An enhanced binary dragonfly algorithm based on a V-shaped transfer function for optimization of pump scheduling program in water supply systems (case study of Iran)
•A binary dragonfly algorithm (BDA) with a new transfer function is proposed.•The proposed BDA is applied to minimize the energy consumption of pumping stations.•Results show the high performance of BDA comparing to the excited models. With the continual growth of population and shortage of energy r...
Uloženo v:
| Vydáno v: | Engineering failure analysis Ročník 123; s. 105323 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.05.2021
|
| Témata: | |
| ISSN: | 1350-6307, 1873-1961 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A binary dragonfly algorithm (BDA) with a new transfer function is proposed.•The proposed BDA is applied to minimize the energy consumption of pumping stations.•Results show the high performance of BDA comparing to the excited models.
With the continual growth of population and shortage of energy resources, the optimal consumption of these resources is of particular importance. One of these energy sources is electricity, with a significant amount being used in pumping stations for water distribution systems (WDS). Determining the proper pumping schedule can make significant savings in energy consumption and particularly in costs. This study aims to present an improved population-based nature-inspired optimization algorithmfor pumping scheduling program in WDS. To address this issue, the binary dragonfly algorithm based on a new transfer-function coupled with the EPANET hydraulic simulation model is developed to reduce the energy consumption of pumping stations. The proposed model was firstly implemented and evaluated on a benchmark test example, then on a real water pumping station. Comparison of the proposed method and the genetic algorithm (GA), evolutionary algorithm (EA), ant colony optimization (ACO), artificial bee colony (ABC), particle swarm optimization (PSO), and firefly (FF) was conducted on the benchmark test example, while the obtained results indicate that the proposed framework is more computationally efficient and reliable. The results of the real case study show that while considering all different constraints of the problem, the proposed model can decrease the cost of energy up to 27% in comparison with the current state of operation. |
|---|---|
| AbstractList | •A binary dragonfly algorithm (BDA) with a new transfer function is proposed.•The proposed BDA is applied to minimize the energy consumption of pumping stations.•Results show the high performance of BDA comparing to the excited models.
With the continual growth of population and shortage of energy resources, the optimal consumption of these resources is of particular importance. One of these energy sources is electricity, with a significant amount being used in pumping stations for water distribution systems (WDS). Determining the proper pumping schedule can make significant savings in energy consumption and particularly in costs. This study aims to present an improved population-based nature-inspired optimization algorithmfor pumping scheduling program in WDS. To address this issue, the binary dragonfly algorithm based on a new transfer-function coupled with the EPANET hydraulic simulation model is developed to reduce the energy consumption of pumping stations. The proposed model was firstly implemented and evaluated on a benchmark test example, then on a real water pumping station. Comparison of the proposed method and the genetic algorithm (GA), evolutionary algorithm (EA), ant colony optimization (ACO), artificial bee colony (ABC), particle swarm optimization (PSO), and firefly (FF) was conducted on the benchmark test example, while the obtained results indicate that the proposed framework is more computationally efficient and reliable. The results of the real case study show that while considering all different constraints of the problem, the proposed model can decrease the cost of energy up to 27% in comparison with the current state of operation. |
