Distributed nonconvex constrained optimization over time-varying digraphs
This paper considers nonconvex distributed constrained optimization over networks, modeled as directed (possibly time-varying) graphs. We introduce the first algorithmic framework for the minimization of the sum of a smooth nonconvex (nonseparable) function—the agent’s sum-utility—plus a difference-...
Saved in:
| Published in: | Mathematical programming Vol. 176; no. 1-2; pp. 497 - 544 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2019
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0025-5610, 1436-4646 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper considers nonconvex distributed constrained optimization over networks, modeled as directed (possibly time-varying) graphs. We introduce the first algorithmic framework for the minimization of the sum of a smooth nonconvex (nonseparable) function—the agent’s sum-utility—plus a difference-of-convex function (with nonsmooth convex part). This general formulation arises in many applications, from statistical machine learning to engineering. The proposed distributed method combines successive convex approximation techniques with a judiciously designed perturbed push-sum consensus mechanism that aims to track locally the gradient of the (smooth part of the) sum-utility. Sublinear convergence rate is proved when a fixed step-size (possibly different among the agents) is employed whereas asymptotic convergence to stationary solutions is proved using a diminishing step-size. Numerical results show that our algorithms compare favorably with current schemes on both convex and nonconvex problems. |
|---|---|
| AbstractList | This paper considers nonconvex distributed constrained optimization over networks, modeled as directed (possibly time-varying) graphs. We introduce the first algorithmic framework for the minimization of the sum of a smooth nonconvex (nonseparable) function—the agent’s sum-utility—plus a difference-of-convex function (with nonsmooth convex part). This general formulation arises in many applications, from statistical machine learning to engineering. The proposed distributed method combines successive convex approximation techniques with a judiciously designed perturbed push-sum consensus mechanism that aims to track locally the gradient of the (smooth part of the) sum-utility. Sublinear convergence rate is proved when a fixed step-size (possibly different among the agents) is employed whereas asymptotic convergence to stationary solutions is proved using a diminishing step-size. Numerical results show that our algorithms compare favorably with current schemes on both convex and nonconvex problems. |
| Author | Scutari, Gesualdo Sun, Ying |
| Author_xml | – sequence: 1 givenname: Gesualdo orcidid: 0000-0002-6453-6870 surname: Scutari fullname: Scutari, Gesualdo email: gscutari@purdue.edu organization: School of Industrial Engineering, Purdue University – sequence: 2 givenname: Ying surname: Sun fullname: Sun, Ying organization: School of Industrial Engineering, Purdue University |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8LnqOTZJPNHqV-FQQveg672WxNaZM12bbqrzftCoKHwgxDhveZybwTNHLeGYQuCVwTgOImEiBQYCAyJeMF3p2gMcmZwLnIxQiNASjHXBA4Q5MYlwBJJuUYze9s7IOtN71psjRUe7c1n1kqqV1Zl7q-6-3afle99S7zWxOy9DZ4W4Uv6xZZYxeh6t7jOTptq1U0F791it4e7l9nT_j55XE-u33GmuVFj0ndlG2dl7KWtKESWloybpimphKccCqZBi1JrnmpCeG6zEWtG0pbncKwik3R1TC3C_5jY2Kvln4TXFqpKGUSKBOEH1cBFUJIwZJKDiodfIzBtErb_nDo_viVIqD29qrBXpXsVQd71S6h9B_aBbtOnhyH2ADFJHYLE_5-dYT6AZOmkBc |
