Stochastic Machine Learning Based Attacks Detection System in Wireless Sensor Networks
Wireless Sensor Networks (WSNs) play a crucial role in diverse applications, encompassing environmental monitoring, healthcare, and industrial automation. However, these networks are susceptible to various security threats, underscoring the need for robust attack detection systems. In this paper, we...
Uložené v:
| Vydané v: | Journal of network and systems management Ročník 32; číslo 1; s. 17 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.03.2024
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1064-7570, 1573-7705 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Wireless Sensor Networks (WSNs) play a crucial role in diverse applications, encompassing environmental monitoring, healthcare, and industrial automation. However, these networks are susceptible to various security threats, underscoring the need for robust attack detection systems. In this paper, we propose a Stochastic Machine Learning-Based Attack Detection System for WSNs that leverages the synergy of Hidden Markov Models (HMMs) and Gaussian Mixture Models (GMMs). The proposed system employs Principal Component Analysis for dimensionality reduction in the WSN dataset, thereby retaining essential routing features while mitigating the number of variables. Additionally, iterative machine learning Expectation-Maximization is employed to train the HMMs and GMMs, empowering the system to accurately detect and classify malicious activities and erroneous routing data. To evaluate the system’s efficacy, a series of experiments were conducted, entailing variations in the parameters of both HMMs and GMMs. Notably, the findings underscore that the configuration comprising 3 HMMs and 4 GMMs surpasses other combinations, achieving an exceptional accuracy level of 94.55%. Furthermore, a comprehensive comparison is drawn between the proposed system and common machine learning classifiers. This analysis unequivocally highlights the system’s superiority in terms of accuracy and overall performance. Notable is the system’s exceptional performance in cross-validation, consistently achieving accuracies within the range of 0.96 to 0.98. The proposed Stochastic Machine Learning-Based Attack Detection System introduces a highly promising approach to fortify the security of WSNs. The amalgamation of rigorous experimentation, comparative analysis, and impressive results underscores its potential as an effective security enhancement tool. |
|---|---|
| AbstractList | Wireless Sensor Networks (WSNs) play a crucial role in diverse applications, encompassing environmental monitoring, healthcare, and industrial automation. However, these networks are susceptible to various security threats, underscoring the need for robust attack detection systems. In this paper, we propose a Stochastic Machine Learning-Based Attack Detection System for WSNs that leverages the synergy of Hidden Markov Models (HMMs) and Gaussian Mixture Models (GMMs). The proposed system employs Principal Component Analysis for dimensionality reduction in the WSN dataset, thereby retaining essential routing features while mitigating the number of variables. Additionally, iterative machine learning Expectation-Maximization is employed to train the HMMs and GMMs, empowering the system to accurately detect and classify malicious activities and erroneous routing data. To evaluate the system’s efficacy, a series of experiments were conducted, entailing variations in the parameters of both HMMs and GMMs. Notably, the findings underscore that the configuration comprising 3 HMMs and 4 GMMs surpasses other combinations, achieving an exceptional accuracy level of 94.55%. Furthermore, a comprehensive comparison is drawn between the proposed system and common machine learning classifiers. This analysis unequivocally highlights the system’s superiority in terms of accuracy and overall performance. Notable is the system’s exceptional performance in cross-validation, consistently achieving accuracies within the range of 0.96 to 0.98. The proposed Stochastic Machine Learning-Based Attack Detection System introduces a highly promising approach to fortify the security of WSNs. The amalgamation of rigorous experimentation, comparative analysis, and impressive results underscores its potential as an effective security enhancement tool. |
| ArticleNumber | 17 |
| Author | Moundounga, Anselme Russel Affane Satori, Hassan |
