailanal.2021.105323_b0050) 2020; 77
Sree Ranjini (10.1016/j.engfailanal.2021.105323_b0140) 2017; 83
Mafarja (10.1016/j.engfailanal.2021.105323_b0155) 2018; 161
10.1016/j.engfailanal.2021.105323_b0100
Hashemi (10.1016/j.engfailanal.2021.105323_b0180) 2014; 11
10.1016/j.engfailanal.2021.105323_b0165
Bagirov (10.1016/j.engfailanal.2021.105323_b0185) 2013; 57
Makaremi (10.1016/j.engfailanal.2021.105323_b0090) 2017; 31
Mackle (10.1016/j.engfailanal.2021.105323_b0070) 1995
Debnath (10.1016/j.engfailanal.2021.105323_b0145) 2020
Moayedi (10.1016/j.engfailanal.2021.105323_b0150) 2019
Mirjalili (10.1016/j.engfailanal.2021.105323_b0160) 2013; 9
Bahrami (10.1016/j.engfailanal.2021.105323_b0190) 2016
Jafari-Asl (10.1016/j.engfailanal.2021.105323_b0055) 2021; 101
López-Ibáñez (10.1016/j.engfailanal.2021.105323_b0175) 2011; 19
Androutsopoulos (10.1016/j.engfailanal.2021.105323_b0120) 2020; 284
Cimorelli (10.1016/j.engfailanal.2021.105323_b0115) 2020; 146
Mirjalili (10.1016/j.engfailanal.2021.105323_b0065) 2014; 69
Jafari-Asl (10.1016/j.engfailanal.2021.105323_b0060) 2020; 6
López-Ibáñez (10.1016/j.engfailanal.2021.105323_b0085) 2008; 134
10.1016/j.engfailanal.2021.105323_b0015
Ormsbee (10.1016/j.engfailanal.2021.105323_b0030) 1989; 115
Mirjalili (10.1016/j.engfailanal.2021.105323_b0135) 2016; 27
Chase (10.1016/j.engfailanal.2021.105323_b0035) 1993; 85
Meraihi (10.1016/j.engfailanal.2021.105323_b0130) 2020; 32
van Zyl (10.1016/j.engfailanal.2021.105323_b0080) 2004; 130
References_xml – start-page: 1
  year: 2019
  end-page: 11
  ident: b0150
  article-title: Comparison of dragonfly algorithm and Harris hawks optimization evolutionary data mining techniques for the assessment of bearing capacity of footings over two-layer foundation soils
  publication-title: Eng. Comput.
– volume: 58
  start-page: 321
  year: 2009
  end-page: 331
  ident: b0020
  article-title: Application of local and global particle swarm optimization algorithms to optimal design and operation of irrigation pumping systems
  publication-title: Irrig. Drain.
– volume: 6
  start-page: 1
  year: 2020
  end-page: 11
  ident: b0060
  article-title: Using particle swarm optimization algorithm to optimally locating and controlling of pressure reducing valves for leakage minimization in water distribution systems
  publication-title: Sustain. Water Resour. Manag.
– year: 2019
  ident: b0125
  article-title: Dragonfly algorithm and its applications in applied science survey
  publication-title: Comput. Intell. Neurosci.
– volume: 130
  start-page: 160
  year: 2004
  end-page: 170
  ident: b0080
  article-title: Operational Optimization of Water Distribution Systems Using a Hybrid Genetic Algorithm
  publication-title: J. Water Resour. Plan. Manag.
– volume: 118
  start-page: 406
  year: 1992
  end-page: 422
  ident: b0025
  article-title: Optimal Pump Scheduling in Water-Supply Networks
  publication-title: J. Water Resour. Plan. Manag.
– volume: 130
  start-page: 357
  year: 2004
  end-page: 365
  ident: b0075
  article-title: Use of Genetic Algorithm in Optimization of Irrigation Pumping Stations
  publication-title: J. Irrig. Drain. Eng.
– start-page: 1
  year: 2020
  end-page: 28
  ident: b0145
  article-title: A hybrid memory-based dragonfly algorithm with differential evolution for engineering application
  publication-title: Eng. Comput.
– volume: 85
  start-page: 54
  year: 1993
  end-page: 61
  ident: b0035
  article-title: Computer-Generated Pumping Schedules for Satisfying Operational Objectives
  publication-title: J. Am. Water Works Assn.
– volume: 120
  start-page: 17
  year: 1994
  end-page: 35
  ident: b0040
  article-title: Optimal Pump Operations Considering Pump Switches
  publication-title: J. Water Resour. Plan. Manag.