| ArticleNumber | 105323 |
| Author | Jafari-Asl, Jafar Azizyan, Gholamreza Monfared, Seyed Arman Hashemi Rashki, Mohsen Andrade-Campos, Antonio G. |
| Author_xml | – sequence: 1 givenname: Jafar surname: Jafari-Asl fullname: Jafari-Asl, Jafar organization: Department of Civil Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran – sequence: 2 givenname: Gholamreza surname: Azizyan fullname: Azizyan, Gholamreza email: G.azizyan@eng.usb.ac.ir organization: Department of Civil Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran – sequence: 3 givenname: Seyed Arman Hashemi surname: Monfared fullname: Monfared, Seyed Arman Hashemi organization: Department of Civil Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran – sequence: 4 givenname: Mohsen surname: Rashki fullname: Rashki, Mohsen organization: Department of Architecture Engineering, Faculty of Arts and Architecture, University of Sistan and Baluchestan, Zahedan, Iran – sequence: 5 givenname: Antonio G. surname: Andrade-Campos fullname: Andrade-Campos, Antonio G. organization: Centre for Mechanical Technology & Automation, GRIDS Research Group, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal |
| BookMark | eNqNkctu3CAYhVGVSJ1c3oHs0oWnYHzBq2g0StNIkbpps0W_uXgY2WABbjR9n75nmEwXUVdZAT-cc3Q-LtCZ804jdEPJmhLafN2vtRsM2BEcjOuSlDTPa1ayT2hFecsK2jX0LO9ZTYqGkfYzuohxTwhpy46u0N-Nw9rtwEmtcG8dhANWAQbvzHjAMA4-2LSbcA8xP_AOA34u4g7mfEoBXDQ6YLM4mWy-ND5gPyc72T_wNvAGz8s04yh3Wi2jdQOegx8CTNg6_AIpq-MyzzkrHmLSU8S3MkfhmBZ1OMofc8iXK3RuYIz6-t96iX59u_-5_V48_Xh43G6eCsmqNhUVV9o0Uhteg1Gd5NATVQHrZMdMR0rOOyNLXvYlUXVlKGv7vpKKqaaRXPOaXaK7k68MPsagjZA2vTXJXe0oKBFH6mIv3lEXR-riRD07dP85zMFOmeqHtNuTVueKv60OIkqrjz9jg5ZJKG8_4PIKp1KrUw |
| CitedBy_id | crossref_primary_10_1680_jmaen_2022_020 crossref_primary_10_3390_w15020286 crossref_primary_10_3390_w15122217 crossref_primary_10_1016_j_enconman_2023_116902 crossref_primary_10_1155_2022_3391881 crossref_primary_10_1155_acis_7696962 crossref_primary_10_1186_s44147_023_00256_y crossref_primary_10_1007_s00521_022_08074_8 crossref_primary_10_3390_app14125207 crossref_primary_10_1080_01969722_2024_2343990 crossref_primary_10_1080_10255842_2022_2034795 crossref_primary_10_3390_w16060874 crossref_primary_10_1007_s40996_023_01201_y crossref_primary_10_1016_j_egyr_2022_09_016 crossref_primary_10_3390_math12131994 crossref_primary_10_1061_JSDCCC_SCENG_1625 crossref_primary_10_3233_JIFS_224245 crossref_primary_10_1371_journal_pone_0277954 crossref_primary_10_1007_s11269_024_04043_z crossref_primary_10_3390_electronics12143123 crossref_primary_10_1007_s11269_022_03163_8 crossref_primary_10_1007_s13042_022_01703_7 crossref_primary_10_1007_s11269_023_03632_8 crossref_primary_10_1007_s12065_024_00922_x crossref_primary_10_1109_ACCESS_2025_3606573 crossref_primary_10_1080_10406026_2024_2356096 crossref_primary_10_3390_pr10101935 crossref_primary_10_1016_j_istruc_2021_11_048 |
| Cites_doi | 10.1061/(ASCE)WR.1943-5452.0001198 10.1007/s00521-015-1920-1 10.1061/(ASCE)0733-9496(2008)134:4(337) 10.1061/(ASCE)0733-9437(2004)130:5(357) 10.1016/j.rser.2013.09.010 10.1007/s11269-020-02588-3 10.1061/(ASCE)0733-9496(2004)130:2(160) 10.1007/s11269-014-0721-0 10.1002/j.1551-8833.1993.tb06024.x 10.1016/j.advengsoft.2013.12.007 10.1016/j.swevo.2012.09.002 10.1007/s11269-017-1577-x 10.1016/j.eswa.2017.04.033 10.1007/s40899-020-00426-3 10.1080/1573062X.2013.795233 10.1002/ird.412 10.1061/(ASCE)0733-9496(1994)120:1(17) 10.1007/BFb0027177 10.1016/j.asoc.2020.107036 10.1155/2019/9293617 10.1162/EVCO_a_00035 10.1016/j.mcm.2012.09.015 10.1061/(ASCE)0733-9496(1989)115:2(148) 10.1016/j.ejor.2019.12.008 10.1061/(ASCE)0733-9496(1992)118:4(406) 10.1007/s00521-020-04866-y 10.1061/(ASCE)0733-9496(1996)122:5(374) 10.1007/978-3-030-26458-1_11 10.1016/j.knosys.2018.08.003 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engfailanal.2021.105323 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-1961 |