| Author_xml | – sequence: 1 givenname: Anselme Russel Affane surname: Moundounga fullname: Moundounga, Anselme Russel Affane organization: Department of Computer Science, Faculty of Sciences Dhar-Mahraz, Sidi Mohamed Ben Abdallah University – sequence: 2 givenname: Hassan surname: Satori fullname: Satori, Hassan email: hassan.satori@usmba.ac.ma organization: Department of Computer Science, Faculty of Sciences Dhar-Mahraz, Sidi Mohamed Ben Abdallah University |
| BookMark | eNp9kMtOAyEUQImpia36A65IXI_egQFmlvVtUnVRH0tCmTuKbRkFjPHvpdbExEVXsDjnwj0jMvC9R0IOSjgqAdRxLKFhrADGC2hUUxViiwxLoXihFIhBvoOsCiUU7JBRjK8AUPNGDMnjNPX2xcTkLL0x9sV5pBM0wTv_TE9MxJaOUzJ2HukZJrTJ9Z5Ov2LCJXWePrmAC4yRTtHHPtBbTJ99mMc9st2ZRcT933OXPFyc359eFZO7y-vT8aSwvFKp4LZWqupKlK0SQs464EJ1puK1FDNuWdUZObPQIrRGtSWbSYbcKqwYyLxQxXfJ4XruW-jfPzAm_dp_BJ-f1KwpayVrkGozBblKRutM1WvKhj7GgJ22LpnVwikYt9Al6FVrvW6tc2v901qLrLJ_6ltwSxO-Nkt8LcUM-2cMf7_aYH0DUEqSXw |
| CitedBy_id | crossref_primary_10_1007_s10586_025_05591_8 crossref_primary_10_1080_03772063_2024_2436970 crossref_primary_10_1038_s41598_025_85547_5 crossref_primary_10_3390_s24186143 crossref_primary_10_1007_s11071_024_09614_8 crossref_primary_10_1007_s10207_024_00833_z crossref_primary_10_1007_s10922_025_09907_2 |
| Cites_doi | 10.1109/WiMOB.2014.6962207 10.1201/9780429261046 10.1109/SAM.2014.6882383 10.1016/j.comnet.2019.06.014 10.1145/1288107.1288137 10.1155/2016/4731953 10.1504/IJAHUC.2015.067756 10.32604/cmc.2021.017914 10.1109/IWCMC.2019.8766477 10.1002/9780470666388 10.1155/2012/427246 10.1186/s40537-023-00692-w 10.1109/WAINA.2009.200 10.1145/3167486.3167505 10.1007/978-3-540-73090-3_15 10.1016/j.comnet.2009.05.007 10.1016/j.jnca.2011.03.004 10.1109/TWC.2016.2531041 10.1145/2996356 10.1145/1541880.1541882 10.1016/j.asoc.2018.05.049 10.1007/978-3-030-00018-9_4 10.1016/j.procs.2013.06.155 10.1007/s00521-022-07970-3 10.1016/j.adhoc.2008.06.003 10.1007/s11227-019-03131-x 10.1186/s13638-019-1374-8 10.3390/s21238017 10.1109/SURV.2010.021510.00088 10.1016/j.adhoc.2009.09.004 10.1016/j.adhoc.2012.11.001 10.1016/j.procs.2019.01.028 10.1016/j.procs.2016.03.092 10.1109/WITS.2019.8723845 10.14569/IJACSA.2023.01403105 10.1016/S1570-8705(03)00008-8 10.1109/ICUFN.2018.8436999 10.3390/s20030745 10.1007/s10922-013-9287-z 10.1016/j.comnet.2015.03.002 10.1109/TII.2020.2964704 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU CNYFK DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M1O P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PRQQA Q9U |
| DOI | 10.1007/s10922-023-09794-5 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College Library & Information Science Collection ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Computing Database Library Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Library & Information Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Library Science ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7705 |
| ExternalDocumentID | 10_1007_s10922_023_09794_5 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77K 7WY 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU CNYFK COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M1O M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8R Z8W Z92 ZMTXR ~A9 ~EX 77I AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PRQQA 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c347t-3c8774f1e6d7556bf0357fa43865b3c24fa6bc0de0da7d12b62e3c7e420606443 |
| IEDL.DBID | M0C |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001131907500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1064-7570 |
| IngestDate | Sun Nov 16 05:41:33 EST 2025 Sun Nov 16 04:02:21 EST 2025 Sat Nov 29 02:49:43 EST 2025 Tue Nov 18 22:23:48 EST 2025 Fri Feb 21 02:41:17 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Dimensionality reduction Secure routing algorithm Hidden Markov models Machine learning Gaussian mixture models Stochastic attacks detection system Wireless sensor networks (WSNs) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c347t-3c8774f1e6d7556bf0357fa43865b3c24fa6bc0de0da7d12b62e3c7e420606443 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2907579188 |
| PQPubID | 32329 |
| ParticipantIDs | proquest_journals_2918768067 proquest_journals_2907579188 crossref_citationtrail_10_1007_s10922_023_09794_5 crossref_primary_10_1007_s10922_023_09794_5 springer_journals_10_1007_s10922_023_09794_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of network and systems management |
