Multi-innovation Extended Stochastic Gradient Algorithm and Its Performance Analysis

This paper derives the multi-innovation extended stochastic gradient algorithm for controlled autoregressive moving average models by expanding the scalar innovation to an innovation vector and analyzes its performance in detail. Four convergence theorems are given for the multi-innovation extended...

Full description

Saved in:
Bibliographic Details
Published in:Circuits, systems, and signal processing Vol. 29; no. 4; pp. 649 - 667
Main Authors: Liu, Yanjun, Yu, Li, Ding, Feng
Format: Journal Article
Language:English
Published: Boston SP Birkhäuser Verlag Boston 01.08.2010
Springer Nature B.V
Subjects:
ISSN:0278-081X, 1531-5878
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper derives the multi-innovation extended stochastic gradient algorithm for controlled autoregressive moving average models by expanding the scalar innovation to an innovation vector and analyzes its performance in detail. Four convergence theorems are given for the multi-innovation extended stochastic gradient algorithm to show that the parameter estimates converge to their true values under the weak persistent excitation condition. The simulation results show that the proposed algorithm can produce more accurate parameter estimates than the traditional extended stochastic gradient algorithm.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0278-081X
1531-5878
DOI:10.1007/s00034-010-9174-8