– volume: 122
  start-page: 374
  year: 1996
  end-page: 384
  ident: b0045
  article-title: Optimization of Water Supply System Operation
  publication-title: J. Water Resour. Plan. Manag.
– year: 2016
  ident: b0190
  article-title: Optimized Operation of Pump Stations of Water Delivery System Using Bees Algorithm
  publication-title: Gorgan University Of Agricultural Sciences
– volume: 134
  start-page: 337
  year: 2008
  end-page: 346
  ident: b0085
  article-title: Ant Colony Optimization for Optimal Control of Pumps in Water Distribution Networks
  publication-title: J. Water Resour. Plan. Manag.
– reference: V. Savsani, V. Patel, M. Tawhid, Biogeography Based Optimization for Water Pump Switching Problem, in: Model. Optim. Sci. Technol., Springer, 2020: pp. 183–202. doi: 10.1007/978-3-030-26458-1_11.
– start-page: 1
  year: 2020
  end-page: 15
  ident: b0110
  article-title: Comparative Performance of Recent Advanced Optimization Algorithms for Minimum Energy Requirement Solutions in Water Pump Switching Network
  publication-title: Arch. Comput. Methods Eng.
– volume: 9
  start-page: 1
  year: 2013
  end-page: 14
  ident: b0160
  article-title: S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization
  publication-title: Swarm Evol. Comput.
– reference: D.A. Savic, G.A. Walters, M. Schwab, Multiobjective genetic algorithms for pump scheduling in water supply, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), Springer Verlag, 1997: pp. 227–235. doi: 10.1007/bfb0027177.
– volume: 115
  start-page: 148
  year: 1989
  end-page: 164
  ident: b0030
  article-title: Methodology for Improving Pump Operation Efficiency
  publication-title: J. Water Resour. Plan. Manag.
– volume: 19
  start-page: 429
  year: 2011
  end-page: 467
  ident: b0175
  article-title: Representations and evolutionary operators for the scheduling of pump operations inwater distribution networks
  publication-title: Evol. Comput.
– volume: 57
  start-page: 873
  year: 2013
  end-page: 886
  ident: b0185
  article-title: An algorithm for minimization of pumping costs in water distribution systems using a novel approach to pump scheduling
  publication-title: Math. Comput. Model.
– year: 2019
  ident: b0095
  article-title: Efficient Optimization of Pump Scheduling for Reduction of Energy Costs and Greenhouse
  publication-title: Gas Emissions
– volume: 28
  start-page: 3975
  year: 2014
  end-page: 3987
  ident: b0010
  article-title: Strategies to develop warm solutions for real-time pump scheduling for water distribution systems
  publication-title: Water Resour. Manag.
– volume: 83
  start-page: 63
  year: 2017
  end-page: 78
  ident: b0140
  article-title: Memory based Hybrid Dragonfly Algorithm for numerical optimization problems
  publication-title: Expert Syst. Appl.
– volume: 30
  start-page: 59
  year: 2014
  end-page: 84
  ident: b0170
  article-title: Efficiency achievement in water supply systems - A review
  publication-title: Renew. Sustain. Energy Rev.
– reference: L.A. Rossman, EPANET 2 USERS MANUAL, 2000.
– volume: 284
  start-page: 135
  year: 2020
  end-page: 151
  ident: b0120
  article-title: Modeling and solving a bi-objective airport slot scheduling problem
  publication-title: Eur. J. Oper. Res.
– volume: 27
  start-page: 1053
  year: 2016
  end-page: 1073
  ident: b0135
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput. Appl.
– volume: 101
  year: 2021
  ident: b0055
  article-title: Efficient method using Whale Optimization Algorithm for reliability-based design optimization of labyrinth spillway
  publication-title: Appl. Soft Comput.
– volume: 11
  start-page: 335
  year: 2014
  end-page: 347
  ident: b0180
  article-title: Ant-colony optimization of pumping schedule to minimize the energy cost using variable-speed pumps in water distribution networks
  publication-title: Urban Water J.
– volume: 77
  year: 2020
  ident: b0050
  article-title: Multi-objective reliability-based optimization for design of trapezoidal labyrinth weirs
  publication-title: Flow Meas. Instrum.
– reference: M. López-Ibáñez, Operational Optimisation of Water Distribution Networks, Edinburgh Napier University, 2009.
