Migration of Deep Learning Models Across Ultrasound Scanners

A transfer function approach has recently proven effective for calibrating deep learning (DL) algorithms in quantitative ultrasound (QUS), addressing data shifts at both the acquisition and machine levels. Expanding on this approach, we develop a strategy to acquire the functionality of a DL model f...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on biomedical engineering Ročník 72; číslo 11; s. 3210 - 3220
Hlavní autori: Soylu, Ufuk, Chandrasekeran, Varun, Czarnota, Gregory J., Oelze, Michael L.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.11.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9294, 1558-2531, 1558-2531
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A transfer function approach has recently proven effective for calibrating deep learning (DL) algorithms in quantitative ultrasound (QUS), addressing data shifts at both the acquisition and machine levels. Expanding on this approach, we develop a strategy to acquire the functionality of a DL model from one ultrasound machine and implement it on another in a black-box setting, in the context of QUS. This demonstrates the ease with which the functionality of a DL model can be transferred between machines. While the proposed approach can also assist regulatory bodies in comparing and approving DL models, it also highlights the security risks associated with deploying such models in a commercial scanner for clinical use. The method is a black-box unsupervised domain adaptation technique that integrates the transfer function approach with an iterative schema. It does not utilize any information related to model internals but it solely relies on the availability of an input-output interface. Additionally, we assume the availability of unlabeled data from a testing machine. This scenario could become relevant as companies begin deploying their DL functionalities for clinical use. In the experiments, we used a SonixOne and a Verasonics machine. The model was trained on SonixOne data, and its functionality was then transferred to the Verasonics machine. The proposed method successfully transferred the functionality to the Verasonics machine, achieving a remarkable 98 percent classification accuracy in a binary decision task. This study underscores the need to establish security measures prior to deploying DL models in clinical settings.
AbstractList A transfer function approach has recently proven effective for calibrating deep learning (DL) algorithms in quantitative ultrasound (QUS), addressing data shifts at both the acquisition and machine levels. Expanding on this approach, we develop a strategy to acquire the functionality of a DL model from one ultrasound machine and implement it on another in a black-box setting, in the context of QUS. This demonstrates the ease with which the functionality of a DL model can be transferred between machines. While the proposed approach can also assist regulatory bodies in comparing and approving DL models, it also highlights the security risks associated with deploying such models in a commercial scanner for clinical use. The method is a black-box unsupervised domain adaptation technique that integrates the transfer function approach with an iterative schema. It does not utilize any information related to model internals but it solely relies on the availability of an input-output interface. Additionally, we assume the availability of unlabeled data from a testing machine. This scenario could become relevant as companies begin deploying their DL functionalities for clinical use. In the experiments, we used a SonixOne and a Verasonics machine. The model was trained on SonixOne data, and its functionality was then transferred to the Verasonics machine. The proposed method successfully transferred the functionality to the Verasonics machine, achieving a remarkable 98 percent classification accuracy in a binary decision task. This study underscores the need to establish security measures prior to deploying DL models in clinical settings.A transfer function approach has recently proven effective for calibrating deep learning (DL) algorithms in quantitative ultrasound (QUS), addressing data shifts at both the acquisition and machine levels. Expanding on this approach, we develop a strategy to acquire the functionality of a DL model from one ultrasound machine and implement it on another in a black-box setting, in the context of QUS. This demonstrates the ease with which the functionality of a DL model can be transferred between machines. While the proposed approach can also assist regulatory bodies in comparing and approving DL models, it also highlights the security risks associated with deploying such models in a commercial scanner for clinical use. The method is a black-box unsupervised domain adaptation technique that integrates the transfer function approach with an iterative schema. It does not utilize any information related to model internals but it solely relies on the availability of an input-output interface. Additionally, we assume the availability of unlabeled data from a testing machine. This scenario could become relevant as companies begin deploying their DL functionalities for clinical use. In the experiments, we used a SonixOne and a Verasonics machine. The model was trained on SonixOne data, and its functionality was then transferred to the Verasonics machine. The proposed method successfully transferred the functionality to the Verasonics machine, achieving a remarkable 98 percent classification accuracy in a binary decision task. This study underscores the need to establish security measures prior to deploying DL models in clinical settings.