| PublicationTitleAbbrev | J Netw Syst Manage |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | ZhangYMeratniaNHavingaPOutlier detection techniques for wireless sensor networks: a surveyIEEE Commun. Surv. Tutor.201012215917010.1109/SURV.2010.021510.00088 Meesookho, C., Narayanan, S., Raghavendra, C.S.: Collaborative classification applications in sensor networks. In: Sensor Array and Multichannel Signal Processing Workshop Proceedings, 2002, pp. 370–374. IEEE (2002) XieMHanSTianBParvinSAnomaly detection in wireless sensor networks: a surveyJ. Netw. Comput. Appl.20113441302132510.1016/j.jnca.2011.03.004 CoelhoJPHidden Markov Models: Theory and Implementation Using MATLAB2019Boca RatonCRC Press10.1201/9780429261046 Sanhaji, F., Satori, H., Satori, K.: Cluster head selection based on neural networks in wireless sensor networks. In: 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), pp. 1–5. IEEE (2019) CalafateCTManzoniPCanoJ-CMalumbresMPMarkovian-based traffic modeling for mobile ad hoc networksComput. Netw.200953142586260010.1016/j.comnet.2009.05.007 Jellali, Z., Atallah, L., Cherif, S.: Principal component analysis based clustering approach for wsn with locally uniformly correlated data. In: 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), pp. 174–179. IEEE (2019) ZhengWYangLWuMAn improved distributed pca-based outlier detection in wireless sensor networkInternational Conference on Cloud Computing and Security2018BerlinSpringer374910.1007/978-3-030-00018-9_4 McDonaldDSanchezSMadriaSErcalFA survey of methods for finding outliers in wireless sensor networksJ. Netw. Syst. Manag.201523116318210.1007/s10922-013-9287-z ChandolaVBanerjeeAKumarVAnomaly detection: a surveyACM Comput. Surv. (CSUR)200941315810.1145/1541880.1541882 FotohiRBariSFA novel countermeasure technique to protect wsn against denial-of-sleep attacks using firefly and hopfield neural network (hnn) algorithmsJ. Supercomput.20207696860688610.1007/s11227-019-03131-x ZhangYMeratniaNHavingaPJMDistributed online outlier detection in wireless sensor networks using ellipsoidal support vector machineAd Hoc Netw.20131131062107410.1016/j.adhoc.2012.11.001 AmishPVaghelaVBDetection and prevention of wormhole attack in wireless sensor network using aomdv protocolProc. Comput. Sci.20167970070710.1016/j.procs.2016.03.092 KarlofCWagnerDSecure routing in wireless sensor networks: attacks and countermeasuresAd Hoc Netw.200312–329331510.1016/S1570-8705(03)00008-8 Zhang, Y., Meratnia, N., Havinga, P.: Adaptive and online one-class support vector machine-based outlier detection techniques for wireless sensor networks. In: 2009 International Conference on Advanced Information Networking and Applications Workshops, pp. 990–995. IEEE (2009) AlmomaniIAl-KasasbehBAl-AkhrasMWsn-ds: a dataset for intrusion detection systems in wireless sensor networksJ. Sens.201610.1155/2016/4731953 EmperumanMChandrasekaranSHybrid continuous density hmm-based ensemble neural networks for sensor fault detection and classification in wireless sensor networkSensors202020374510.3390/s20030745 NadeemAHussainMAOwaisOSalamAIqbalSAhsanKApplication specific study, analysis and classification of body area wireless sensor network applicationsComput. Netw.20158336338010.1016/j.comnet.2015.03.002 Harb, H., Makhoul, A., Laiymani, D., Jaber, A., Tawil, R.: K-means based clustering approach for data aggregation in periodic sensor networks. In: 2014 IEEE 10th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 434–441. IEEE (2014) Sheng, B., Li, Q., Mao, W., Jin, W.: Outlier detection in sensor networks. In: Proceedings of the 8th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 219–228, (2007) MorellACorreaABarcelóMVicarioJLData aggregation and principal component analysis in wsnsIEEE Trans. Wireless Commun.20161563908391910.1109/TWC.2016.2531041 Sanhaji, F., Satori, H., Satori, K.: Clustering based on neural networks in wireless sensor networks. In: Proceedings of the 2nd International Conference on Computing and Wireless Communication Systems, pp. 1–6, (2017) DargieWPoellabauerCFundamentals of Wireless Sensor Networks: Theory and Practice2010BeijingJohn Wiley & Sons10.1002/9780470666388 AlmaslukhBDeep learning and entity embedding-based intrusion detection model for wireless sensor networksComput. Mater. Contin.202110.32604/cmc.2021.017914 WanRXiongNQinghuiHWangHShangJSimilarity-aware data aggregation using fuzzy c-means approach for wireless sensor networksEURASIP J. Wirel. Commun. Netw.20192019111110.1186/s13638-019-1374-8 ChenGTanLGongYZhangWPca-guided routing algorithm for