– reference: L. de O. Turci, J. Wang, I. Brahmia, Adaptive and Improved Multi-population Based Nature-inspired Optimization Algorithms for Water Pump Station Scheduling, Water Resour. Manag. 34 (2020) 2869–2885. doi: 10.1007/s11269-020-02588-3.
– start-page: 400
  year: 1995
  end-page: 405
  ident: b0070
  article-title: Application of genetic algorithms to pump scheduling for water supply
  publication-title: IEE Conf. Publ., IEE
– volume: 146
  start-page: 04020023
  year: 2020
  ident: b0115
  article-title: Boosting Genetic Algorithm Performance in Pump Scheduling Problems with a Novel Decision-Variable Representation
  publication-title: J. Water Resour. Plan. Manag.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b0065
  article-title: Grey Wolf Optimizer
  publication-title: Adv. Eng. Softw.
– volume: 32
  year: 2020
  ident: b0130
  article-title: Dragonfly algorithm: a comprehensive review and applications
  publication-title: Neural Comput. Appl.
– volume: 31
  start-page: 1283
  year: 2017
  end-page: 1304
  ident: b0090
  article-title: Optimization of Pump Scheduling Program in Water Supply Systems Using a Self-Adaptive NSGA-II; a Review of Theory to Real Application
  publication-title: Water Resour. Manag.
– volume: 161
  start-page: 185
  year: 2018
  end-page: 204
  ident: b0155
  article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions
  publication-title: Knowledge-Based Syst.
– year: 2016
  ident: 10.1016/j.engfailanal.2021.105323_b0190
  article-title: Optimized Operation of Pump Stations of Water Delivery System Using Bees Algorithm
  publication-title: Gorgan University Of Agricultural Sciences
– volume: 146
  start-page: 04020023
  year: 2020
  ident: 10.1016/j.engfailanal.2021.105323_b0115
  article-title: Boosting Genetic Algorithm Performance in Pump Scheduling Problems with a Novel Decision-Variable Representation
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)WR.1943-5452.0001198
– volume: 27
  start-page: 1053
  year: 2016
  ident: 10.1016/j.engfailanal.2021.105323_b0135
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1920-1
– volume: 134
  start-page: 337
  year: 2008
  ident: 10.1016/j.engfailanal.2021.105323_b0085
  article-title: Ant Colony Optimization for Optimal Control of Pumps in Water Distribution Networks
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)0733-9496(2008)134:4(337)
– ident: 10.1016/j.engfailanal.2021.105323_b0165
– volume: 130
  start-page: 357
  year: 2004
  ident: 10.1016/j.engfailanal.2021.105323_b0075
  article-title: Use of Genetic Algorithm in Optimization of Irrigation Pumping Stations
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2004)130:5(357)
– start-page: 400
  year: 1995
  ident: 10.1016/j.engfailanal.2021.105323_b0070
  article-title: Application of genetic algorithms to pump scheduling for water supply
  publication-title: IEE Conf. Publ., IEE
– volume: 30
  start-page: 59
  year: 2014
  ident: 10.1016/j.engfailanal.2021.105323_b0170
  article-title: Efficiency achievement in water supply systems - A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.09.010
– volume: 77
  year: 2020
  ident: 10.1016/j.engfailanal.2021.105323_b0050
  article-title: Multi-objective reliability-based optimization for design of trapezoidal labyrinth weirs
  publication-title: Flow Meas. Instrum.
– ident: 10.1016/j.engfailanal.2021.105323_b0105
  doi: 10.1007/s11269-020-02588-3
– volume: 130
  start-page: 160
  year: 2004
  ident: 10.1016/j.engfailanal.2021.105323_b0080
  article-title: Operational Optimization of Water Distribution Systems Using a Hybrid Genetic Algorithm
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)0733-9496(2004)130:2(160)
– volume: 28
  start-page: 3975
  year: 2014
  ident: 10.1016/j.engfailanal.2021.105323_b0010
  article-title: Strategies to develop warm solutions for real-time pump scheduling for water distribution systems
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-014-0721-0
– volume: 85
  start-page: 54
  year: 1993
  ident: 10.1016/j.engfailanal.2021.105323_b0035
  article-title: Computer-Generated Pumping Schedules for Satisfying Operational Objectives
  publication-title: J. Am. Water Works Assn.
  doi: 10.1002/j.1551-8833.1993.tb06024.x
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.engfailanal.2021.105323_b0065
  article-title: Grey Wolf Optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 9
  start-page: 1
  year: 2013
  ident: 10.1016/j.engfailanal.2021.105323_b0160
  article-title: S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2012.09.002
– volume: 31
  start-page: 1283
  year: 2017
  ident: 10.1016/j.engfailanal.2021.105323_b0090
  article-title: Optimization of Pump Scheduling Program in Water Supply Systems Using a Self-Adaptive NSGA-II; a Review of Theory to Real Application
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-017-1577-x
– start-page: 1
  year: 2020
  ident: 10.1016/j.engfailanal.2021.105323_b0145
  article-title: A hybrid memory-based dragonfly algorithm with differential evolution for engineering application
  publication-title: Eng. Comput.