A transfer function approach has recently proven effective for calibrating deep learning (DL) algorithms in quantitative ultrasound (QUS), addressing data shifts at both the acquisition and machine levels. Expanding on this approach, we develop a strategy to acquire the functionality of a DL model from one ultrasound machine and implement it on another in a black-box setting, in the context of QUS. This demonstrates the ease with which the functionality of a DL model can be transferred between machines. While the proposed approach can also assist regulatory bodies in comparing and approving DL models, it also highlights the security risks associated with deploying such models in a commercial scanner for clinical use. The method is a black-box unsupervised domain adaptation technique that integrates the transfer function approach with an iterative schema. It does not utilize any information related to model internals but it solely relies on the availability of an input-output interface. Additionally, we assume the availability of unlabeled data from a testing machine. This scenario could become relevant as companies begin deploying their DL functionalities for clinical use. In the experiments, we used a SonixOne and a Verasonics machine. The model was trained on SonixOne data, and its functionality was then transferred to the Verasonics machine. The proposed method successfully transferred the functionality to the Verasonics machine, achieving a remarkable 98 percent classification accuracy in a binary decision task. This study underscores the need to establish security measures prior to deploying DL models in clinical settings.
Author Czarnota, Gregory J.
Chandrasekeran, Varun
Oelze, Michael L.
Soylu, Ufuk
Author_xml – sequence: 1
  givenname: Ufuk
  orcidid: 0000-0002-0513-4572
  surname: Soylu
  fullname: Soylu, Ufuk
  email: usoylu2@illinois.edu
  organization: Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, USA
– sequence: 2
  givenname: Varun
  orcidid: 0000-0003-0661-6378
  surname: Chandrasekeran
  fullname: Chandrasekeran, Varun
  organization: Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, USA
– sequence: 3
  givenname: Gregory J.
  surname: Czarnota
  fullname: Czarnota, Gregory J.
  organization: Sunnybrook Health Sciences Centre, Canada
– sequence: 4
  givenname: Michael L.
  orcidid: 0000-0002-3099-7425
  surname: Oelze
  fullname: Oelze, Michael L.
  email: oelze@illinois.edu
  organization: Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign,, Urbana, IL, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40279236$$D View this record in MEDLINE/PubMed
BookMark eNpdkMtKA0EQRRuJmBj9AEFkwI2bif1-gJv4FhJcmKybzkyNTJh0x-7Mwr93YqKIq6Lg3OLWOUY9HzwgdEbwiBBsrme304cRxVSMmJBcSHWABkQInVPBSA8NMCY6N9TwPjpOadmtXHN5hPocU2UokwN0M63fo9vUwWehyu4B1tkEXPS1f8-moYQmZeMihpSyebOJLoXWl9lb4byHmE7QYeWaBKf7OUTzx4fZ3XM-eX16uRtP8oJxtck5XrCi0loUzilBSuGMZAtOBRGgCwlCywJzAQpL7MTClY5pTSsuGNWmkpgN0dXu7jqGjxbSxq7qVEDTOA-hTZYRw41SUuoOvfyHLkMbfdfOMiqZYZ0m0VEXe6pdrKC061ivXPy0P146gOyA798jVL8IwXbr3m7d2617u3ffZc53mRoA_vBdM6U0-wKIuHyL
CODEN IEBEAX
Cites_doi 10.1109/TUFFC.2021.3075912
10.7863/jum.2005.24.9.1235
10.1038/s41598-022-06100-2
10.1109/CVPR.2016.90
10.1109/TUFFC.2023.3263119
10.1109/ICASSP.2018.8461575
10.1109/TUFFC.2024.3384815
10.1007/978-3-030-87234-2_2
10.1109/IUS52206.2021.9593665
10.1109/CVPR.2017.243
10.5244/C.35.114