| ExternalDocumentID | 10_1016_j_engfailanal_2021_105323 S1350630721001114 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K WUQ XPP XSW ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c347t-48def6cef85afd9c8ab0d4a39c93f902889fc282b20d54f137bb4cd3d66c8e853 |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000633003000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1350-6307 |
| IngestDate | Tue Nov 18 22:36:42 EST 2025 Sat Nov 29 07:02:49 EST 2025 Sat Feb 17 16:07:50 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Binary dragonfly algorithm Water supply system Energy cost Transfer function Pump scheduling program |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c347t-48def6cef85afd9c8ab0d4a39c93f902889fc282b20d54f137bb4cd3d66c8e853 |
| OpenAccessLink | http://hdl.handle.net/10773/36749 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_engfailanal_2021_105323 crossref_primary_10_1016_j_engfailanal_2021_105323 elsevier_sciencedirect_doi_10_1016_j_engfailanal_2021_105323 |
| PublicationCentury | 2000 |
| PublicationDate | May 2021 2021-05-00 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering failure analysis |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | D.A. Savic, G.A. Walters, M. Schwab, Multiobjective genetic algorithms for pump scheduling in water supply, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), Springer Verlag, 1997: pp. 227–235. doi: 10.1007/bfb0027177. M. López-Ibáñez, Operational Optimisation of Water Distribution Networks, Edinburgh Napier University, 2009. Moradi-Jalal, Rodin, Mariño (b0075) 2004; 130 L.A. Rossman, EPANET 2 USERS MANUAL, 2000. L. de O. Turci, J. Wang, I. Brahmia, Adaptive and Improved Multi-population Based Nature-inspired Optimization Algorithms for Water Pump Station Scheduling, Water Resour. Manag. 34 (2020) 2869–2885. doi: 10.1007/s11269-020-02588-3. Ormsbee, Walski, Chase, Sharp (b0030) 1989; 115 Jafari-Asl, Ben Seghier, Ohadi, van Gelder (b0055) 2021; 101 Rahman, Rashid (b0125) 2019 Afshar, Rajabpour (b0020) 2009; 58 Makaremi, Haghighi, Ghafouri (b0090) 2017; 31 Patel, Raja (b0110) 2020 Sree Ranjini, Murugan (b0140) 2017; 83 Cimorelli, D’Aniello, Cozzolino (b0115) 2020; 146 Lansey, Awumah (b0040) 1994; 120 van Zyl, Savic, Walters (b0080) 2004; 130 Chase, Ormsbee (b0035) 1993; 85 Debnath, Baishya, Sen, Arif (b0145) 2020 Jowitt, Germanopoulos (b0025) 1992; 118 Duc Dai, Van Tinh (b0095) 2019 Mirjalili, Lewis (b0160) 2013; 9 Mafarja, Aljarah, Heidari, Faris, Fournier-Viger, Li, Mirjalili (b0155) 2018; 161 Pasha, Lansey (b0010) 2014; 28 Nitivattananon, Sadowski, Quimpo (b0045) 1996; 122 V. Savsani, V. Patel, M. Tawhid, Biogeography Based Optimization for Water Pump Switching Problem, in: Model. Optim. Sci. Technol., Springer, 2020: pp. 183–202. doi: 10.1007/978-3-030-26458-1_11. Jafari-Asl, Sami Kashkooli, Bahrami (b0060) 2020; 6 López-Ibáñez, Prasad, Paechter (b0085) 2008; 134 Bagirov, Barton, Mala-Jetmarova, Al Nuaimat, Ahmed, Sultanova, Yearwood (b0185) 2013; 57 Ohadi, Jafari-Asl (b0050) 2020; 77 Coelho, Andrade-Campos (b0170) 2014; 30 Meraihi, Ramdane-Cherif, Acheli, Mahseur (b0130) 2020; 32 Moayedi, Abdullahi, Nguyen, Rashid (b0150) 2019 Mirjalili (b0135) 2016; 27 Hashemi, Tabesh, Ataeekia (b0180) 2014; 11 Mackle, Savic, Walters (b0070) 1995 Mirjalili, Mirjalili, Lewis (b0065) 2014; 69 López-Ibáñez, Devi Prasad, Paechter (b0175) 2011; 19 Bahrami (b0190) 2016 Androutsopoulos, Manousakis, Madas (b0120) 2020; 284 Lansey (10.1016/j.engfailanal.2021.105323_b0040) 1994; 120 Rahman (10.1016/j.engfailanal.2021.105323_b0125) 2019 Moradi-Jalal (10.1016/j.engfailanal.2021.105323_b0075) 2004; 130 Nitivattananon (10.1016/j.engfailanal.2021.105323_b0045) 1996; 122 Pasha (10.1016/j.engfailanal.2021.105323_b0010) 2014; 28 Afshar (10.1016/j.engfailanal.2021.105323_b0020) 2009; 58 Coelho (10.1016/j.engfailanal.2021.105323_b0170) 2014; 30 Jowitt (10.1016/j.engfailanal.2021.105323_b0025) 1992; 118 Duc Dai (10.1016/j.engfailanal.2021.105323_b0095) 2019 10.1016/j.engfailanal.2021.105323_b0105 