– volume: 83
  start-page: 63
  year: 2017
  ident: 10.1016/j.engfailanal.2021.105323_b0140
  article-title: Memory based Hybrid Dragonfly Algorithm for numerical optimization problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.04.033
– volume: 6
  start-page: 1
  year: 2020
  ident: 10.1016/j.engfailanal.2021.105323_b0060
  article-title: Using particle swarm optimization algorithm to optimally locating and controlling of pressure reducing valves for leakage minimization in water distribution systems
  publication-title: Sustain. Water Resour. Manag.
  doi: 10.1007/s40899-020-00426-3
– volume: 11
  start-page: 335
  year: 2014
  ident: 10.1016/j.engfailanal.2021.105323_b0180
  article-title: Ant-colony optimization of pumping schedule to minimize the energy cost using variable-speed pumps in water distribution networks
  publication-title: Urban Water J.
  doi: 10.1080/1573062X.2013.795233
– volume: 58
  start-page: 321
  year: 2009
  ident: 10.1016/j.engfailanal.2021.105323_b0020
  article-title: Application of local and global particle swarm optimization algorithms to optimal design and operation of irrigation pumping systems
  publication-title: Irrig. Drain.
  doi: 10.1002/ird.412
– ident: 10.1016/j.engfailanal.2021.105323_b0015
– start-page: 1
  year: 2019
  ident: 10.1016/j.engfailanal.2021.105323_b0150
  article-title: Comparison of dragonfly algorithm and Harris hawks optimization evolutionary data mining techniques for the assessment of bearing capacity of footings over two-layer foundation soils
  publication-title: Eng. Comput.
– year: 2019
  ident: 10.1016/j.engfailanal.2021.105323_b0095
  article-title: Efficient Optimization of Pump Scheduling for Reduction of Energy Costs and Greenhouse
  publication-title: Gas Emissions
– volume: 120
  start-page: 17
  year: 1994
  ident: 10.1016/j.engfailanal.2021.105323_b0040
  article-title: Optimal Pump Operations Considering Pump Switches
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)0733-9496(1994)120:1(17)
– ident: 10.1016/j.engfailanal.2021.105323_b0005
  doi: 10.1007/BFb0027177
– volume: 101
  year: 2021
  ident: 10.1016/j.engfailanal.2021.105323_b0055
  article-title: Efficient method using Whale Optimization Algorithm for reliability-based design optimization of labyrinth spillway
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.107036
– year: 2019
  ident: 10.1016/j.engfailanal.2021.105323_b0125
  article-title: Dragonfly algorithm and its applications in applied science survey
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2019/9293617
– volume: 19
  start-page: 429
  year: 2011
  ident: 10.1016/j.engfailanal.2021.105323_b0175
  article-title: Representations and evolutionary operators for the scheduling of pump operations inwater distribution networks
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00035
– volume: 57
  start-page: 873
  year: 2013
  ident: 10.1016/j.engfailanal.2021.105323_b0185
  article-title: An algorithm for minimization of pumping costs in water distribution systems using a novel approach to pump scheduling
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2012.09.015
– volume: 115
  start-page: 148
  year: 1989
  ident: 10.1016/j.engfailanal.2021.105323_b0030
  article-title: Methodology for Improving Pump Operation Efficiency
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)0733-9496(1989)115:2(148)
– start-page: 1
  year: 2020
  ident: 10.1016/j.engfailanal.2021.105323_b0110
  article-title: Comparative Performance of Recent Advanced Optimization Algorithms for Minimum Energy Requirement Solutions in Water Pump Switching Network
  publication-title: Arch. Comput. Methods Eng.