wireless sensor networksJ. Comput. Netw. Commun.201210.1155/2012/427246 TitounaCNaït-AbdesselamFKhokharADods: a distributed outlier detection scheme for wireless sensor networksComput. Netw.20191619310110.1016/j.comnet.2019.06.014 Taieb Brahim, M. et al. Contribution aux Réseaux Sans fil: Routage à base de l’algorithme MCL pour les Réseaux de Capteurs. PhD thesis, Université Djillali Liabes de Sidi Bel Abbes, (2021) Ghadban, N., Honeine, P., Francis, C., Mourad-Chehade, F., Farah, J: Strategies for principal component analysis in wireless sensor networks. In: 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 233–236. IEEE (2014) TripathiMGaurMSLaxmiVComparing the impact of black hole and gray hole attack on leach in wsnProc. Comput. Sci.2013191101110710.1016/j.procs.2013.06.155 AffaneARSatoriHSanhajiFBoutazartYSatoriKEnergy enhancement of routing protocol with hidden Markov model in wireless sensor networksNeural Comput. Appl.20233575381539310.1007/s00521-022-07970-3 RassamMAZainalAMaarofMAPrincipal component analysis-based data reduction model for wireless sensor networksInt. J. Ad Hoc Ubiquit. Comput.2015181–28510110.1504/IJAHUC.2015.067756 Kavousi-FardAWencongSJinTA machine-learning-based cyber attack detection model for wireless sensor networks in microgridsIEEE Trans. Industr. Inf.202017165065810.1109/TII.2020.2964704 BoutazartYSatoriHAffaneMAnselmeRHamidiMSatoriKCovid-19 dataset clustering based on k-means and em algorithmsInt. J. Adv. Comput. Sci. Appl.202310.14569/IJACSA.2023.01403105 ZamryNMZainalARassamMAAlkhammashEHGhalebFASaeedFLightweight anomaly detection scheme using incremental principal component analysis and support vector machineSensors20212123801710.3390/s21238017 Park, T., Cho, D., Kim, H. et al.: An effective classification for dos attacks in wireless sensor networks. In: 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 689–692. IEEE (2018) AnastasiGContiMDi FrancescoMPassarellaAEnergy conservation in wireless sensor networks: a surveyAd Hoc Netw.20097353756810.1016/j.adhoc.2008.06.003 SundarCChitradeviMGeetharamaniGClassification of cardiotocogram data using neural network based machine learning techniqueInt. J. Comput. Appl.201247142012 SalmiSOughdirLPerformance evaluation of deep learning techniques for dos attacks detection in wireless sensor networkJ. Big Data202310112510.1186/s40537-023-00692-w WinklerMTuchsKDHughesKTheoretical and practical aspects of military wireless sensor networksJ. Telecommun. Inform. Technol.200813745 LungC-HZhouCUsing hierarchical agglomerative clustering in wireless sensor networks: an energy-efficient and flexible approachAd Hoc Netw.20108332834410.1016/j.adhoc.2009.09.004 DiasGMBellaltaBOechsnerSA survey about prediction-based data reduction in wireless sensor networksACM Comput. Surv. (CSUR)201649313510.1145/2996356 RathoreSParkJHSemi-supervised learning based distributed attack detection framework for iotAppl. Soft Comput.201872798910.1016/j.asoc.2018.05.049 Bettencourt, L., Hagberg, A., Larkey, L.B.: Separating the wheat from the chaff: practical anomaly detection schemes in ecological applications of distributed sensor networks. In: International Conference on Distributed Computing in Sensor Systems, pp. 223–239. Springer, Berlin (2007) KalkhaHSatoriHSatoriKPreventing black hole attack in wireless sensor network using hmmProc. Comput. Sci.201914855256110.1016/j.procs.2019.01.028 9794_CR24 R Wan (9794_CR7) 2019; 2019 JP Coelho (9794_CR18) 2019 9794_CR44 M Xie (9794_CR12) 2011; 34 P Amish (9794_CR42) 2016; 79 W Dargie (9794_CR1) 2010 A Kavousi-Fard (9794_CR27) 2020; 17 9794_CR6 A Morell (9794_CR8) 2016; 15 M Tripathi (9794_CR41) 2013; 19 C-H Lung (9794_CR4) 2010; 8 I Almomani (9794_CR9) 2016 9794_CR25 9794_CR26 S Salmi (9794_CR43) 2023; 10 MA Rassam (9794_CR11) 2015; 18 R Fotohi (9794_CR28) 2020; 76 G Chen (9794_CR37) 2012 M Winkler (9794_CR3) 2008; 1 C Karlof (9794_CR39) 2003; 1 AR Affane (9794_CR5) 2023; 35 V Chandola (9794_CR23) 2009; 41 9794_CR34 C Titouna (9794_CR20) 2019; 161 Y Zhang (9794_CR30) 2013; 11 9794_CR35 9794_CR10 G Anastasi (9794_CR13) 2009; 7 S Rathore (9794_CR16) 2018; 72 9794_CR31 Y Boutazart (9794_CR33) 2023 M Emperuman (9794_CR38) 2020; 20 H Kalkha (9794_CR40) 2019; 148 C Sundar (9794_CR17) 2012; 47 9794_CR19 9794_CR36 GM Dias (9794_CR14) 2016; 49 Y Zhang (9794_CR22) 2010; 12 D McDonald (9794_CR21) 2015; 23 CT Calafate (9794_CR45) 2009; 53 W Zheng (9794_CR32) 2018 A Nadeem (9794_CR2) 2015; 83 NM Zamry (9794_CR15) 2021; 21 B Almaslukh (9794_CR29) 2021 |
| References_xml | – reference: AmishPVaghelaVBDetection and prevention of wormhole attack in wireless sensor network using aomdv protocolProc. Comput. Sci.20167970070710.1016/j.procs.2016.03.092 – reference: EmperumanMChandrasekaranSHybrid continuous density hmm-based ensemble neural networks for sensor fault detection and classification in wireless sensor networkSensors202020374510.3390/s20030745 – reference: WinklerMTuchsKDHughesKTheoretical and practical aspects of military wireless sensor networksJ. Telecommun. Inform. Technol.200813745 – reference: AnastasiGContiMDi FrancescoMPassarellaAEnergy conservation in wireless sensor networks: a surveyAd Hoc Netw.20097353756810.1016/j.adhoc.2008.06.003 – reference: AlmomaniIAl-KasasbehBAl-AkhrasMWsn-ds: a dataset for intrusion detection systems in wireless sensor networksJ. Sens.201610.1155/2016/4731953 – reference: Meesookho, C., Narayanan, S., Raghavendra, C.S.: Collaborative classification applications in sensor networks. In: Sensor Array and Multichannel Signal Processing Workshop Proceedings, 2002, pp. 370–374. IEEE (2002) – reference: McDonaldDSanchezSMadriaSErcalFA survey of methods for finding outliers in wireless sensor networksJ. Netw. Syst. Manag.201523116318210.1007/s10922-013-9287-z – reference: MorellACorreaABarcelóMVicarioJLData aggregation and principal component analysis in wsnsIEEE Trans. Wireless Commun.20161563908391910.1109/TWC.2016.2531041 – reference: NadeemAHussainMAOwaisOSalamAIqbalSAhsanKApplication specific study, analysis and classification of body area wireless sensor network applicationsComput. Netw.20158336338010.1016/j.comnet.2015.03.002 – reference: Sanhaji, F., Satori, H., Satori, K.: Cluster head selection based on neural networks in wireless sensor networks. In: 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), pp. 1–5. IEEE (2019) – reference: KarlofCWagnerDSecure routing in wireless sensor networks: attacks and countermeasuresAd Hoc Netw.200312–329331510.1016/S1570-8705(03)00008-8 – reference: DargieWPoellabauerCFundamentals of Wireless Sensor Networks: Theory and Practice2010BeijingJohn Wiley & Sons10.1002/9780470666388 – reference: SalmiSOughdirLPerformance evaluation of deep learning techniques for dos attacks detection in wireless sensor networkJ. Big Data202310112510.1186/s40537-023-00692-w – reference: ZhangYMeratniaNHavingaPJMDistributed online outlier detection in wireless sensor networks using ellipsoidal support vector machineAd Hoc Netw.20131131062107410.1016/j.adhoc.2012.11.001 – reference: ChenGTanLGongYZhangWPca-guided routing algorithm for wireless sensor networksJ. Comput. Netw. Commun.201210.1155/2012/427246 – reference: SundarCChitradeviMGeetharamaniGClassification of cardiotocogram data using neural network based machine learning techniqueInt. J. Comput. Appl.201247142012 – reference: ZhengWYangLWuMAn improved distributed pca-based outlier detection in wireless sensor networkInternational Conference on Cloud Computing and Security2018BerlinSpringer374910.1007/978-3-030-00018-9_4 – reference: XieMHanSTianBParvinSAnomaly detection in wireless sensor networks: a surveyJ. Netw. Comput. Appl.20113441302132510.1016/j.jnca.2011.03.004 – reference: Park, T., Cho, D., Kim, H. et al.: An effective classification for dos attacks in wireless sensor networks. In: 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 689–692. IEEE (2018) – reference: Sheng, B., Li, Q., Mao, W., Jin, W.: Outlier detection in sensor networks. In: Proceedings of the 8th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 219–228, (2007) – reference: ZhangYMeratniaNHavingaPOutlier detection techniques for wireless sensor networks: a surveyIEEE Commun. Surv. Tutor.201012215917010.1109/SURV.2010.021510.00088 – reference: KalkhaHSatoriHSatoriKPreventing black hole attack in wireless sensor network using hmmProc. Comput. Sci.201914855256110.1016/j.procs.2019.01.028 – reference: RassamMAZainalAMaarofMAPrincipal component analysis-based data reduction model for wireless sensor networksInt. J. Ad Hoc Ubiquit. Comput.2015181–28510110.1504/IJAHUC.2015.067756 – reference: ChandolaVBanerjeeAKumarVAnomaly detection: a surveyACM Comput. Surv. (CSUR)200941315810.1145/1541880.1541882 – reference: Taieb Brahim, M. et al. Contribution aux Réseaux Sans fil: Routage à base de l’algorithme MCL pour les Réseaux de Capteurs. PhD thesis, Université Djillali Liabes de Sidi Bel Abbes, (2021) – reference: AffaneARSatoriHSanhajiFBoutazartYSatoriKEnergy enhancement