10.1109/IUS52206.2021.9593856
10.1007/978-3-031-16446-0_74
10.1016/j.ultras.2021.106682
10.1109/TUFFC.2024.3357438
10.1109/TMI.2020.2970867
10.1109/TUFFC.2020.3026598
10.1109/TUFFC.2021.3094849
10.1609/aaai.v38i21.30343
10.1007/s11263-024-02181-w
10.1109/ULTSYM.2019.8925666
10.1016/j.ultrasmedbio.2020.10.025
10.1038/s41467-020-17478-w
10.1109/JPROC.2019.2932116
10.1109/TUFFC.2023.3245988
10.1148/radiol.2020191160
10.1177/016173461003200104
10.1118/1.594483
10.1016/S0301-5629(98)00013-1
10.1002/jum.15693
10.1148/radiol.221510
10.1007/978-3-030-59713-9_40
10.1109/TUFFC.2022.3144685
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2025.3564567
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 3220
ExternalDocumentID 40279236
10_1109_TBME_2025_3564567
10977778
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Institutes of Health
  grantid: R01CA251939; R01CA273700
  funderid: 10.13039/100000002
– fundername: NCI NIH HHS
  grantid: R01 CA251939
– fundername: NCI NIH HHS
  grantid: R01 CA273700
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
85S
97E
AAJGR
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c347t-40b3cf885caa751d5a963b42515e8c6e586c045e7060a5bada3882f453289f603
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001600066000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9294
1558-2531
IngestDate Fri Oct 03 00:10:48 EDT 2025
Sat Nov 15 15:52:25 EST 2025
Sat Oct 25 06:00:16 EDT 2025
Sat Nov 29 06:50:28 EST 2025
Wed Nov 19 08:27:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-40b3cf885caa751d5a963b42515e8c6e586c045e7060a5bada3882f453289f603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0661-6378
0000-0002-3099-7425
0000-0002-0513-4572
OpenAccessLink https://ieeexplore.ieee.org/document/10977778
PMID 40279236
PQID 3263934565
PQPubID 85474
PageCount 11
ParticipantIDs crossref_primary_10_1109_TBME_2025_3564567
ieee_primary_10977778
pubmed_primary_40279236
proquest_journals_3263934565
proquest_miscellaneous_3194977668
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
Paszke (ref35) 2019
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
Chandrasekaran (ref36) 2020
ref4
ref3
ref6
Kingma (ref34) 2015
ref5
References_xml – ident: ref12
  doi: 10.1109/TUFFC.2021.3075912
– ident: ref28
  doi: 10.7863/jum.2005.24.9.1235
– ident: ref21
  doi: 10.1038/s41598-022-06100-2
– ident: ref33
  doi: 10.1109/CVPR.2016.90
– ident: ref7
  doi: 10.1109/TUFFC.2023.3263119
– ident: ref4
  doi: 10.1109/ICASSP.2018.8461575
– ident: ref23
  doi: 10.1109/TUFFC.2024.3384815
– ident: ref11
  doi: 10.1007/978-3-030-87234-2_2
– ident: ref5
  doi: 10.1109/IUS52206.2021.9593665
– ident: ref32
  doi: 10.1109/CVPR.2017.243
– ident: ref27
  doi: 10.5244/C.35.114
– ident: ref13
  doi: 10.1109/IUS52206.2021.9593856
– ident: ref14
  doi: 10.1007/978-3-031-16446-0_74
– ident: ref16
  doi: 10.1016/j.ultras.2021.106682
– ident: ref15
  doi: 10.1109/TUFFC.2024.3357438
– ident: ref24
  doi: 10.1109/TMI.2020.2970867
– ident: ref2
  doi: 10.1109/TUFFC.2020.3026598
– ident: ref3
  doi: 10.1109/TUFFC.2021.3094849
– ident: ref25
  doi: 10.1609/aaai.v38i21.30343
– ident: ref26
  doi: 10.1007/s11263-024-02181-w
– ident: ref19
  doi: 10.1109/ULTSYM.2019.8925666
– ident: ref20
  doi: 10.1016/j.ultrasmedbio.2020.10.025
– ident: ref6
  doi: 10.1038/s41467-020-17478-w
– start-page: 1309
  volume-title: Proc. 29th USENIX Secur. Symp.