– volume: 284
  start-page: 135
  year: 2020
  ident: 10.1016/j.engfailanal.2021.105323_b0120
  article-title: Modeling and solving a bi-objective airport slot scheduling problem
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2019.12.008
– volume: 118
  start-page: 406
  year: 1992
  ident: 10.1016/j.engfailanal.2021.105323_b0025
  article-title: Optimal Pump Scheduling in Water-Supply Networks
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)0733-9496(1992)118:4(406)
– volume: 32
  year: 2020
  ident: 10.1016/j.engfailanal.2021.105323_b0130
  article-title: Dragonfly algorithm: a comprehensive review and applications
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-04866-y
– volume: 122
  start-page: 374
  year: 1996
  ident: 10.1016/j.engfailanal.2021.105323_b0045
  article-title: Optimization of Water Supply System Operation
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)0733-9496(1996)122:5(374)
– ident: 10.1016/j.engfailanal.2021.105323_b0100
  doi: 10.1007/978-3-030-26458-1_11
– volume: 161
  start-page: 185
  year: 2018
  ident: 10.1016/j.engfailanal.2021.105323_b0155
  article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2018.08.003
SSID ssj0007291
Score 2.4447749
Snippet •A binary dragonfly algorithm (BDA) with a new transfer function is proposed.•The proposed BDA is applied to minimize the energy consumption of pumping...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105323
SubjectTerms Binary dragonfly algorithm
Energy cost
Pump scheduling program
Transfer function
Water supply system
Title An enhanced binary dragonfly algorithm based on a V-shaped transfer function for optimization of pump scheduling program in water supply systems (case study of Iran)
URI https://dx.doi.org/10.1016/j.engfailanal.2021.105323
Volume 123
WOSCitedRecordID wos000633003000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-1961
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007291
  issn: 1350-6307
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9NAFB5KV0QfxCuuN0bwQQkpzT0DvhRZXUUXwVX6FqZzabu0SUnquu3_8Zf5RzwnM0m6XnBFfAnNwHTSnK9zLnPOdwh5kniSyViGrmSJcsM0FC7TMnajoRBS85gJVZO4vk2OjtLxmL3v9b41tTCniyTP07MztvqvooYxEDaWzv6FuNsvhQH4DEKHK4gdrhcS_Ch3VD4zB_sTU20rSz7F8o-NwxfTopyvZ0sH1ZfEowLufHKrGV_B3bq2YlXpoLZrkxAL2FWWtlyzTpAGBDjgFIOSsrXsdYoXRk6-cORcrLBT6MaSRNdRXQGLGSbbunSlxKgrO3co0NEiOprPF-ZYw_CltEk-XINj744qE7XGuxau2_l2Y0K5r9BZX5Zq2-ob2LY0ptnXgV61gd85wkoJ55BXyJbQnXRVM9PD-10xq2yFnI2H-F6XfWiCdE2hTpcVhft6EIGXHJgGuwNlxtIkcGED8s4pA1P9_JNiMTGOk4HKp_gW8A0McHXskxyYOT_wdn_ANXFJH2muPGy2vucnEUv7ZG_0-mD8pjUYwL8xcQH7jJfJ4y4N8TcL_tqM2jGNjq-Ta9anoSODxRukp_Kb5OqOSG-Rr6OcNqikBpW0RSVtUUlrVNIip5w2qKQNKmmDSgqopLuopIWmiEraoZJaVNJ5TmtUUoNKalFJnyImaY1JnI6YfHabfHx5cPzi0LUdQlwRhMka9hapdCyUTiOuJRMpnwxlyAMmWKCRlyhlWvipP_GHMgq1FySTSShkIONYpAos1Tuknxe5uktoGoO69ZTvBZyHmvtMJ74axkJrP1JRyPZJ2rzwTFj6fOzissiaPMmTbEdWGcoqM7LaJ347dWU4ZC4y6Xkj1cwaw8bIzQCSf55-79-m3ydXuv_WA9Jfl5_VQ3JJnK7nVfnIAvg7JcXqYw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+enhanced+binary+dragonfly+algorithm+based+on+a+V-shaped+transfer+function+for+optimization+of+pump+scheduling+program+in+water+supply+systems+%28case+study+of+Iran%29&rft.jtitle=Engineering+failure+analysis&rft.au=Jafari-Asl%2C+Jafar&rft.au=Azizyan%2C+Gholamreza&rft.au=Monfared%2C+Seyed+Arman+Hashemi&rft.au=Rashki%2C+Mohsen&rft.date=2021-05-01&rft.pub=Elsevier+Ltd&rft.issn=1350-6307&rft.eissn=1873-1961&rft.volume=123&rft_id=info:doi/10.1016%2Fj.engfailanal.2021.105323&rft.externalDocID=S1350630721001114
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-6307&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-6307&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-6307&client=summon