10.1016/j.engfailanal.2021.105323_b0005 Patel (10.1016/j.engfailanal.2021.105323_b0110) 2020 Ohadi (10.1016/j.engfailanal.2021.105323_b0050) 2020; 77 Sree Ranjini (10.1016/j.engfailanal.2021.105323_b0140) 2017; 83 Mafarja (10.1016/j.engfailanal.2021.105323_b0155) 2018; 161 10.1016/j.engfailanal.2021.105323_b0100 Hashemi (10.1016/j.engfailanal.2021.105323_b0180) 2014; 11 10.1016/j.engfailanal.2021.105323_b0165 Bagirov (10.1016/j.engfailanal.2021.105323_b0185) 2013; 57 Makaremi (10.1016/j.engfailanal.2021.105323_b0090) 2017; 31 Mackle (10.1016/j.engfailanal.2021.105323_b0070) 1995 Debnath (10.1016/j.engfailanal.2021.105323_b0145) 2020 Moayedi (10.1016/j.engfailanal.2021.105323_b0150) 2019 Mirjalili (10.1016/j.engfailanal.2021.105323_b0160) 2013; 9 Bahrami (10.1016/j.engfailanal.2021.105323_b0190) 2016 Jafari-Asl (10.1016/j.engfailanal.2021.105323_b0055) 2021; 101 López-Ibáñez (10.1016/j.engfailanal.2021.105323_b0175) 2011; 19 Androutsopoulos (10.1016/j.engfailanal.2021.105323_b0120) 2020; 284 Cimorelli (10.1016/j.engfailanal.2021.105323_b0115) 2020; 146 Mirjalili (10.1016/j.engfailanal.2021.105323_b0065) 2014; 69 Jafari-Asl (10.1016/j.engfailanal.2021.105323_b0060) 2020; 6 López-Ibáñez (10.1016/j.engfailanal.2021.105323_b0085) 2008; 134 10.1016/j.engfailanal.2021.105323_b0015 Ormsbee (10.1016/j.engfailanal.2021.105323_b0030) 1989; 115 Mirjalili (10.1016/j.engfailanal.2021.105323_b0135) 2016; 27 Chase (10.1016/j.engfailanal.2021.105323_b0035) 1993; 85 Meraihi (10.1016/j.engfailanal.2021.105323_b0130) 2020; 32 van Zyl (10.1016/j.engfailanal.2021.105323_b0080) 2004; 130 |
| References_xml | – start-page: 1 year: 2019 end-page: 11 ident: b0150 article-title: Comparison of dragonfly algorithm and Harris hawks optimization evolutionary data mining techniques for the assessment of bearing capacity of footings over two-layer foundation soils publication-title: Eng. Comput. – volume: 58 start-page: 321 year: 2009 end-page: 331 ident: b0020 article-title: Application of local and global particle swarm optimization algorithms to optimal design and operation of irrigation pumping systems publication-title: Irrig. Drain. – volume: 6 start-page: 1 year: 2020 end-page: 11 ident: b0060 article-title: Using particle swarm optimization algorithm to optimally locating and controlling of pressure reducing valves for leakage minimization in water distribution systems publication-title: Sustain. Water Resour. Manag. – year: 2019 ident: b0125 article-title: Dragonfly algorithm and its applications in applied science survey publication-title: Comput. Intell. Neurosci. – volume: 130 start-page: 160 year: 2004 end-page: 170 ident: b0080 article-title: Operational Optimization of Water Distribution Systems Using a Hybrid Genetic Algorithm publication-title: J. Water Resour. Plan. Manag. – volume: 118 start-page: 406 year: 1992 end-page: 422 ident: b0025 article-title: Optimal Pump Scheduling in Water-Supply Networks publication-title: J. Water Resour. Plan. Manag. – volume: 130 start-page: 357 year: 2004 end-page: 365 ident: b0075 article-title: Use of Genetic Algorithm in Optimization of Irrigation Pumping Stations publication-title: J. Irrig. Drain. Eng. – start-page: 1 year: 2020 end-page: 28 ident: b0145 article-title: A hybrid memory-based dragonfly algorithm with differential evolution for engineering application publication-title: Eng. Comput. – volume: 85 start-page: 54 year: 1993 end-page: 61 ident: b0035 article-title: Computer-Generated Pumping Schedules for Satisfying Operational Objectives publication-title: J. Am. Water Works Assn. – volume: 120 start-page: 17 year: 1994 end-page: 35 ident: b0040 article-title: Optimal Pump Operations Considering Pump Switches publication-title: J. Water Resour. Plan. Manag. – volume: 122 start-page: 374 year: 1996 end-page: 384 ident: b0045 article-title: Optimization of Water Supply System Operation publication-title: J. Water Resour. Plan. Manag. – year: 2016 ident: b0190 article-title: Optimized Operation of Pump Stations of Water Delivery System Using Bees Algorithm publication-title: Gorgan University Of Agricultural Sciences – volume: 134 start-page: 337 year: 2008 end-page: 346 ident: b0085 article-title: Ant Colony Optimization for Optimal Control of Pumps in Water Distribution Networks publication-title: J. Water Resour. Plan. Manag. – reference: V. Savsani, V. Patel, M. Tawhid, Biogeography Based Optimization for Water Pump Switching Problem, in: Model. Optim. Sci. Technol., Springer, 2020: pp. 183–202. doi: 10.1007/978-3-030-26458-1_11. – start-page: 1 year: 2020 end-page: 15 ident: b0110 article-title: Comparative Performance of Recent Advanced Optimization Algorithms for Minimum Energy Requirement Solutions in Water Pump Switching Network publication-title: Arch. Comput. Methods Eng. – volume: 9 start-page: 1 year: 2013 end-page: 14 ident: b0160 article-title: S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization publication-title: Swarm Evol. Comput. – reference: D.A. Savic, G.A. Walters, M. Schwab, Multiobjective genetic algorithms for pump scheduling in water supply, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), Springer Verlag, 1997: pp. 227–235. doi: 10.1007/bfb0027177. – volume: 115 start-page: 148 year: 1989 end-page: 164 ident: b0030 article-title: Methodology for Improving Pump Operation Efficiency publication-title: J. Water Resour. Plan. Manag. – volume: 19 start-page: 429 year: 2011 end-page: 467 ident: b0175 article-title: Representations and evolutionary operators for the scheduling of pump operations inwater distribution networks publication-title: Evol. Comput. – volume: 57 start-page: 873 year: 2013 end-page: 886 ident: b0185 article-title: An algorithm for minimization of pumping costs in water distribution systems using a novel approach to pump scheduling publication-title: Math. Comput. Model. – year: 2019 ident: b0095 article-title: Efficient Optimization of Pump Scheduling for Reduction of Energy Costs and Greenhouse publication-title: Gas Emissions – volume: 28 start-page: 3975 year: 2014 end-page: 3987 ident: b0010 article-title: Strategies to develop warm solutions for real-time pump scheduling for water distribution systems publication-title: Water Resour. Manag. – volume: 83 start-page: 63 year: 2017 end-page: 78 ident: b0140 article-title: Memory based Hybrid Dragonfly Algorithm for numerical optimization problems publication-title: Expert Syst. Appl. – volume: 30 start-page: 59 year: 2014 end-page: 84 ident: b0170 article-title: Efficiency achievement in water supply systems - A review publication-title: Renew. Sustain. Energy Rev. – reference: L.A. Rossman, EPANET 2 USERS MANUAL, 2000. – volume: 284 start-page: 135 year: 2020 end-page: 151 ident: b0120 article-title: Modeling and solving a bi-objective airport slot scheduling problem publication-title: Eur. J. Oper. Res. – volume: 27 start-page: 1053 year: 2016 end-page: 1073 ident: b0135 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput. Appl. – volume: 101 year: 2021 ident: b0055 article-title: Efficient method using Whale Optimization Algorithm for reliability-based design optimization of labyrinth spillway publication-title: Appl. Soft Comput. – volume: 11 start-page: 335 year: 2014 end-page: 347 ident: b0180 article-title: Ant-colony optimization of pumping schedule to minimize the energy cost using variable-speed pumps in water distribution networks publication-title: Urban Water J. – volume: 77 year: 2020 ident: b0050 article-title: Multi-objective reliability-based optimization for design of trapezoidal labyrinth weirs publication-title: Flow Meas. Instrum. – reference: M. López-Ibáñez, Operational Optimisation of Water Distribution Networks, Edinburgh Napier University, 2009. – reference: L. de O. Turci, J. Wang, I. Brahmia, Adaptive and Improved Multi-population Based Nature-inspired Optimization Algorithms for Water Pump Station Scheduling, Water Resour. Manag. 34 (2020) 2869–2885. doi: 10.1007/s11269-020-02588-3. – start-page: 400 year: 1995 end-page: 405 ident: b0070 article-title: Application of genetic algorithms to pump scheduling for water supply publication-title: IEE Conf. Publ., IEE – volume: 146 start-page: 04020023 year: 2020 ident: b0115 article-title: Boosting Genetic Algorithm Performance in Pump Scheduling Problems with a Novel Decision-Variable Representation publication-title: J. Water Resour. Plan. Manag. – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b0065 article-title: Grey Wolf Optimizer publication-title: Adv. Eng. Softw. – volume: 32 year: 2020 ident: b0130 article-title: Dragonfly algorithm: a comprehensive review and applications publication-title: Neural Comput. Appl. – volume: 31 start-page: 1283 year: 2017 end-page: 1304 ident: b0090 article-title: Optimization of Pump Scheduling Program in Water Supply Systems Using a Self-Adaptive NSGA-II; a Review of Theory to Real Application publication-title: Water Resour. Manag. – volume: 161 start-page: 185 year: 2018 end-page: 204 ident: b0155 article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions publication-title: Knowledge-Based Syst. – year: 2016 ident: 10.1016/j.engfailanal.2021.105323_b0190 article-title: Optimized Operation of Pump Stations of Water Delivery System Using Bees Algorithm publication-title: Gorgan University Of Agricultural Sciences – volume: 146 start-page: 04020023 year: 2020 ident: 10.1016/j.engfailanal.2021.105323_b0115 article-title: Boosting Genetic Algorithm Performance in Pump Scheduling Problems with a Novel Decision-Variable Representation publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)WR.1943-5452.0001198 – volume: 27 start-page: 1053 year: 2016 ident: 10.1016/j.engfailanal.2021.105323_b0135 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1920-1 – volume: 134 start-page: 337 year: 2008 ident: 10.1016/j.engfailanal.2021.105323_b0085 article-title: Ant Colony Optimization for Optimal Control of Pumps in Water Distribution Networks publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)0733-9496(2008)134:4(337) – ident: 10.1016/j.engfailanal.2021.105323_b0165 – volume: 130 start-page: 357 year: 2004 ident: 10.1016/j.engfailanal.2021.105323_b0075 article-title: Use of Genetic Algorithm in Optimization of Irrigation Pumping Stations publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2004)130:5(357) – start-page: 400 year: 1995 ident: 10.1016/j.engfailanal.2021.105323_b0070 article-title: Application of genetic algorithms to pump scheduling for water supply publication-title: IEE Conf. Publ., IEE – volume: 30 start-page: 59 year: 2014 ident: 10.1016/j.engfailanal.2021.105323_b0170 article-title: Efficiency achievement in water supply systems - A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.09.010 – volume: 77 year: 2020 ident: 10.1016/j.engfailanal.2021.105323_b0050 article-title: Multi-objective reliability-based optimization for design of trapezoidal labyrinth weirs publication-title: Flow Meas. Instrum. – ident: 10.1016/j.engfailanal.2021.105323_b0105 doi: 10.1007/s11269-020-02588-3 – volume: 130 start-page: 160 year: 2004 ident: 10.1016/j.engfailanal.2021.105323_b0080 article-title: Operational Optimization of Water Distribution Systems Using a Hybrid Genetic Algorithm publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)0733-9496(2004)130:2(160) – volume: 28 start-page: 3975 year: 2014 ident: 10.1016/j.engfailanal.2021.105323_b0010 article-title: Strategies to develop warm solutions for real-time pump scheduling for water distribution systems publication-title: Water Resour. Manag. doi: 10.1007/s11269-014-0721-0 – volume: 85 start-page: 54 year: 1993 ident: 10.1016/j.engfailanal.2021.105323_b0035 article-title: Computer-Generated Pumping Schedules for Satisfying Operational Objectives publication-title: J. Am. Water Works Assn. doi: 10.1002/j.1551-8833.1993.tb06024.x – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.engfailanal.2021.105323_b0065 article-title: Grey Wolf Optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 9 start-page: 1 year: 2013 ident: 10.1016/j.engfailanal.2021.105323_b0160 article-title: S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2012.09.002 – volume: 31 start-page: 1283 year: 2017 ident: 10.1016/j.engfailanal.2021.105323_b0090 article-title: Optimization of Pump Scheduling Program in Water Supply Systems Using a Self-Adaptive NSGA-II; a Review of Theory to Real Application publication-title: Water Resour. Manag. doi: 10.1007/s11269-017-1577-x – start-page: 1 year: 2020 ident: 10.1016/j.engfailanal.2021.105323_b0145 article-title: A hybrid memory-based dragonfly algorithm with differential evolution for engineering application publication-title: Eng. Comput. – volume: 83 start-page: 63 year: 2017 ident: 10.1016/j.engfailanal.2021.105323_b0140 article-title: Memory based Hybrid Dragonfly Algorithm for numerical optimization problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.04.033 – volume: 6 start-page: 1 year: 2020 ident: 10.1016/j.engfailanal.2021.105323_b0060 article-title: Using particle swarm optimization algorithm to optimally locating and controlling of pressure reducing valves for leakage minimization in water distribution systems publication-title: Sustain. Water Resour. Manag. doi: 10.1007/s40899-020-00426-3 – volume: 11 start-page: 335 year: 2014 ident: 10.1016/j.engfailanal.2021.105323_b0180 article-title: Ant-colony optimization of pumping schedule to minimize the energy cost using variable-speed pumps in water distribution networks publication-title: Urban Water J. doi: 10.1080/1573062X.2013.795233 – volume: 58 start-page: 321 year: 2009 ident: 10.1016/j.engfailanal.2021.105323_b0020 article-title: Application of local and global particle swarm optimization algorithms to optimal design and operation of irrigation pumping systems publication-title: Irrig. Drain. doi: 10.1002/ird.412 – ident: 10.1016/j.engfailanal.2021.105323_b0015 – start-page: 1 year: 2019 ident: 10.1016/j.engfailanal.2021.105323_b0150 article-title: Comparison of dragonfly algorithm and Harris hawks optimization evolutionary data mining techniques for the assessment of bearing capacity of footings over two-layer foundation soils publication-title: Eng. Comput. – year: 2019 ident: 10.1016/j.engfailanal.2021.105323_b0095 article-title: Efficient Optimization of Pump Scheduling for Reduction of Energy Costs and Greenhouse publication-title: Gas Emissions – volume: 120 start-page: 17 year: 1994 ident: 10.1016/j.engfailanal.2021.105323_b0040 article-title: Optimal Pump Operations Considering Pump Switches publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)0733-9496(1994)120:1(17) – ident: 10.1016/j.engfailanal.2021.105323_b0005 doi: 10.1007/BFb0027177 – volume: 101 year: 2021 ident: 10.1016/j.engfailanal.2021.105323_b0055 article-title: Efficient method using Whale Optimization Algorithm for reliability-based design optimization of labyrinth spillway publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.107036 – year: 2019 ident: 10.1016/j.engfailanal.2021.105323_b0125 article-title: Dragonfly algorithm and its applications in applied science survey publication-title: Comput. Intell. Neurosci. doi: 10.1155/2019/9293617 – volume: 19 start-page: 429 year: 2011 ident: 10.1016/j.engfailanal.2021.105323_b0175 article-title: Representations and evolutionary operators for the scheduling of pump operations inwater distribution networks publication-title: Evol. Comput. doi: 10.1162/EVCO_a_00035 – volume: 57 start-page: 873 year: 2013 ident: 10.1016/j.engfailanal.2021.105323_b0185 article-title: An algorithm for minimization of pumping costs in water distribution systems using a novel approach to pump scheduling publication-title: Math. Comput. Model. doi: 10.1016/j.mcm.2012.09.015 – volume: 115 start-page: 148 year: 1989 ident: 10.1016/j.engfailanal.2021.105323_b0030 article-title: Methodology for Improving Pump Operation Efficiency publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)0733-9496(1989)115:2(148) – start-page: 