  year: 2020
  ident: ref36
  article-title: Exploring connections between active learning and model extraction
– ident: ref1
  doi: 10.1109/JPROC.2019.2932116
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2015
  ident: ref34
  article-title: Adam: A method for stochastic optimization
– start-page: 8026
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2019
  ident: ref35
  article-title: PyTorch: An imperative style, high-performance deep learning library
– ident: ref8
  doi: 10.1109/TUFFC.2023.3245988
– ident: ref18
  doi: 10.1148/radiol.2020191160
– ident: ref30
  doi: 10.1177/016173461003200104
– ident: ref31
  doi: 10.1118/1.594483
– ident: ref29
  doi: 10.1016/S0301-5629(98)00013-1
– ident: ref17
  doi: 10.1002/jum.15693
– ident: ref22
  doi: 10.1148/radiol.221510
– ident: ref9
  doi: 10.1007/978-3-030-59713-9_40
– ident: ref10
  doi: 10.1109/TUFFC.2022.3144685
SSID ssj0014846
Score 2.481593
Snippet A transfer function approach has recently proven effective for calibrating deep learning (DL) algorithms in quantitative ultrasound (QUS), addressing data...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 3210
SubjectTerms Adaptation models
Algorithms
Availability
Biological system modeling
Black boxes
Calibration
Closed box
data mismatch
Data models
Decision making
Deep Learning
deep model security
Humans
Image Processing, Computer-Assisted - methods
Information processing
Machine learning
Mental task performance
Noise measurement
Scanners
Security
Tissue characterization
transfer function
Transfer functions
Ultrasonic imaging
Ultrasonography - instrumentation
Ultrasonography - methods
Ultrasound
ultrasound imaging
Title Migration of Deep Learning Models Across Ultrasound Scanners
URI https://ieeexplore.ieee.org/document/10977778
https://www.ncbi.nlm.nih.gov/pubmed/40279236
https://www.proquest.com/docview/3263934565
https://www.proquest.com/docview/3194977668
Volume 72
WOSCitedRecordID wos001600066000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB2siOjBj1q1WmUFT0LbpNndbMBL1YqXFkGF3sImmYggqfTD3-_MJi166MGcAtlsln07m_cymRmAa2W1Z_2Qdj-ZyLZM0W-bxEeyqyzUyBQAPVdsIhyNzHgcPVfB6i4WBhHdz2fY4VPny88m6YI_lXXZW0qHqUEtDHUZrLVyGUhTRuV4PllwL5KVC5Pu6b7eDQckBXuqE3DyFM2V90g3ceo8_ed95AqsrOea7p3zuP_P0R7AXkUuRb9cDYewgUUddn-lHKzD9rByph_B7fDjvcRfTHLxgPglqmyr74JLpH3ORN8NWrx9zqd2xgWYxAtBURBlbMDb4-D1_qldFVNop4EM56QTkyDNjVGptaHyM2XJ9BKyWF-hSTUqo1Oid8jZdKxKbGYDIt-5VAFJslx7wTFsFpMCT0H4IYsWYzOSI7JniWPShp9HeU5sR2WomnCznNL4q8yZETut4UUxQxEzFHEFRRMaPHW_Gpaz1oTWEoW4MqtZTFwziAImoU24Wl0mg2Avhy1wsqA2fiSpC62pi5MSvVXnS9DP1jz0HHZ4bGWsYQs259MFXsBW-j3_mE0vadWNzaVbdT-sss5f
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4BQ8AexoBuK-uYJ_GEVJo0tuNIvDBWBIJWSCsSb5GTXKpKKEX9wd_PneNW8MADeYoUx7H8-Zzvcrn7AI6V1YENY9r9ZCbbMsewbbIQya6KWCNTAAyc2EQ8GJiHh-TOJ6u7XBhEdD-f4Smfulh-MckX_Kmsw9FSOsw6fGLpLJ-utQoaSFPn5QQh2XA3kT6ISXd1hn_7PXIGu-o04vIpmrX3yHPi4nn6zRvJSay8zzbdW-dy94Pj_QpfPL0U5_V62IM1rPbh86uig_uw1ffh9AM4649H9QoQk1L8Q3wSvt7qSLBI2uNMnLtBi_vH-dTOWIJJ_CcwKiKNDbi_7A0vrtpeTqGdRzKek6eYRXlpjMqtjVVYKEvGl5HNhgpNrlEZnRPBQ66nY1VmCxsR_S6lisgpK3UQfYONalLhDxBhzG6LsQU5JLJriWXSll8mZUl8RxWomnCynNL0qa6akTpvI0hShiJlKFIPRRMaPHWvGtaz1oTWEoXUG9YsJbYZJRHT0Cb8WV0mk-A4h61wsqA2YSKpC62pi-81eqvOl6AfvvPQ37B9NezfprfXg5ufsMPjrDMPW7Axny7wF2zmz_PxbHrk1t4LveDQwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Migration+of+Deep+Learning+Models+Across+Ultrasound+Scanners&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Soylu%2C+Ufuk&rft.au=Chandrasekeran%2C+Varun&rft.au=Czarnota%2C+Gregory+J&rft.au=Oelze%2C+Michael+L&rft.date=2025-11-01&rft.eissn=1558-2531&rft.volume=72&rft.issue=11&rft.spage=3210&rft_id=info:doi/10.1109%2FTBME.2025.3564567&rft_id=info%3Apmid%2F40279236&rft.externalDocID=40279236
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon