Stochastic Machine Learning Based Attacks Detection System in Wireless Sensor Networks

Wireless Sensor Networks (WSNs) play a crucial role in diverse applications, encompassing environmental monitoring, healthcare, and industrial automation. However, these networks are susceptible to various security threats, underscoring the need for robust attack detection systems. In this paper, we...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of network and systems management Ročník 32; číslo 1; s. 17
Hlavní autoři: Moundounga, Anselme Russel Affane, Satori, Hassan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.03.2024
Springer Nature B.V
Témata:
ISSN:1064-7570, 1573-7705
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Wireless Sensor Networks (WSNs) play a crucial role in diverse applications, encompassing environmental monitoring, healthcare, and industrial automation. However, these networks are susceptible to various security threats, underscoring the need for robust attack detection systems. In this paper, we propose a Stochastic Machine Learning-Based Attack Detection System for WSNs that leverages the synergy of Hidden Markov Models (HMMs) and Gaussian Mixture Models (GMMs). The proposed system employs Principal Component Analysis for dimensionality reduction in the WSN dataset, thereby retaining essential routing features while mitigating the number of variables. Additionally, iterative machine learning Expectation-Maximization is employed to train the HMMs and GMMs, empowering the system to accurately detect and classify malicious activities and erroneous routing data. To evaluate the system’s efficacy, a series of experiments were conducted, entailing variations in the parameters of both HMMs and GMMs. Notably, the findings underscore that the configuration comprising 3 HMMs and 4 GMMs surpasses other combinations, achieving an exceptional accuracy level of 94.55%. Furthermore, a comprehensive comparison is drawn between the proposed system and common machine learning classifiers. This analysis unequivocally highlights the system’s superiority in terms of accuracy and overall performance. Notable is the system’s exceptional performance in cross-validation, consistently achieving accuracies within the range of 0.96 to 0.98. The proposed Stochastic Machine Learning-Based Attack Detection System introduces a highly promising approach to fortify the security of WSNs. The amalgamation of rigorous experimentation, comparative analysis, and impressive results underscores its potential as an effective security enhancement tool.
AbstractList Wireless Sensor Networks (WSNs) play a crucial role in diverse applications, encompassing environmental monitoring, healthcare, and industrial automation. However, these networks are susceptible to various security threats, underscoring the need for robust attack detection systems. In this paper, we propose a Stochastic Machine Learning-Based Attack Detection System for WSNs that leverages the synergy of Hidden Markov Models (HMMs) and Gaussian Mixture Models (GMMs). The proposed system employs Principal Component Analysis for dimensionality reduction in the WSN dataset, thereby retaining essential routing features while mitigating the number of variables. Additionally, iterative machine learning Expectation-Maximization is employed to train the HMMs and GMMs, empowering the system to accurately detect and classify malicious activities and erroneous routing data. To evaluate the system’s efficacy, a series of experiments were conducted, entailing variations in the parameters of both HMMs and GMMs. Notably, the findings underscore that the configuration comprising 3 HMMs and 4 GMMs surpasses other combinations, achieving an exceptional accuracy level of 94.55%. Furthermore, a comprehensive comparison is drawn between the proposed system and common machine learning classifiers. This analysis unequivocally highlights the system’s superiority in terms of accuracy and overall performance. Notable is the system’s exceptional performance in cross-validation, consistently achieving accuracies within the range of 0.96 to 0.98. The proposed Stochastic Machine Learning-Based Attack Detection System introduces a highly promising approach to fortify the security of WSNs. The amalgamation of rigorous experimentation, comparative analysis, and impressive results underscores its potential as an effective security enhancement tool.
ArticleNumber 17
Author Moundounga, Anselme Russel Affane
Satori, Hassan
Author_xml – sequence: 1
  givenname: Anselme Russel Affane
  surname: Moundounga
  fullname: Moundounga, Anselme Russel Affane
  organization: Department of Computer Science, Faculty of Sciences Dhar-Mahraz, Sidi Mohamed Ben Abdallah University
– sequence: 2
  givenname: Hassan
  surname: Satori
  fullname: Satori, Hassan
  email: hassan.satori@usmba.ac.ma
  organization: Department of Computer Science, Faculty of Sciences Dhar-Mahraz, Sidi Mohamed Ben Abdallah University
BookMark eNp9kMtOAyEUQImpia36A65IXI_egQFmlvVtUnVRH0tCmTuKbRkFjPHvpdbExEVXsDjnwj0jMvC9R0IOSjgqAdRxLKFhrADGC2hUUxViiwxLoXihFIhBvoOsCiUU7JBRjK8AUPNGDMnjNPX2xcTkLL0x9sV5pBM0wTv_TE9MxJaOUzJ2HukZJrTJ9Z5Ov2LCJXWePrmAC4yRTtHHPtBbTJ99mMc9st2ZRcT933OXPFyc359eFZO7y-vT8aSwvFKp4LZWqupKlK0SQs464EJ1puK1FDNuWdUZObPQIrRGtSWbSYbcKqwYyLxQxXfJ4XruW-jfPzAm_dp_BJ-f1KwpayVrkGozBblKRutM1WvKhj7GgJ22LpnVwikYt9Al6FVrvW6tc2v901qLrLJ_6ltwSxO-Nkt8LcUM-2cMf7_aYH0DUEqSXw
CitedBy_id crossref_primary_10_1007_s10586_025_05591_8
crossref_primary_10_1080_03772063_2024_2436970
crossref_primary_10_1038_s41598_025_85547_5
crossref_primary_10_3390_s24186143
crossref_primary_10_1007_s11071_024_09614_8
crossref_primary_10_1007_s10207_024_00833_z
crossref_primary_10_1007_s10922_025_09907_2
Cites_doi 10.1109/WiMOB.2014.6962207
10.1201/9780429261046
10.1109/SAM.2014.6882383
10.1016/j.comnet.2019.06.014
10.1145/1288107.1288137
10.1155/2016/4731953
10.1504/IJAHUC.2015.067756
10.32604/cmc.2021.017914
10.1109/IWCMC.2019.8766477
10.1002/9780470666388
10.1155/2012/427246
10.1186/s40537-023-00692-w
10.1109/WAINA.2009.200
10.1145/3167486.3167505
10.1007/978-3-540-73090-3_15
10.1016/j.comnet.2009.05.007
10.1016/j.jnca.2011.03.004
10.1109/TWC.2016.2531041
10.1145/2996356
10.1145/1541880.1541882
10.1016/j.asoc.2018.05.049
10.1007/978-3-030-00018-9_4
10.1016/j.procs.2013.06.155
10.1007/s00521-022-07970-3
10.1016/j.adhoc.2008.06.003
10.1007/s11227-019-03131-x
10.1186/s13638-019-1374-8
10.3390/s21238017
10.1109/SURV.2010.021510.00088
10.1016/j.adhoc.2009.09.004
10.1016/j.adhoc.2012.11.001
10.1016/j.procs.2019.01.028
10.1016/j.procs.2016.03.092
10.1109/WITS.2019.8723845
10.14569/IJACSA.2023.01403105
10.1016/S1570-8705(03)00008-8
10.1109/ICUFN.2018.8436999
10.3390/s20030745
10.1007/s10922-013-9287-z
10.1016/j.comnet.2015.03.002
10.1109/TII.2020.2964704
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CNYFK
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M1O
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
Q9U
DOI 10.1007/s10922-023-09794-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Social Science Premium Collection - Library & Information Science Collection
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Library Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Library & Information Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Library Science
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7705
ExternalDocumentID 10_1007_s10922_023_09794_5
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
CNYFK
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M1O
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PRQQA
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c347t-3c8774f1e6d7556bf0357fa43865b3c24fa6bc0de0da7d12b62e3c7e420606443
IEDL.DBID RSV
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001131907500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1064-7570
IngestDate Sun Nov 16 05:41:33 EST 2025
Sun Nov 16 04:02:21 EST 2025
Sat Nov 29 02:49:43 EST 2025
Tue Nov 18 22:23:48 EST 2025
Fri Feb 21 02:41:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Dimensionality reduction
Secure routing algorithm
Hidden Markov models
Machine learning
Gaussian mixture models
Stochastic attacks detection system
Wireless sensor networks (WSNs)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-3c8774f1e6d7556bf0357fa43865b3c24fa6bc0de0da7d12b62e3c7e420606443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2907579188
PQPubID 32329
ParticipantIDs proquest_journals_2918768067
proquest_journals_2907579188
crossref_citationtrail_10_1007_s10922_023_09794_5
crossref_primary_10_1007_s10922_023_09794_5
springer_journals_10_1007_s10922_023_09794_5
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of network and systems management
PublicationTitleAbbrev J Netw Syst Manage
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References ZhangYMeratniaNHavingaPOutlier detection techniques for wireless sensor networks: a surveyIEEE Commun. Surv. Tutor.201012215917010.1109/SURV.2010.021510.00088
Meesookho, C., Narayanan, S., Raghavendra, C.S.: Collaborative classification applications in sensor networks. In: Sensor Array and Multichannel Signal Processing Workshop Proceedings, 2002, pp. 370–374. IEEE (2002)
XieMHanSTianBParvinSAnomaly detection in wireless sensor networks: a surveyJ. Netw. Comput. Appl.20113441302132510.1016/j.jnca.2011.03.004
CoelhoJPHidden Markov Models: Theory and Implementation Using MATLAB2019Boca RatonCRC Press10.1201/9780429261046
Sanhaji, F., Satori, H., Satori, K.: Cluster head selection based on neural networks in wireless sensor networks. In: 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), pp. 1–5. IEEE (2019)
CalafateCTManzoniPCanoJ-CMalumbresMPMarkovian-based traffic modeling for mobile ad hoc networksComput. Netw.200953142586260010.1016/j.comnet.2009.05.007
Jellali, Z., Atallah, L., Cherif, S.: Principal component analysis based clustering approach for wsn with locally uniformly correlated data. In: 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), pp. 174–179. IEEE (2019)
ZhengWYangLWuMAn improved distributed pca-based outlier detection in wireless sensor networkInternational Conference on Cloud Computing and Security2018BerlinSpringer374910.1007/978-3-030-00018-9_4
McDonaldDSanchezSMadriaSErcalFA survey of methods for finding outliers in wireless sensor networksJ. Netw. Syst. Manag.201523116318210.1007/s10922-013-9287-z
ChandolaVBanerjeeAKumarVAnomaly detection: a surveyACM Comput. Surv. (CSUR)200941315810.1145/1541880.1541882
FotohiRBariSFA novel countermeasure technique to protect wsn against denial-of-sleep attacks using firefly and hopfield neural network (hnn) algorithmsJ. Supercomput.20207696860688610.1007/s11227-019-03131-x
ZhangYMeratniaNHavingaPJMDistributed online outlier detection in wireless sensor networks using ellipsoidal support vector machineAd Hoc Netw.20131131062107410.1016/j.adhoc.2012.11.001
AmishPVaghelaVBDetection and prevention of wormhole attack in wireless sensor network using aomdv protocolProc. Comput. Sci.20167970070710.1016/j.procs.2016.03.092
KarlofCWagnerDSecure routing in wireless sensor networks: attacks and countermeasuresAd Hoc Netw.200312–329331510.1016/S1570-8705(03)00008-8
Zhang, Y., Meratnia, N., Havinga, P.: Adaptive and online one-class support vector machine-based outlier detection techniques for wireless sensor networks. In: 2009 International Conference on Advanced Information Networking and Applications Workshops, pp. 990–995. IEEE (2009)
AlmomaniIAl-KasasbehBAl-AkhrasMWsn-ds: a dataset for intrusion detection systems in wireless sensor networksJ. Sens.201610.1155/2016/4731953
EmperumanMChandrasekaranSHybrid continuous density hmm-based ensemble neural networks for sensor fault detection and classification in wireless sensor networkSensors202020374510.3390/s20030745
NadeemAHussainMAOwaisOSalamAIqbalSAhsanKApplication specific study, analysis and classification of body area wireless sensor network applicationsComput. Netw.20158336338010.1016/j.comnet.2015.03.002
Harb, H., Makhoul, A., Laiymani, D., Jaber, A., Tawil, R.: K-means based clustering approach for data aggregation in periodic sensor networks. In: 2014 IEEE 10th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 434–441. IEEE (2014)
Sheng, B., Li, Q., Mao, W., Jin, W.: Outlier detection in sensor networks. In: Proceedings of the 8th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 219–228, (2007)
MorellACorreaABarcelóMVicarioJLData aggregation and principal component analysis in wsnsIEEE Trans. Wireless Commun.20161563908391910.1109/TWC.2016.2531041
Sanhaji, F., Satori, H., Satori, K.: Clustering based on neural networks in wireless sensor networks. In: Proceedings of the 2nd International Conference on Computing and Wireless Communication Systems, pp. 1–6, (2017)
DargieWPoellabauerCFundamentals of Wireless Sensor Networks: Theory and Practice2010BeijingJohn Wiley & Sons10.1002/9780470666388
AlmaslukhBDeep learning and entity embedding-based intrusion detection model for wireless sensor networksComput. Mater. Contin.202110.32604/cmc.2021.017914
WanRXiongNQinghuiHWangHShangJSimilarity-aware data aggregation using fuzzy c-means approach for wireless sensor networksEURASIP J. Wirel. Commun. Netw.20192019111110.1186/s13638-019-1374-8
ChenGTanLGongYZhangWPca-guided routing algorithm for wireless sensor networksJ. Comput. Netw. Commun.201210.1155/2012/427246
TitounaCNaït-AbdesselamFKhokharADods: a distributed outlier detection scheme for wireless sensor networksComput. Netw.20191619310110.1016/j.comnet.2019.06.014
Taieb Brahim, M. et al. Contribution aux Réseaux Sans fil: Routage à base de l’algorithme MCL pour les Réseaux de Capteurs. PhD thesis, Université Djillali Liabes de Sidi Bel Abbes, (2021)
Ghadban, N., Honeine, P., Francis, C., Mourad-Chehade, F., Farah, J: Strategies for principal component analysis in wireless sensor networks. In: 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 233–236. IEEE (2014)
TripathiMGaurMSLaxmiVComparing the impact of black hole and gray hole attack on leach in wsnProc. Comput. Sci.2013191101110710.1016/j.procs.2013.06.155
AffaneARSatoriHSanhajiFBoutazartYSatoriKEnergy enhancement of routing protocol with hidden Markov model in wireless sensor networksNeural Comput. Appl.20233575381539310.1007/s00521-022-07970-3
RassamMAZainalAMaarofMAPrincipal component analysis-based data reduction model for wireless sensor networksInt. J. Ad Hoc Ubiquit. Comput.2015181–28510110.1504/IJAHUC.2015.067756
Kavousi-FardAWencongSJinTA machine-learning-based cyber attack detection model for wireless sensor networks in microgridsIEEE Trans. Industr. Inf.202017165065810.1109/TII.2020.2964704
BoutazartYSatoriHAffaneMAnselmeRHamidiMSatoriKCovid-19 dataset clustering based on k-means and em algorithmsInt. J. Adv. Comput. Sci. Appl.202310.14569/IJACSA.2023.01403105
ZamryNMZainalARassamMAAlkhammashEHGhalebFASaeedFLightweight anomaly detection scheme using incremental principal component analysis and support vector machineSensors20212123801710.3390/s21238017
Park, T., Cho, D., Kim, H. et al.: An effective classification for dos attacks in wireless sensor networks. In: 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 689–692. IEEE (2018)
AnastasiGContiMDi FrancescoMPassarellaAEnergy conservation in wireless sensor networks: a surveyAd Hoc Netw.20097353756810.1016/j.adhoc.2008.06.003
SundarCChitradeviMGeetharamaniGClassification of cardiotocogram data using neural network based machine learning techniqueInt. J. Comput. Appl.201247142012
SalmiSOughdirLPerformance evaluation of deep learning techniques for dos attacks detection in wireless sensor networkJ. Big Data202310112510.1186/s40537-023-00692-w
WinklerMTuchsKDHughesKTheoretical and practical aspects of military wireless sensor networksJ. Telecommun. Inform. Technol.200813745
LungC-HZhouCUsing hierarchical agglomerative clustering in wireless sensor networks: an energy-efficient and flexible approachAd Hoc Netw.20108332834410.1016/j.adhoc.2009.09.004
DiasGMBellaltaBOechsnerSA survey about prediction-based data reduction in wireless sensor networksACM Comput. Surv. (CSUR)201649313510.1145/2996356
RathoreSParkJHSemi-supervised learning based distributed attack detection framework for iotAppl. Soft Comput.201872798910.1016/j.asoc.2018.05.049
Bettencourt, L., Hagberg, A., Larkey, L.B.: Separating the wheat from the chaff: practical anomaly detection schemes in ecological applications of distributed sensor networks. In: International Conference on Distributed Computing in Sensor Systems, pp. 223–239. Springer, Berlin (2007)
KalkhaHSatoriHSatoriKPreventing black hole attack in wireless sensor network using hmmProc. Comput. Sci.201914855256110.1016/j.procs.2019.01.028
9794_CR24
R Wan (9794_CR7) 2019; 2019
JP Coelho (9794_CR18) 2019
9794_CR44
M Xie (9794_CR12) 2011; 34
P Amish (9794_CR42) 2016; 79
W Dargie (9794_CR1) 2010
A Kavousi-Fard (9794_CR27) 2020; 17
9794_CR6
A Morell (9794_CR8) 2016; 15
M Tripathi (9794_CR41) 2013; 19
C-H Lung (9794_CR4) 2010; 8
I Almomani (9794_CR9) 2016
9794_CR25
9794_CR26
S Salmi (9794_CR43) 2023; 10
MA Rassam (9794_CR11) 2015; 18
R Fotohi (9794_CR28) 2020; 76
G Chen (9794_CR37) 2012
M Winkler (9794_CR3) 2008; 1
C Karlof (9794_CR39) 2003; 1
AR Affane (9794_CR5) 2023; 35
V Chandola (9794_CR23) 2009; 41
9794_CR34
C Titouna (9794_CR20) 2019; 161
Y Zhang (9794_CR30) 2013; 11
9794_CR35
9794_CR10
G Anastasi (9794_CR13) 2009; 7
S Rathore (9794_CR16) 2018; 72
9794_CR31
Y Boutazart (9794_CR33) 2023
M Emperuman (9794_CR38) 2020; 20
H Kalkha (9794_CR40) 2019; 148
C Sundar (9794_CR17) 2012; 47
9794_CR19
9794_CR36
GM Dias (9794_CR14) 2016; 49
Y Zhang (9794_CR22) 2010; 12
D McDonald (9794_CR21) 2015; 23
CT Calafate (9794_CR45) 2009; 53
W Zheng (9794_CR32) 2018
A Nadeem (9794_CR2) 2015; 83
NM Zamry (9794_CR15) 2021; 21
B Almaslukh (9794_CR29) 2021
References_xml – reference: AmishPVaghelaVBDetection and prevention of wormhole attack in wireless sensor network using aomdv protocolProc. Comput. Sci.20167970070710.1016/j.procs.2016.03.092
– reference: EmperumanMChandrasekaranSHybrid continuous density hmm-based ensemble neural networks for sensor fault detection and classification in wireless sensor networkSensors202020374510.3390/s20030745
– reference: WinklerMTuchsKDHughesKTheoretical and practical aspects of military wireless sensor networksJ. Telecommun. Inform. Technol.200813745
– reference: AnastasiGContiMDi FrancescoMPassarellaAEnergy conservation in wireless sensor networks: a surveyAd Hoc Netw.20097353756810.1016/j.adhoc.2008.06.003
– reference: AlmomaniIAl-KasasbehBAl-AkhrasMWsn-ds: a dataset for intrusion detection systems in wireless sensor networksJ. Sens.201610.1155/2016/4731953
– reference: Meesookho, C., Narayanan, S., Raghavendra, C.S.: Collaborative classification applications in sensor networks. In: Sensor Array and Multichannel Signal Processing Workshop Proceedings, 2002, pp. 370–374. IEEE (2002)
– reference: McDonaldDSanchezSMadriaSErcalFA survey of methods for finding outliers in wireless sensor networksJ. Netw. Syst. Manag.201523116318210.1007/s10922-013-9287-z
– reference: MorellACorreaABarcelóMVicarioJLData aggregation and principal component analysis in wsnsIEEE Trans. Wireless Commun.20161563908391910.1109/TWC.2016.2531041
– reference: NadeemAHussainMAOwaisOSalamAIqbalSAhsanKApplication specific study, analysis and classification of body area wireless sensor network applicationsComput. Netw.20158336338010.1016/j.comnet.2015.03.002
– reference: Sanhaji, F., Satori, H., Satori, K.: Cluster head selection based on neural networks in wireless sensor networks. In: 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), pp. 1–5. IEEE (2019)
– reference: KarlofCWagnerDSecure routing in wireless sensor networks: attacks and countermeasuresAd Hoc Netw.200312–329331510.1016/S1570-8705(03)00008-8
– reference: DargieWPoellabauerCFundamentals of Wireless Sensor Networks: Theory and Practice2010BeijingJohn Wiley & Sons10.1002/9780470666388
– reference: SalmiSOughdirLPerformance evaluation of deep learning techniques for dos attacks detection in wireless sensor networkJ. Big Data202310112510.1186/s40537-023-00692-w
– reference: ZhangYMeratniaNHavingaPJMDistributed online outlier detection in wireless sensor networks using ellipsoidal support vector machineAd Hoc Netw.20131131062107410.1016/j.adhoc.2012.11.001
– reference: ChenGTanLGongYZhangWPca-guided routing algorithm for wireless sensor networksJ. Comput. Netw. Commun.201210.1155/2012/427246
– reference: SundarCChitradeviMGeetharamaniGClassification of cardiotocogram data using neural network based machine learning techniqueInt. J. Comput. Appl.201247142012
– reference: ZhengWYangLWuMAn improved distributed pca-based outlier detection in wireless sensor networkInternational Conference on Cloud Computing and Security2018BerlinSpringer374910.1007/978-3-030-00018-9_4
– reference: XieMHanSTianBParvinSAnomaly detection in wireless sensor networks: a surveyJ. Netw. Comput. Appl.20113441302132510.1016/j.jnca.2011.03.004
– reference: Park, T., Cho, D., Kim, H. et al.: An effective classification for dos attacks in wireless sensor networks. In: 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 689–692. IEEE (2018)
– reference: Sheng, B., Li, Q., Mao, W., Jin, W.: Outlier detection in sensor networks. In: Proceedings of the 8th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 219–228, (2007)
– reference: ZhangYMeratniaNHavingaPOutlier detection techniques for wireless sensor networks: a surveyIEEE Commun. Surv. Tutor.201012215917010.1109/SURV.2010.021510.00088
– reference: KalkhaHSatoriHSatoriKPreventing black hole attack in wireless sensor network using hmmProc. Comput. Sci.201914855256110.1016/j.procs.2019.01.028
– reference: RassamMAZainalAMaarofMAPrincipal component analysis-based data reduction model for wireless sensor networksInt. J. Ad Hoc Ubiquit. Comput.2015181–28510110.1504/IJAHUC.2015.067756
– reference: ChandolaVBanerjeeAKumarVAnomaly detection: a surveyACM Comput. Surv. (CSUR)200941315810.1145/1541880.1541882
– reference: Taieb Brahim, M. et al. Contribution aux Réseaux Sans fil: Routage à base de l’algorithme MCL pour les Réseaux de Capteurs. PhD thesis, Université Djillali Liabes de Sidi Bel Abbes, (2021)
– reference: AffaneARSatoriHSanhajiFBoutazartYSatoriKEnergy enhancement of routing protocol with hidden Markov model in wireless sensor networksNeural Comput. Appl.20233575381539310.1007/s00521-022-07970-3
– reference: AlmaslukhBDeep learning and entity embedding-based intrusion detection model for wireless sensor networksComput. Mater. Contin.202110.32604/cmc.2021.017914
– reference: Jellali, Z., Atallah, L., Cherif, S.: Principal component analysis based clustering approach for wsn with locally uniformly correlated data. In: 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), pp. 174–179. IEEE (2019)
– reference: CalafateCTManzoniPCanoJ-CMalumbresMPMarkovian-based traffic modeling for mobile ad hoc networksComput. Netw.200953142586260010.1016/j.comnet.2009.05.007
– reference: FotohiRBariSFA novel countermeasure technique to protect wsn against denial-of-sleep attacks using firefly and hopfield neural network (hnn) algorithmsJ. Supercomput.20207696860688610.1007/s11227-019-03131-x
– reference: Sanhaji, F., Satori, H., Satori, K.: Clustering based on neural networks in wireless sensor networks. In: Proceedings of the 2nd International Conference on Computing and Wireless Communication Systems, pp. 1–6, (2017)
– reference: BoutazartYSatoriHAffaneMAnselmeRHamidiMSatoriKCovid-19 dataset clustering based on k-means and em algorithmsInt. J. Adv. Comput. Sci. Appl.202310.14569/IJACSA.2023.01403105
– reference: Kavousi-FardAWencongSJinTA machine-learning-based cyber attack detection model for wireless sensor networks in microgridsIEEE Trans. Industr. Inf.202017165065810.1109/TII.2020.2964704
– reference: ZamryNMZainalARassamMAAlkhammashEHGhalebFASaeedFLightweight anomaly detection scheme using incremental principal component analysis and support vector machineSensors20212123801710.3390/s21238017
– reference: CoelhoJPHidden Markov Models: Theory and Implementation Using MATLAB2019Boca RatonCRC Press10.1201/9780429261046
– reference: Ghadban, N., Honeine, P., Francis, C., Mourad-Chehade, F., Farah, J: Strategies for principal component analysis in wireless sensor networks. In: 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 233–236. IEEE (2014)
– reference: TitounaCNaït-AbdesselamFKhokharADods: a distributed outlier detection scheme for wireless sensor networksComput. Netw.20191619310110.1016/j.comnet.2019.06.014
– reference: RathoreSParkJHSemi-supervised learning based distributed attack detection framework for iotAppl. Soft Comput.201872798910.1016/j.asoc.2018.05.049
– reference: Harb, H., Makhoul, A., Laiymani, D., Jaber, A., Tawil, R.: K-means based clustering approach for data aggregation in periodic sensor networks. In: 2014 IEEE 10th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 434–441. IEEE (2014)
– reference: DiasGMBellaltaBOechsnerSA survey about prediction-based data reduction in wireless sensor networksACM Comput. Surv. (CSUR)201649313510.1145/2996356
– reference: Zhang, Y., Meratnia, N., Havinga, P.: Adaptive and online one-class support vector machine-based outlier detection techniques for wireless sensor networks. In: 2009 International Conference on Advanced Information Networking and Applications Workshops, pp. 990–995. IEEE (2009)
– reference: TripathiMGaurMSLaxmiVComparing the impact of black hole and gray hole attack on leach in wsnProc. Comput. Sci.2013191101110710.1016/j.procs.2013.06.155
– reference: LungC-HZhouCUsing hierarchical agglomerative clustering in wireless sensor networks: an energy-efficient and flexible approachAd Hoc Netw.20108332834410.1016/j.adhoc.2009.09.004
– reference: Bettencourt, L., Hagberg, A., Larkey, L.B.: Separating the wheat from the chaff: practical anomaly detection schemes in ecological applications of distributed sensor networks. In: International Conference on Distributed Computing in Sensor Systems, pp. 223–239. Springer, Berlin (2007)
– reference: WanRXiongNQinghuiHWangHShangJSimilarity-aware data aggregation using fuzzy c-means approach for wireless sensor networksEURASIP J. Wirel. Commun. Netw.20192019111110.1186/s13638-019-1374-8
– ident: 9794_CR6
  doi: 10.1109/WiMOB.2014.6962207
– volume-title: Hidden Markov Models: Theory and Implementation Using MATLAB
  year: 2019
  ident: 9794_CR18
  doi: 10.1201/9780429261046
– ident: 9794_CR10
  doi: 10.1109/SAM.2014.6882383
– ident: 9794_CR36
– volume: 161
  start-page: 93
  year: 2019
  ident: 9794_CR20
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2019.06.014
– ident: 9794_CR26
  doi: 10.1145/1288107.1288137
– year: 2016
  ident: 9794_CR9
  publication-title: J. Sens.
  doi: 10.1155/2016/4731953
– volume: 18
  start-page: 85
  issue: 1–2
  year: 2015
  ident: 9794_CR11
  publication-title: Int. J. Ad Hoc Ubiquit. Comput.
  doi: 10.1504/IJAHUC.2015.067756
– year: 2021
  ident: 9794_CR29
  publication-title: Comput. Mater. Contin.
  doi: 10.32604/cmc.2021.017914
– ident: 9794_CR34
  doi: 10.1109/IWCMC.2019.8766477
– ident: 9794_CR44
– volume-title: Fundamentals of Wireless Sensor Networks: Theory and Practice
  year: 2010
  ident: 9794_CR1
  doi: 10.1002/9780470666388
– year: 2012
  ident: 9794_CR37
  publication-title: J. Comput. Netw. Commun.
  doi: 10.1155/2012/427246
– volume: 10
  start-page: 1
  issue: 1
  year: 2023
  ident: 9794_CR43
  publication-title: J. Big Data
  doi: 10.1186/s40537-023-00692-w
– volume: 47
  start-page: 2012
  issue: 14
  year: 2012
  ident: 9794_CR17
  publication-title: Int. J. Comput. Appl.
– ident: 9794_CR31
  doi: 10.1109/WAINA.2009.200
– ident: 9794_CR24
  doi: 10.1145/3167486.3167505
– ident: 9794_CR25
  doi: 10.1007/978-3-540-73090-3_15
– volume: 53
  start-page: 2586
  issue: 14
  year: 2009
  ident: 9794_CR45
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2009.05.007
– volume: 34
  start-page: 1302
  issue: 4
  year: 2011
  ident: 9794_CR12
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2011.03.004
– volume: 15
  start-page: 3908
  issue: 6
  year: 2016
  ident: 9794_CR8
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2016.2531041
– volume: 49
  start-page: 1
  issue: 3
  year: 2016
  ident: 9794_CR14
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/2996356
– volume: 41
  start-page: 1
  issue: 3
  year: 2009
  ident: 9794_CR23
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/1541880.1541882
– volume: 72
  start-page: 79
  year: 2018
  ident: 9794_CR16
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.05.049
– start-page: 37
  volume-title: International Conference on Cloud Computing and Security
  year: 2018
  ident: 9794_CR32
  doi: 10.1007/978-3-030-00018-9_4
– volume: 19
  start-page: 1101
  year: 2013
  ident: 9794_CR41
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2013.06.155
– volume: 35
  start-page: 5381
  issue: 7
  year: 2023
  ident: 9794_CR5
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07970-3
– volume: 7
  start-page: 537
  issue: 3
  year: 2009
  ident: 9794_CR13
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2008.06.003
– volume: 76
  start-page: 6860
  issue: 9
  year: 2020
  ident: 9794_CR28
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-019-03131-x
– volume: 2019
  start-page: 1
  issue: 1
  year: 2019
  ident: 9794_CR7
  publication-title: EURASIP J. Wirel. Commun. Netw.
  doi: 10.1186/s13638-019-1374-8
– volume: 21
  start-page: 8017
  issue: 23
  year: 2021
  ident: 9794_CR15
  publication-title: Sensors
  doi: 10.3390/s21238017
– volume: 12
  start-page: 159
  issue: 2
  year: 2010
  ident: 9794_CR22
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/SURV.2010.021510.00088
– volume: 8
  start-page: 328
  issue: 3
  year: 2010
  ident: 9794_CR4
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2009.09.004
– volume: 1
  start-page: 37
  year: 2008
  ident: 9794_CR3
  publication-title: J. Telecommun. Inform. Technol.
– volume: 11
  start-page: 1062
  issue: 3
  year: 2013
  ident: 9794_CR30
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2012.11.001
– volume: 148
  start-page: 552
  year: 2019
  ident: 9794_CR40
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2019.01.028
– volume: 79
  start-page: 700
  year: 2016
  ident: 9794_CR42
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2016.03.092
– ident: 9794_CR35
  doi: 10.1109/WITS.2019.8723845
– year: 2023
  ident: 9794_CR33
  publication-title: Int. J. Adv. Comput. Sci. Appl.
  doi: 10.14569/IJACSA.2023.01403105
– volume: 1
  start-page: 293
  issue: 2–3
  year: 2003
  ident: 9794_CR39
  publication-title: Ad Hoc Netw.
  doi: 10.1016/S1570-8705(03)00008-8
– ident: 9794_CR19
  doi: 10.1109/ICUFN.2018.8436999
– volume: 20
  start-page: 745
  issue: 3
  year: 2020
  ident: 9794_CR38
  publication-title: Sensors
  doi: 10.3390/s20030745
– volume: 23
  start-page: 163
  issue: 1
  year: 2015
  ident: 9794_CR21
  publication-title: J. Netw. Syst. Manag.
  doi: 10.1007/s10922-013-9287-z
– volume: 83
  start-page: 363
  year: 2015
  ident: 9794_CR2
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2015.03.002
– volume: 17
  start-page: 650
  issue: 1
  year: 2020
  ident: 9794_CR27
  publication-title: IEEE Trans. Industr. Inf.
  doi: 10.1109/TII.2020.2964704
SSID ssj0008395
Score 2.3761787
Snippet Wireless Sensor Networks (WSNs) play a crucial role in diverse applications, encompassing environmental monitoring, healthcare, and industrial automation....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17
SubjectTerms Accuracy
Amalgamation
Automation
Communications Engineering
Comparative analysis
Computer Communication Networks
Computer Science
Computer Systems Organization and Communication Networks
Efficacy
Environmental monitoring
Experiments
Grammatical aspect
Health care
Health services
Industrial automation
Information Systems and Communication Service
Iterative methods
Machine learning
Markov analysis
Markov chains
Networks
Operations Research/Decision Theory
Principal components analysis
Probabilistic models
Security
Wireless communication systems
Wireless sensor networks
SummonAdditionalLinks – databaseName: ABI/INFORM Global
  dbid: M0C
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELXYDnBgRywF-cANLJzEjp0TKkvFhQqJRdyieAlUQim0ge9nnDgNILUXzo7lKDOZ98Z-nkHomMaJoZYaSFOpJIAQlMgktiQUOlGMy4ArUzWbEP2-fH5O7vyG29jLKpuYWAVqM9Ruj_wshCyOiySQ8vz9g7iuUe501bfQmEeLjtk4Sd8tvZxEYgB_Xp12xozAZOovzfircwmkYYBYhCbgk4T_BqaWbf45IK1wp7f23zdeR6ueceJu7SIbaM4Wm2jlRx3CLfR0Xw71a-ZKNuPbSl1psS-8-oIvAOcM7palu42Pr2xZibcKXNc6x4MCOwXtG0RMfA858XCE-7W0fLyNHnvXD5c3xDdcIDpioiSRlsAG88DGRnAeq5xGXOQZc31BVaRDlmex0tSAbTNhglDFoY20sCykkAcxFu2ghWJY2F2EZZ4LGWvNM2mAkUWJVMCUeE5FplTE-B4Kmq-dal-N3DXFeEvbOsrOQilYKK0slMKck8mc97oWx8ynO41ZUv9fjtPWJlOGA0AHCQi-h04bu7fD0xfbn73YAVoOgQzV2rUOWihHn_YQLemvcjAeHVVO-w1jgu9h
  priority: 102
  providerName: ProQuest
Title Stochastic Machine Learning Based Attacks Detection System in Wireless Sensor Networks
URI https://link.springer.com/article/10.1007/s10922-023-09794-5
https://www.proquest.com/docview/2907579188
https://www.proquest.com/docview/2918768067
Volume 32
WOSCitedRecordID wos001131907500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7705
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008395
  issn: 1064-7570
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH64HfTgLq5DDt40kLZJkxxdEcRxcNwvpUlTHZCOzFR_v6-bo6KCXgIlSVtelu97vA1gm4U6YY4lqKYyRREhGFU6dNSXVhsulCdMUhabkO22ur3VnToobNh4uzcmyfKm_hDsplFxQoyhTOMuomIcJhHuVFGw4aJ7_X7_IuSL0sYZciqFZHWozPfv-AxHI475xSxaos3x3P_-cx5ma3ZJ9qrtsABjLluEuaZyA6kP8iLMfEhDuATX3bxvH-MiYzM5K50rHanzrj6QfYS5hOzleRGMTw5dXvpuZaRKdU56GSkcaJ_wwiRdVIn7A9KuPMuHy3B1fHR5cELregvUBlzmNLAKyWDquTCRQoQmZYGQacyLsqAmsD5P49BYluDSxjLxfBP6LrDScZ-hGsR5sAITWT9zq0BUmkoVWitilSAhC7QySJREymRsTMDFGniN2CNbJyMvamI8RaM0yoUYIxRjVIoxwjk773Oeq1Qcv47ebFYzqo_lMPI1MiSpPaV-6PYQHBQC-BrsNos76v75Y-t_G74B0z5yo8qVbRMm8sGL24Ip-5r3hoMWjMubuxZM7h-1Oxf4dCoptmfsoGi9c2w74r5V7vk3rezyAQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQ5FGhBbCngA5xaC8exY-eAqj5Ytdp2hdSHekvjR2ilKrvshiL-FL-RcR67gNTeeuBsO47jb2a-icczAO9ZkjrmmUM3lWmKFoJRnSaecmVTI6SOpHF1sQk1HOrz8_TLAvzq7sKEsMpOJ9aK2o1s-Ef-kaMXJ1Uaab01_kZD1ahwutqV0GhgMfA_f6DLNv10sIf7-4Hz_ueT3X3aVhWgNhaqorHVSHmKyCdOSZmYgsVSFbkIxS9NbLko8sRY5nABuXIRNwn3sVVecIZkX4gYn_sAHmJ_FeRqoOhM8yPZkPXpaiIovixrL-m0V_VSdPvQQlKWogxQ-bchnLPbfw5kazvXf_q_faFnsNwyarLdiMBzWPDlCjz5I8_iKpwdVyN7mYeU1OSojh71pE0s-5XsoB13ZLuqQrYBsuerOjitJE0ud3JVkhAhfI0WgRyjzz-akGETOj99Aaf3srCXsFiOSv8KiC4KpRNrZa4dMs441QaZoCyYyo2JhexB1O1uZtts66Hox3U2zxMdEJEhIrIaERmO2ZiNGTe5Ru7svd7BIGv1zjSbY-CW5gitn0aG0oPNDmfz5tsnW7t7snfweP_k6DA7PBgOXsMSR-LXxOmtw2I1-e7fwCN7U11NJ29rgSFwcd_4-w0hDEtP
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9VAFD5BJEYWCqgRRZ2FrHTidDrTmS4MQa83EvDmJjxC3JTOo0pCevG2SPhr_jrO9MFVEtixcN3HtJ1v5vtO58x3AN6yJHXMM4dhKtMUGYJRnSaecmVTI6SOpHFNsQk1GunDw3Q8B3_6vTAhrbKfE5uJ2k1s-Ef-gWMUJ1UaYcBWdGkR48Fw4_QXDRWkwkprX06jhci2vzjH8K36uDXAvl7nfPhl7_NX2lUYoDYWqqax1Sh_isgnTkmZmILFUhW5CIUwTWy5KPLEWObwZXLlIm4S7mOrvOAMhb8QMd73HtxXGGOGdMKx_H7FAig8ZLPSmgiKD866DTvdtr0UQ0BkS8pSHA9U_kuKM6V7bXG24bzh4__5ay3Bo05pk812aCzDnC9XYPEv_8UncLBbT-zPPFhVk29NVqknneHsD_IJ-d2RzboOLgRk4Osmaa0krcc7OS5JyBw-QaYgu76sJlMyalPqq6ewfycv9gzmy0npnwPRRaF0Yq3MtUMlGqfaoEKUBVO5MbGQqxD1PZ3ZzoU9FAM5yWb-0QEdGaIja9CR4TXvrq45bT1Ibj17rYdE1s1HVTbDww2HI2RFjcplFd73mJsdvrmxF7c39gYeIOyyna3R9kt4yFEPtul7azBfT8_8K1iwv-vjavq6GTsEju4afpfNhFRz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+Machine+Learning+Based+Attacks+Detection+System+in+Wireless+Sensor+Networks&rft.jtitle=Journal+of+network+and+systems+management&rft.au=Moundounga%2C+Anselme+Russel+Affane&rft.au=Satori%2C+Hassan&rft.date=2024-03-01&rft.issn=1064-7570&rft.eissn=1573-7705&rft.volume=32&rft.issue=1&rft_id=info:doi/10.1007%2Fs10922-023-09794-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10922_023_09794_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-7570&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-7570&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-7570&client=summon