of routing protocol with hidden Markov model in wireless sensor networksNeural Comput. Appl.20233575381539310.1007/s00521-022-07970-3 – reference: AlmaslukhBDeep learning and entity embedding-based intrusion detection model for wireless sensor networksComput. Mater. Contin.202110.32604/cmc.2021.017914 – reference: Jellali, Z., Atallah, L., Cherif, S.: Principal component analysis based clustering approach for wsn with locally uniformly correlated data. In: 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), pp. 174–179. IEEE (2019) – reference: CalafateCTManzoniPCanoJ-CMalumbresMPMarkovian-based traffic modeling for mobile ad hoc networksComput. Netw.200953142586260010.1016/j.comnet.2009.05.007 – reference: FotohiRBariSFA novel countermeasure technique to protect wsn against denial-of-sleep attacks using firefly and hopfield neural network (hnn) algorithmsJ. Supercomput.20207696860688610.1007/s11227-019-03131-x – reference: Sanhaji, F., Satori, H., Satori, K.: Clustering based on neural networks in wireless sensor networks. In: Proceedings of the 2nd International Conference on Computing and Wireless Communication Systems, pp. 1–6, (2017) – reference: BoutazartYSatoriHAffaneMAnselmeRHamidiMSatoriKCovid-19 dataset clustering based on k-means and em algorithmsInt. J. Adv. Comput. Sci. Appl.202310.14569/IJACSA.2023.01403105 – reference: Kavousi-FardAWencongSJinTA machine-learning-based cyber attack detection model for wireless sensor networks in microgridsIEEE Trans. Industr. Inf.202017165065810.1109/TII.2020.2964704 – reference: ZamryNMZainalARassamMAAlkhammashEHGhalebFASaeedFLightweight anomaly detection scheme using incremental principal component analysis and support vector machineSensors20212123801710.3390/s21238017 – reference: CoelhoJPHidden Markov Models: Theory and Implementation Using MATLAB2019Boca RatonCRC Press10.1201/9780429261046 – reference: Ghadban, N., Honeine, P., Francis, C., Mourad-Chehade, F., Farah, J: Strategies for principal component analysis in wireless sensor networks. In: 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 233–236. IEEE (2014) – reference: TitounaCNaït-AbdesselamFKhokharADods: a distributed outlier detection scheme for wireless sensor networksComput. Netw.20191619310110.1016/j.comnet.2019.06.014 – reference: RathoreSParkJHSemi-supervised learning based distributed attack detection framework for iotAppl. Soft Comput.201872798910.1016/j.asoc.2018.05.049 – reference: Harb, H., Makhoul, A., Laiymani, D., Jaber, A., Tawil, R.: K-means based clustering approach for data aggregation in periodic sensor networks. In: 2014 IEEE 10th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 434–441. IEEE (2014) – reference: DiasGMBellaltaBOechsnerSA survey about prediction-based data reduction in wireless sensor networksACM Comput. Surv. (CSUR)201649313510.1145/2996356 – reference: Zhang, Y., Meratnia, N., Havinga, P.: Adaptive and online one-class support vector machine-based outlier detection techniques for wireless sensor networks. In: 2009 International Conference on Advanced Information Networking and Applications Workshops, pp. 990–995. IEEE (2009) – reference: TripathiMGaurMSLaxmiVComparing the impact of black hole and gray hole attack on leach in wsnProc. Comput. Sci.2013191101110710.1016/j.procs.2013.06.155 – reference: LungC-HZhouCUsing hierarchical agglomerative clustering in wireless sensor networks: an energy-efficient and flexible approachAd Hoc Netw.20108332834410.1016/j.adhoc.2009.09.004 – reference: Bettencourt, L., Hagberg, A., Larkey, L.B.: Separating the wheat from the chaff: practical anomaly detection schemes in ecological applications of distributed sensor networks. In: International Conference on Distributed Computing in Sensor Systems, pp. 223–239. Springer, Berlin (2007) – reference: WanRXiongNQinghuiHWangHShangJSimilarity-aware data aggregation using fuzzy c-means approach for wireless sensor networksEURASIP J. Wirel. Commun. Netw.20192019111110.1186/s13638-019-1374-8 – ident: 9794_CR6 doi: 10.1109/WiMOB.2014.6962207 – volume-title: Hidden Markov Models: Theory and Implementation Using MATLAB year: 2019 ident: 9794_CR18 doi: 10.1201/9780429261046 – ident: 9794_CR10 doi: 10.1109/SAM.2014.6882383 – ident: 9794_CR36 – volume: 161 start-page: 93 year: 2019 ident: 9794_CR20 publication-title: Comput. Netw. doi: 10.1016/j.comnet.2019.06.014 – ident: 9794_CR26 doi: 10.1145/1288107.1288137 – year: 2016 ident: 9794_CR9 publication-title: J. Sens. doi: 10.1155/2016/4731953 – volume: 18 start-page: 85 issue: 1–2 year: 2015 ident: 9794_CR11 publication-title: Int. J. Ad Hoc Ubiquit. Comput. doi: 10.1504/IJAHUC.2015.067756 – year: 2021 ident: 9794_CR29 publication-title: Comput. Mater. Contin. doi: 10.32604/cmc.2021.017914 – ident: 9794_CR34 doi: 10.1109/IWCMC.2019.8766477 – ident: 9794_CR44 – volume-title: Fundamentals of Wireless Sensor Networks: Theory and Practice year: 2010 ident: 9794_CR1 doi: 10.1002/9780470666388 – year: 2012 ident: 9794_CR37 publication-title: J. Comput. Netw. Commun. doi: 10.1155/2012/427246 – volume: 10 start-page: 1 issue: 1 year: 2023 ident: 9794_CR43 publication-title: J. Big Data doi: 10.1186/s40537-023-00692-w – volume: 47 start-page: 2012 issue: 14 year: 2012 ident: 9794_CR17 publication-title: Int. J. Comput. Appl. – ident: 9794_CR31 doi: 10.1109/WAINA.2009.200 – ident: 9794_CR24 doi: 10.1145/3167486.3167505 – ident: 9794_CR25 doi: 10.1007/978-3-540-73090-3_15 – volume: 53 start-page: 2586 issue: 14 year: 2009 ident: 9794_CR45 publication-title: Comput. Netw. doi: 10.1016/j.comnet.2009.05.007 – volume: 34 start-page: 1302 issue: 4 year: 2011 ident: 9794_CR12 publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2011.03.004 – volume: 15 start-page: 3908 issue: 6 year: 2016 ident: 9794_CR8 publication-title: IEEE Trans. Wireless Commun. doi: 10.1109/TWC.2016.2531041 – volume: 49 start-page: 1 issue: 3 year: 2016 ident: 9794_CR14 publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/2996356 – volume: 41 start-page: 1 issue: 3 year: 2009 ident: 9794_CR23 publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/1541880.1541882 – volume: 72 start-page: 79 year: 2018 ident: 9794_CR16 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.05.049 – start-page: 37 volume-title: International Conference on Cloud Computing and Security year: 2018 ident: 9794_CR32 doi: 10.1007/978-3-030-00018-9_4 – volume: 19 start-page: 1101 year: 2013 ident: 9794_CR41 publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2013.06.155 – volume: 35 start-page: 5381 issue: 7 year: 2023 ident: 9794_CR5 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07970-3 – volume: 7 start-page: 537 issue: 3 year: 2009 ident: 9794_CR13 publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2008.06.003 – volume: 76 start-page: 6860 issue: 9 year: 2020 ident: 9794_CR28 publication-title: J. Supercomput. doi: 10.1007/s11227-019-03131-x – volume: 2019 start-page: 1 issue: 1 year: 2019 ident: 9794_CR7 publication-title: EURASIP J. Wirel. Commun. Netw. doi: 10.1186/s13638-019-1374-8 – volume: 21 start-page: 8017 issue: 23 year: 2021 ident: 9794_CR15 publication-title: Sensors doi: 10.3390/s21238017 – volume: 12 start-page: 159 issue: 2 year: 2010 ident: 9794_CR22 publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/SURV.2010.021510.00088 – volume: 8 start-page: 328 issue: 3 year: 2010 ident: 9794_CR4 publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2009.09.004 – volume: 1 start-page: 37 year: 2008 ident: 9794_CR3 publication-title: J. Telecommun. Inform. Technol. – volume: 11 start-page: 1062 issue: 3 year: 2013 ident: 9794_CR30 publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2012.11.001 – volume: 148 start-page: 552 year: 2019 ident: 9794_CR40 publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2019.01.028 – volume: 79 start-page: 700 year: 2016 ident: 9794_CR42 publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2016.03.092 – ident: 9794_CR35 doi: 10.1109/WITS.2019.8723845 – year: 2023 ident: 9794_CR33 publication-title: Int. J. Adv. Comput. Sci. Appl. doi: 10.14569/IJACSA.2023.01403105 – volume: 1 start-page: 293 issue: 2–3 year: 2003 ident: 9794_CR39 publication-title: Ad Hoc Netw. doi: 10.1016/S1570-8705(03)00008-8 – ident: 9794_CR19 doi: 10.1109/ICUFN.2018.8436999 – volume: 20 start-page: 745 issue: 3 year: 2020 ident: 9794_CR38 publication-title: Sensors doi: 10.3390/s20030745 – volume: 23 start-page: 163 issue: 1 year: 2015 ident: 9794_CR21 publication-title: J. Netw. Syst. Manag. doi: 10.1007/s10922-013-9287-z – volume: 83 start-page: 363 year: 2015 ident: 9794_CR2 publication-title: Comput. Netw. doi: 10.1016/j.comnet.2015.03.002 – volume: 17 start-page: 650 issue: 1 year: 2020 ident: 9794_CR27 publication-title: IEEE Trans. Industr. Inf. doi: 10.1109/TII.2020.2964704 |
| SSID | ssj0008395 |
| Score | 2.3760903 |
| Snippet | Wireless Sensor Networks (WSNs) play a crucial role in diverse applications, encompassing environmental monitoring, healthcare, and industrial automation.... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 17 |
| SubjectTerms | Accuracy Amalgamation Automation Communications Engineering Comparative analysis Computer Communication Networks Computer Science Computer Systems Organization and Communication Networks Efficacy Environmental monitoring Experiments Grammatical aspect Health care Health services Industrial automation Information Systems and Communication Service Iterative methods Machine learning Markov analysis Markov chains Networks Operations Research/Decision Theory Principal components analysis Probabilistic models Security Wireless communication systems Wireless sensor networks |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIAD4ynGSzlwg0hNmjTpkae4MCEGiFvV5gGTUIe2wu_HfTFAgATnpA85jj9btj8D7DOpnPPKU-2ZpUJYQdNISxrLLEB_grOM22rYhOr39f19fNU0hU3aavc2JVlZ6g_NbjEGTogxNIhRi6ichTmEO10ObLge3L3bX4R8WeU4I0GVVEHTKvP9Oz7D0dTH_JIWrdDmvPu__1yGpca7JEe1OqzAjMtXodtObiDNRV6FxQ80hGtwNyhG5jEtGZvJZVVc6UjDu_pAjhHmLDkqirIZn5y6oqrdyklNdU6GOSkLaJ_QYJIBhsSjMenXleWTdbg9P7s5uaDNvAVqQqEKGhqNzqBnLrJKyijzQSiVT0U5FjQLDRc-jTITWBfYVFnGs4i70CgneIBhkBDhBnTyUe42gTBnLA-szFyIEZwtSdF4ZJ1gsZc-1a4HrBV7Yhoy8nImxlMypVEuxZigGJNKjInswcH7M881Fcevu3fa00yaazlJeIwekoqZ1j8sMwQHjQDeg8P2cKfLP39s62_bt2GBo29Ul7LtQKcYv7hdmDevxXAy3qu0-Q2TF-yu priority: 102 providerName: Springer Nature |
| Title | Stochastic Machine Learning Based Attacks Detection System in Wireless Sensor Networks |
| URI | https://link.springer.com/article/10.1007/s10922-023-09794-5 https://www.proquest.com/docview/2907579188 https://www.proquest.com/docview/2918768067 |
| Volume | 32 |
| WOSCitedRecordID | wos001131907500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7705 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008395 issn: 1064-7570 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7x6KEcWvpSt6UrH3prrdqOHScnxFNIiO2KbSntJUr8aJFQFnYDv59x4rAUCS5cLEV5Kp898409_gbgM1faOa89zTy3VEoraZlmiuaqYsgnBK-EbYtN6NEoOz3Nx3HCbR7TKnub2BpqOzVhjvybyDkO3AyN6-bFJQ1Vo8LqaiyhsQyrgdmElL4jtnNridH5q3a1M5VUK83ippm4dS7HMAw9FmU59kmq_ndMC7Z5b4G09Tv7L5_6xevwIjJOstV1kVew5OrXsHZHh_ANnEyaqflXBslmctRmVzoShVf_km30c5ZsNU3YjU92XdMmb9Wk0zonZzUJGbTnaDHJBGPi6YyMutTy-Vv4ub_3Y-eAxoIL1CRSNzQxGbJBz11qtVJp5VmitC9lqAtaJUZIX6aVYdYxW2rLRZUKlxjtpGAYB0mZvIOVelq790C4M1YwqyqXYAhngyqaSK2TPPfKl5kbAO__dmGiGnkoinFeLHSUA0IFIlS0CBVqAF9u77notDgevXqjh6WI43JeiBwpkkZgsgdO95AN4GuP--L0wy_78PjTPsJzgWSoy13bgJVmduU-wTNz3ZzNZ0NY1r9-D2F1e280PsajQ02HbUcOLf-O7Vj9wfZ4cnIDzB32xQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB0BRQIOFAqIbWnxgZ6KRezYcXKoEC1FoIUVErTiFhJ_ABLKwm4o4k_xGxnng6WV4MaBcxxHid_MvInHbwDWmFTWOuVo7JihQhhBsyiWNJF5gHyCs5ybqtmE6vXik5PkcAzu27Mwvqyy9YmVozZ97f-Rb_CEoeHG6Fw3r66p7xrld1fbFho1LLr27hZTtuH3vW1c36-c7_w6_rlLm64CVIdClTTUMVIex2xklJRR7oJQKpcJ3_wyDzUXLotyHRgbmEwZxvOI21ArK3iAZF-IEOcdh3c4Xnm76ir66PmRbMhqdzUSVEkVNId0mqN6CaZ9GCFpkKANUPlvIByx2_82ZKs4t_P-rX2hOZhtGDXZqk1gHsZs8QFmnugsLsCfo7KvzzMvSU0OqupRSxph2TPyA-O4IVtl6dUGyLYtq-K0gtRa7uSiIL5C-BIjAjnCnL8_IL26dH64CL9f5cWWYKLoF3YZCLPa8MDI3IaYohqv-sYjYwVLnHRZbDvA2tVNdaO27pt-XKYjnWiPiBQRkVaISGUHvj3ec1Vrjbw4eqWFQdr4nWHKE6SACoEQP3O5hUgH1lucjS4__7CPL8-2ClO7xwf76f5er_sJpjkSv7pObwUmysGN_QyT-m95MRx8qQyGwOlr4-8BSp5MNw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBaGy4F0xUMALWIHV2LHjZFGhwjCiKoxGKqCKTUjs67ZSlSmTAOLX-nVc59EBpHbXBWsnjhKf-4qPzwV4JrRB9Mbz1AvHlXKKF0mqeabLiPIJKUrp2mYTZjpN9_ez2QqcDmdhAq1y8Imto3ZzG_6Rb8pMkOGm5Fw3fU-LmI0nr06-8dBBKuy0Du00Oojs4q-fVL7VWztjWuvnUk7efnzzjvcdBriNlWl4bFNKf7zAxBmtk9JHsTa-UKERZhlbqXyRlDZyGLnCOCHLRGJsDSoZUeKvVEzzXoGrhmrMQCec6S9nUYASD93utCaKG22i_sBOf2wvoxKQoiWPMrIHrv8OistM95_N2TbmTW79z1_rNtzsM2223ZnGHVjB6i7c-EN_8R583mvm9rAIUtXsQ8sqRdYLzh6w1xTfHdtumqBCwMbYtKS1inUa7-yoYoE5fEyRgu1hVc8XbNpR6uv78OlSXmwdVqt5hQ-ACbRORk6XGFPp6oIanEwcKpF57YsURyCGlc5tr8IemoEc50v96ICOnNCRt-jI9QhenN1z0mmQXHj1xgCJvPdHdS4zSg0NgSI9Z3iAywheDphbDp__sIcXz_YUrhPs8vc7091HsCYpH-zoexuw2iy-42O4Zn80R_XiSWs7DL5eNvx-AwR9VVs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+Machine+Learning+Based+Attacks+Detection+System+in+Wireless+Sensor+Networks&rft.jtitle=Journal+of+network+and+systems+management&rft.au=Moundounga%2C+Anselme+Russel+Affane&rft.au=Satori%2C+Hassan&rft.date=2024-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1064-7570&rft.eissn=1573-7705&rft.volume=32&rft.issue=1&rft.spage=17&rft_id=info:doi/10.1007%2Fs10922-023-09794-5&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-7570&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-7570&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-7570&client=summon |