1 year: 2020 ident: 10.1016/j.engfailanal.2021.105323_b0110 article-title: Comparative Performance of Recent Advanced Optimization Algorithms for Minimum Energy Requirement Solutions in Water Pump Switching Network publication-title: Arch. Comput. Methods Eng. – volume: 284 start-page: 135 year: 2020 ident: 10.1016/j.engfailanal.2021.105323_b0120 article-title: Modeling and solving a bi-objective airport slot scheduling problem publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2019.12.008 – volume: 118 start-page: 406 year: 1992 ident: 10.1016/j.engfailanal.2021.105323_b0025 article-title: Optimal Pump Scheduling in Water-Supply Networks publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)0733-9496(1992)118:4(406) – volume: 32 year: 2020 ident: 10.1016/j.engfailanal.2021.105323_b0130 article-title: Dragonfly algorithm: a comprehensive review and applications publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-04866-y – volume: 122 start-page: 374 year: 1996 ident: 10.1016/j.engfailanal.2021.105323_b0045 article-title: Optimization of Water Supply System Operation publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)0733-9496(1996)122:5(374) – ident: 10.1016/j.engfailanal.2021.105323_b0100 doi: 10.1007/978-3-030-26458-1_11 – volume: 161 start-page: 185 year: 2018 ident: 10.1016/j.engfailanal.2021.105323_b0155 article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2018.08.003 |
| SSID | ssj0007291 |
| Score | 2.4447749 |
| Snippet | •A binary dragonfly algorithm (BDA) with a new transfer function is proposed.•The proposed BDA is applied to minimize the energy consumption of pumping... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 105323 |
| SubjectTerms | Binary dragonfly algorithm Energy cost Pump scheduling program Transfer function Water supply system |
| Title | An enhanced binary dragonfly algorithm based on a V-shaped transfer function for optimization of pump scheduling program in water supply systems (case study of Iran) |
| URI | https://dx.doi.org/10.1016/j.engfailanal.2021.105323 |
| Volume | 123 |
| WOSCitedRecordID | wos000633003000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-1961 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007291 issn: 1350-6307 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9NAFB7Krog-iFd2vTGCD0pIaTO5zIAvQVZX0UVwXfoWJslM26VNS1LXbf-Pv8w_4jmZSdL1giviS2gGppPmfJ1zmfOdQ8hTnYbcBzPf1aFQrh8EzEX-pxtp7fkszXOvrqV38i46OuKjkfjQ631ruDBns6go-Pm5WP5XUcMYCBups38h7vZLYQA-g9DhCmKH66UEHxeOKibmYD81bNu8lGOkf6wdORsvyulqMndQfeV4VCCdE7eayCXcrWorVpUOars2CXEBu8rc0jXrBGlAgANOMSgpy2WvU7wwcvJFYs3FCjuFrm2R6Dqqm8FippJtTV0pMeoqLhwKdGURHS2nM3OsYeqltEk-UoNj78aViVrjXQvXzXSzNqHc1-isz0u1afUNbFsa0-zrQK9aw--MkSnhHMoKqyV0J13VxPTwfr-YVJYhZ-Mh3rDLPjRBuoao02VF4b7OAvCSmWmw21dmjEfMhQ1oeEEZGPbzT4rFxDhO-6oY41vAN9DH1bFPMjNzfqjb_RHXxCU9LHM1xGbru14UCL5DduM3B6O3rcEA_o2JC9hnvEqedGmIv1nw12bUlml0fJPcsD4NjQ0Wb5GeKm6T61sivUO-xgVtUEkNKmmLStqiktaopIuCStqgkjaopA0qKaCSbqOSLjRFVNIOldSikk4LWqOSGlRSi0r6DDFJa0zidMTk87vk06uD45eHru0Q4mbMj1auz3Olw0xpHkidi4zLdJD7kolMMI11ibjQmce91Bvkga-HLEpTP8tZHoYZV2Cp3iM7xaJQe4SCZ5GixpUiV74fKondmDzGRMrFQA7TfcKbF55ktnw-dnGZJU2e5GmyJasEZZUYWe0Tr526NDVkLjPpRSPVxBrDxshNAJJ_nn7_36Y_INe6_9ZDsrMqP6tH5Ep2tppW5WML4O8VU-jW |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+enhanced+binary+dragonfly+algorithm+based+on+a+V-shaped+transfer+function+for+optimization+of+pump+scheduling+program+in+water+supply+systems+%28case+study+of+Iran%29&rft.jtitle=Engineering+failure+analysis&rft.au=Jafari-Asl%2C+Jafar&rft.au=Azizyan%2C+Gholamreza&rft.au=Monfared%2C+Seyed+Arman+Hashemi&rft.au=Rashki%2C+Mohsen&rft.date=2021-05-01&rft.pub=Elsevier+Ltd&rft.issn=1350-6307&rft.eissn=1873-1961&rft.volume=123&rft_id=info:doi/10.1016%2Fj.engfailanal.2021.105323&rft.externalDocID=S1350630721001114 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-6307&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-6307&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-6307&client=summon |