| CitedBy_id | crossref_primary_10_1016_j_automatica_2024_111700 crossref_primary_10_1109_TSP_2022_3184770 crossref_primary_10_1007_s11590_023_02011_x crossref_primary_10_1109_TCNS_2024_3395723 crossref_primary_10_1109_TSP_2023_3239799 crossref_primary_10_1137_21M143546X crossref_primary_10_1016_j_arcontrol_2022_01_003 crossref_primary_10_1109_TSP_2021_3062553 crossref_primary_10_1109_JPROC_2020_3024266 crossref_primary_10_1109_TCNS_2025_3526343 crossref_primary_10_1109_LCSYS_2022_3187918 crossref_primary_10_1137_20M1340071 crossref_primary_10_1109_TAC_2021_3111853 crossref_primary_10_1016_j_sigpro_2021_108020 crossref_primary_10_1016_j_ifacol_2019_12_174 crossref_primary_10_1109_JAS_2024_124869 crossref_primary_10_1109_TAC_2024_3488504 crossref_primary_10_1016_j_amc_2022_127801 crossref_primary_10_1109_TSP_2021_3097211 crossref_primary_10_1109_TSP_2024_3366437 crossref_primary_10_1137_23M1558677 crossref_primary_10_1016_j_jfranklin_2023_07_006 crossref_primary_10_1137_18M121784X crossref_primary_10_1016_j_ifacol_2022_07_248 crossref_primary_10_1109_TNSE_2022_3153386 crossref_primary_10_1360_SSI_2025_0112 crossref_primary_10_1109_TSP_2022_3182883 crossref_primary_10_1109_TAC_2022_3196627 crossref_primary_10_1109_TSP_2021_3086579 crossref_primary_10_1016_j_automatica_2022_110726 crossref_primary_10_1109_TAC_2020_2977940 crossref_primary_10_1109_TSP_2020_3046464 crossref_primary_10_1109_LCSYS_2020_3001998 crossref_primary_10_1109_MSP_2020_2970170 crossref_primary_10_1109_TAC_2025_3540423 crossref_primary_10_1109_TSP_2020_2981204 crossref_primary_10_1109_TAC_2022_3173171 crossref_primary_10_1109_TCNS_2022_3213706 crossref_primary_10_1109_TSIPN_2023_3290397 crossref_primary_10_1109_TSP_2020_2996374 crossref_primary_10_1109_TAC_2023_3251851 crossref_primary_10_1137_20M1361158 crossref_primary_10_1016_j_ijepes_2023_109669 crossref_primary_10_1109_TCNS_2020_3024321 crossref_primary_10_1109_TAC_2025_3545711 crossref_primary_10_1016_j_ifacol_2023_10_117 crossref_primary_10_1109_TAC_2020_3009363 crossref_primary_10_1109_TAC_2023_3248487 crossref_primary_10_1109_TAC_2021_3056535 crossref_primary_10_1109_LCSYS_2023_3341100 crossref_primary_10_1109_TCNS_2022_3232519 crossref_primary_10_1007_s00521_023_09067_x crossref_primary_10_1016_j_ifacol_2020_12_405 crossref_primary_10_1109_TCNS_2024_3354875 crossref_primary_10_1109_TSP_2021_3092347 crossref_primary_10_1137_19M1259973 crossref_primary_10_1109_TAC_2024_3522188 crossref_primary_10_1109_TSIPN_2025_3539004 crossref_primary_10_1109_TSIPN_2022_3190743 crossref_primary_10_1007_s10287_023_00492_w crossref_primary_10_1137_20M138956X crossref_primary_10_1109_TSP_2023_3240652 crossref_primary_10_1109_TIT_2022_3176253 crossref_primary_10_1016_j_sigpro_2023_109345 crossref_primary_10_1007_s10898_022_01221_4 crossref_primary_10_1137_24M1661455 crossref_primary_10_1109_TAC_2025_3555375 crossref_primary_10_1109_TCNS_2024_3354882 crossref_primary_10_1109_TAC_2024_3520513 crossref_primary_10_1109_TSP_2022_3194369 crossref_primary_10_1109_LCSYS_2022_3231223 crossref_primary_10_1007_s40305_025_00583_2 crossref_primary_10_1109_TSIPN_2023_3239698 crossref_primary_10_1109_LCSYS_2020_2971835 crossref_primary_10_1080_10556788_2023_2189713 |
| Cites_doi | 10.1198/016214501753382273 10.1038/nature04296 10.1137/S1052623497331063 10.1109/TSP.2013.2293126 10.1109/TAC.2014.2364096 10.1561/2200000051 10.1109/TSP.2015.2461520 10.1007/s10107-016-1072-9 10.1016/j.ejor.2014.11.031 10.1137/16M1084754 10.1137/14096668X 10.1109/TAC.2012.2209984 10.1109/TAC.2010.2041686 10.1109/TSP.2016.2544743 10.1109/TSP.2016.2637317 10.1109/TSP.2011.2146776 10.1109/TSP.2009.2033729 10.1109/TSP.2014.2367458 10.1109/TAC.2007.910665 10.1007/s10107-015-0892-3 10.1109/TSP.2015.2399858 10.1109/TAC.2009.2031203 10.1109/TSP.2012.2198470 10.1109/TAC.2012.2228038 10.1109/TAC.2014.2298712 10.1109/TSIPN.2016.2613678 10.1109/TAC.2008.2009515 10.1137/16M1080173 10.1109/78.738251 10.1109/TSIPN.2016.2524588 10.1137/16M1084316 10.1109/GlobalSIP.2015.7418306 10.1109/TAC.2017.2685559 10.1109/CAMSAP.2015.7383778 10.1109/CDC.2016.7798277 10.1109/CDC.2016.7798263 10.1109/ACC.2010.5530578 10.1109/ICASSP.2017.7952916 10.1109/GlobalSIP.2013.6736937 10.1109/CDC.2015.7402509 10.1080/10618600.1998.10474784 10.1109/ICASSP.2016.7472453 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019 Mathematical Programming is a copyright of Springer, (2019). All Rights Reserved. Copyright Springer Nature B.V. 2019 |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019 – notice: Mathematical Programming is a copyright of Springer, (2019). All Rights Reserved. – notice: Copyright Springer Nature B.V. 2019 |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10107-018-01357-w |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1436-4646 |
| EndPage | 544 |
| ExternalDocumentID | 10_1007_s10107_018_01357_w |
| GrantInformation_xml | – fundername: Division of Computing and Communication Foundations grantid: 1564044 funderid: http://dx.doi.org/10.13039/100000143 – fundername: Division of Electrical, Communications and Cyber Systems grantid: CAREER 1555850 funderid: http://dx.doi.org/10.13039/100000148 – fundername: Office of Naval Research Global grantid: N00014-16-1-2244 funderid: http://dx.doi.org/10.13039/100007297 |
| GroupedDBID | --Z -52 -5D -5G -BR -EM -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 203 29M 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 6TJ 78A 7WY 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BAPOH BDATZ BENPR BEZIV BGNMA BPHCQ BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6~ K7- KDC KOV LAS LLZTM M0C M2P M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9R PF0 PROAC PT4 PT5 Q2X QOK QOS QWB R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX VC2 W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ~02 ~8M ~EX --K -Y2 1B1 1OL 1SB 28- 2P1 2VQ 5QI 88I 8AO 8FE 8FG AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABJCF ABQSL ABRTQ ABULA ABUWG ACBXY ACSTC ADHKG ADXHL AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFFHD AFFNX AFGCZ AFHIU AFKRA AFOHR AGGDS AGQPQ AHPBZ AHWEU AIXLP AJBLW AMVHM ARAPS ATHPR AYFIA AZQEC BBWZM BGLVJ CAG CCPQU CITATION COF DWQXO FRNLG GNUQQ H~9 K6V KOW L6V M7S N2Q NDZJH NQ- O9- P62 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PTHSS R4E RNI RPZ RZK S1Z S26 S28 SCLPG T16 UZXMN VFIZW XPP ZWQNP 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D M0N PKEHL PQEST PQUKI PRINS Q9U PUEGO |
| ID | FETCH-LOGICAL-c347t-1bd9fb498b82d280f2935e3c2ea6515283c0c814c59c115c946bcd22fc2fce3a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 114 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000471047200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-5610 |
| IngestDate | Thu Sep 25 00:41:12 EDT 2025 Thu Sep 25 01:05:51 EDT 2025 Tue Nov 18 20:53:24 EST 2025 Sat Nov 29 03:34:01 EST 2025 Fri Feb 21 02:32:39 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | 90C90 65K10 91A10 65K15 49M27 90C33 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c347t-1bd9fb498b82d280f2935e3c2ea6515283c0c814c59c115c946bcd22fc2fce3a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6453-6870 |
| PQID | 2202666863 |
| PQPubID | 25307 |
| PageCount | 48 |
| ParticipantIDs | proquest_journals_2238023615 proquest_journals_2202666863 crossref_citationtrail_10_1007_s10107_018_01357_w crossref_primary_10_1007_s10107_018_01357_w springer_journals_10_1007_s10107_018_01357_w |
| PublicationCentury | 2000 |
| PublicationDate | 2019-07-01 |
| PublicationDateYYYYMMDD | 2019-07-01 |
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationYear | 2019 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Rao, Kreutz-Delgado (CR34) 1999; 47 Nedic, Olshevsky (CR27) 2015; 60 CR33 Scutari, Facchinei, Lampariello (CR36) 2017; 65 Fu (CR19) 1998; 7 Facchinei, Lampariello, Scutari (CR15) 2017; 164 Scutari, Facchinei, Song, Palomar, Pang (CR37) 2014; 62 Jakovetić, Xavier, Moura (CR23) 2014; 59 Bianchi, Jakubowicz (CR4) 2013; 58 Bottou, Curtis, Nocedal (CR6) 2018; 60 CR7 CR49 Nedich, Olshevsky, Ozdaglar, Tsitsiklis (CR29) 2009; 54 Bild (CR5) 2006; 439 CR46 CR45 Shi, Ling, Wu, Yin (CR38) 2015; 25 CR43 CR42 CR41 Friedman, Hastie, Tibshirani (CR18) 2009 CR40 Zhu, Martínez (CR54) 2013; 58 Chen, Sayed (CR11) 2012; 60 Jakovetic, Xavier, Moura (CR22) 2011; 59 Nedich, Olshevsky, Shi (CR30) 2017; 27 Nedić, Ozdaglar, Parrilo (CR28) 2010; 55 Chang (CR9) 2014; 64 CR14 Weston, Elisseeff, Schölkopf, Tipping (CR47) 2003; 3 CR13 CR53 CR52 CR51 CR50 Shi, Ling, Wu, Yin (CR39) 2015; 63 Di Lorenzo, Scutari (CR12) 2016; 2 Nedich, Ozdaglar (CR31) 2009; 54 Chang, Hong, Wang (CR10) 2015; 63 Cattivelli, Sayed (CR8) 2010; 58 Mokhtari, Shi, Ling, Ribeiro (CR26) 2016; 2 Palomar, Chiang (CR32) 2007; 52 CR25 Ahn, Pang, Xin (CR1) 2017; 27 CR24 Wright (CR48) 2015; 151 Thi, Dinh, Le, Vo (CR44) 2015; 244 CR21 CR20 Bertsekas (CR2) 1999 Bertsekas, Tsitsiklis (CR3) 2000; 10 Fan, Li (CR17) 2001; 96 Sayed (CR35) 2014; 7 Facchinei, Scutari, Sagratella (CR16) 2015; 63 J Fan (1357_CR17) 2001; 96 DP Bertsekas (1357_CR3) 2000; 10 A Nedich (1357_CR30) 2017; 27 G Scutari (1357_CR36) 2017; 65 1357_CR40 1357_CR41 1357_CR46 G Scutari (1357_CR37) 2014; 62 1357_CR49 1357_CR42 1357_CR43 FS Cattivelli (1357_CR8) 2010; 58 1357_CR45 DP Palomar (1357_CR32) 2007; 52 D Jakovetić (1357_CR23) 2014; 59 M Ahn (1357_CR1) 2017; 27 L Bottou (1357_CR6) 2018; 60 TH Chang (1357_CR10) 2015; 63 A Nedich (1357_CR29) 2009; 54 W Shi (1357_CR39) 2015; 63 TH Chang (1357_CR9) 2014; 64 A Nedić (1357_CR28) 2010; 55 DP Bertsekas (1357_CR2) 1999 1357_CR50 AH Bild (1357_CR5) 2006; 439 1357_CR51 1357_CR52 1357_CR7 J Chen (1357_CR11) 2012; 60 1357_CR13 1357_CR14 J Friedman (1357_CR18) 2009 1357_CR53 A Nedic (1357_CR27) 2015; 60 A Nedich (1357_CR31) 2009; 54 W Shi (1357_CR38) 2015; 25 J Weston (1357_CR47) 2003; 3 M Zhu (1357_CR54) 2013; 58 1357_CR24 1357_CR25 AH Sayed (1357_CR35) 2014; 7 1357_CR20 1357_CR21 P Di Lorenzo (1357_CR12) 2016; 2 F Facchinei (1357_CR16) 2015; 63 SJ Wright (1357_CR48) 2015; 151 BD Rao (1357_CR34) 1999; 47 WJ Fu (1357_CR19) 1998; 7 P Bianchi (1357_CR4) 2013; 58 F Facchinei (1357_CR15) 2017; 164 A Mokhtari (1357_CR26) 2016; 2 D Jakovetic (1357_CR22) 2011; 59 1357_CR33 HL Thi (1357_CR44) 2015; 244 |
| References_xml | – ident: CR45 – volume: 96 start-page: 1348 issue: 456 year: 2001 end-page: 1360 ident: CR17 article-title: Variable selection via nonconcave penalized likelihood and its oracle properties publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214501753382273 – volume: 439 start-page: 353 issue: 7074 year: 2006 ident: CR5 article-title: Oncogenic pathway signatures in human cancers as a guide to targeted therapies publication-title: Nature doi: 10.1038/nature04296 – volume: 10 start-page: 627 issue: 3 year: 2000 end-page: 642 ident: CR3 article-title: Gradient convergence in gradient methods with errors publication-title: SIAM J. Optim. doi: 10.1137/S1052623497331063 – volume: 62 start-page: 641 issue: 3 year: 2014 end-page: 656 ident: CR37 article-title: Decomposition by partial linearization: parallel optimization of multi-agent systems publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2293126 – ident: CR49 – volume: 60 start-page: 601 issue: 3 year: 2015 end-page: 615 ident: CR27 article-title: Distributed optimization over time-varying directed graphs publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2014.2364096 – volume: 7 start-page: 311 issue: 4–5 year: 2014 end-page: 801 ident: CR35 article-title: Adaptation, learning, and optimization over networks publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000051 – ident: CR51 – volume: 63 start-page: 6013 issue: 22 year: 2015 end-page: 6023 ident: CR39 article-title: A proximal gradient algorithm for decentralized composite optimization publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2015.2461520 – volume: 164 start-page: 55 issue: 1–2 year: 2017 end-page: 90 ident: CR15 article-title: Feasible methods for nonconvex nonsmooth problems with applications in green communications publication-title: Math. Program. doi: 10.1007/s10107-016-1072-9 – volume: 244 start-page: 26 issue: 1 year: 2015 end-page: 46 ident: CR44 article-title: DC approximation approaches for sparse optimization publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2014.11.031 – volume: 27 start-page: 1637 issue: 3 year: 2017 end-page: 1665 ident: CR1 article-title: Difference-of-convex learning: directional stationarity, optimality, and sparsity publication-title: SIAM J. Optim. doi: 10.1137/16M1084754 – volume: 25 start-page: 944 issue: 2 year: 2015 end-page: 966 ident: CR38 article-title: EXTRA: an exact first-order algorithm for decentralized consensus optimization publication-title: SIAM J. Optim. doi: 10.1137/14096668X – volume: 58 start-page: 391 issue: 2 year: 2013 end-page: 405 ident: CR4 article-title: Convergence of a multi-agent projected stochastic gradient algorithm for non-convex optimization publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2012.2209984 – ident: CR25 – ident: CR42 – ident: CR21 – ident: CR46 – volume: 55 start-page: 922 issue: 4 year: 2010 end-page: 938 ident: CR28 article-title: Constrained consensus and optimization in multi-agent networks publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2010.2041686 – volume: 64 start-page: 3719 issue: 14 year: 2014 end-page: 3734 ident: CR9 article-title: A proximal dual consensus ADMM method for multi-agent constrained optimization publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2544743 – ident: CR50 – volume: 65 start-page: 1929 issue: 8 year: 2017 end-page: 1944 ident: CR36 article-title: Parallel and distributed methods for constrained nonconvex optimization. Part I: theory publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2637317 – volume: 59 start-page: 3889 issue: 8 year: 2011 end-page: 3902 ident: CR22 article-title: Cooperative convex optimization in networked systems: augmented Lagrangian algorithms with directed gossip communication publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2011.2146776 – volume: 7 start-page: 397 issue: 3 year: 1998 end-page: 416 ident: CR19 article-title: Penalized regressions: the bridge versus the lasso publication-title: J. Comput. Graph. Stat. – year: 1999 ident: CR2 publication-title: Nonlinear Programming – volume: 3 start-page: 1439 year: 2003 end-page: 1461 ident: CR47 article-title: Use of the zero-norm with linear models and kernel methods publication-title: J. Mach. Learn. Res. – volume: 58 start-page: 1035 issue: 3 year: 2010 end-page: 1048 ident: CR8 article-title: Diffusion LMS strategies for distributed estimation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2009.2033729 – volume: 63 start-page: 482 issue: 2 year: 2015 end-page: 497 ident: CR10 article-title: Multi-agent distributed optimization via inexact consensus ADMM publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2014.2367458 – volume: 52 start-page: 2254 issue: 12 year: 2007 end-page: 2269 ident: CR32 article-title: Alternative distributed algorithms for network utility maximization: framework and applications publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2007.910665 – volume: 151 start-page: 3 issue: 1 year: 2015 end-page: 34 ident: CR48 article-title: Coordinate descent algorithms publication-title: Math. Program. doi: 10.1007/s10107-015-0892-3 – ident: CR43 – ident: CR14 – ident: CR53 – volume: 63 start-page: 1874 issue: 7 year: 2015 end-page: 1889 ident: CR16 article-title: Parallel selective algorithms for nonconvex big data optimization publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2015.2399858 – volume: 54 start-page: 2506 issue: 11 year: 2009 end-page: 2517 ident: CR29 article-title: On distributed averaging algorithms and quantization effects publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2009.2031203 – volume: 60 start-page: 4289 issue: 8 year: 2012 end-page: 4305 ident: CR11 article-title: Diffusion adaptation strategies for distributed optimization and learning over networks publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2012.2198470 – ident: CR33 – volume: 58 start-page: 1534 issue: 6 year: 2013 end-page: 1539 ident: CR54 article-title: An approximate dual subgradient algorithm for multi-agent non-convex optimization publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2012.2228038 – ident: CR40 – volume: 59 start-page: 1131 issue: 5 year: 2014 end-page: 1146 ident: CR23 article-title: Fast distributed gradient methods publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2014.2298712 – volume: 2 start-page: 507 issue: 4 year: 2016 end-page: 522 ident: CR26 article-title: A decentralized second-order method with exact linear convergence rate for consensus optimization publication-title: IEEE Trans. Signal Inf. Process. Netw. doi: 10.1109/TSIPN.2016.2613678 – volume: 54 start-page: 48 issue: 1 year: 2009 end-page: 61 ident: CR31 article-title: Distributed subgradient methods for multi-agent optimization publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2008.2009515 – volume: 60 start-page: 223 issue: 2 year: 2018 end-page: 311 ident: CR6 article-title: Optimization methods for large-scale machine learning publication-title: SIAM Rev. doi: 10.1137/16M1080173 – volume: 47 start-page: 187 issue: 1 year: 1999 end-page: 200 ident: CR34 article-title: An affine scaling methodology for best basis selection publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.738251 – ident: CR52 – ident: CR13 – volume: 2 start-page: 120 issue: 2 year: 2016 end-page: 136 ident: CR12 article-title: NEXT: in-network nonconvex optimization publication-title: IEEE Trans. Signal Inf. Process. Netw. doi: 10.1109/TSIPN.2016.2524588 – ident: CR7 – volume: 27 start-page: 2597 issue: 4 year: 2017 end-page: 2633 ident: CR30 article-title: Achieving geometric convergence for distributed optimization over time-varying graphs publication-title: SIAM J. Optim. doi: 10.1137/16M1084316 – ident: CR41 – ident: CR24 – year: 2009 ident: CR18 publication-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics – ident: CR20 – ident: 1357_CR25 doi: 10.1109/GlobalSIP.2015.7418306 – volume: 3 start-page: 1439 year: 2003 ident: 1357_CR47 publication-title: J. Mach. Learn. Res. – volume: 54 start-page: 48 issue: 1 year: 2009 ident: 1357_CR31 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2008.2009515 – ident: 1357_CR42 – volume: 151 start-page: 3 issue: 1 year: 2015 ident: 1357_CR48 publication-title: Math. Program. doi: 10.1007/s10107-015-0892-3 – volume: 27 start-page: 1637 issue: 3 year: 2017 ident: 1357_CR1 publication-title: SIAM J. Optim. doi: 10.1137/16M1084754 – volume: 10 start-page: 627 issue: 3 year: 2000 ident: 1357_CR3 publication-title: SIAM J. Optim. doi: 10.1137/S1052623497331063 – volume: 58 start-page: 1035 issue: 3 year: 2010 ident: 1357_CR8 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2009.2033729 – volume: 2 start-page: 120 issue: 2 year: 2016 ident: 1357_CR12 publication-title: IEEE Trans. Signal Inf. Process. Netw. doi: 10.1109/TSIPN.2016.2524588 – volume: 59 start-page: 1131 issue: 5 year: 2014 ident: 1357_CR23 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2014.2298712 – volume: 54 start-page: 2506 issue: 11 year: 2009 ident: 1357_CR29 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2009.2031203 – volume: 47 start-page: 187 issue: 1 year: 1999 ident: 1357_CR34 publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.738251 – volume: 63 start-page: 1874 issue: 7 year: 2015 ident: 1357_CR16 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2015.2399858 – volume: 58 start-page: 391 issue: 2 year: 2013 ident: 1357_CR4 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2012.2209984 – ident: 1357_CR45 doi: 10.1109/TAC.2017.2685559 – ident: 1357_CR53 – volume: 63 start-page: 482 issue: 2 year: 2015 ident: 1357_CR10 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2014.2367458 – volume: 63 start-page: 6013 issue: 22 year: 2015 ident: 1357_CR39 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2015.2461520 – volume-title: Nonlinear Programming year: 1999 ident: 1357_CR2 – volume: 2 start-page: 507 issue: 4 year: 2016 ident: 1357_CR26 publication-title: IEEE Trans. Signal Inf. Process. Netw. doi: 10.1109/TSIPN.2016.2613678 – volume: 65 start-page: 1929 issue: 8 year: 2017 ident: 1357_CR36 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2637317 – ident: 1357_CR43 – ident: 1357_CR40 – volume: 25 start-page: 944 issue: 2 year: 2015 ident: 1357_CR38 publication-title: SIAM J. Optim. doi: 10.1137/14096668X – volume: 64 start-page: 3719 issue: 14 year: 2014 ident: 1357_CR9 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2544743 – volume: 60 start-page: 223 issue: 2 year: 2018 ident: 1357_CR6 publication-title: SIAM Rev. doi: 10.1137/16M1080173 – volume: 164 start-page: 55 issue: 1–2 year: 2017 ident: 1357_CR15 publication-title: Math. Program. doi: 10.1007/s10107-016-1072-9 – ident: 1357_CR50 – ident: 1357_CR13 doi: 10.1109/CAMSAP.2015.7383778 – ident: 1357_CR49 doi: 10.1109/CDC.2016.7798277 – volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics year: 2009 ident: 1357_CR18 – volume: 52 start-page: 2254 issue: 12 year: 2007 ident: 1357_CR32 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2007.910665 – volume: 60 start-page: 4289 issue: 8 year: 2012 ident: 1357_CR11 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2012.2198470 – ident: 1357_CR33 doi: 10.1109/CDC.2016.7798263 – ident: 1357_CR20 doi: 10.1109/ACC.2010.5530578 – ident: 1357_CR41 doi: 10.1109/ICASSP.2017.7952916 – ident: 1357_CR46 doi: 10.1109/GlobalSIP.2013.6736937 – ident: 1357_CR21 – volume: 59 start-page: 3889 issue: 8 year: 2011 ident: 1357_CR22 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2011.2146776 – ident: 1357_CR52 doi: 10.1109/CDC.2015.7402509 – volume: 60 start-page: 601 issue: 3 year: 2015 ident: 1357_CR27 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2014.2364096 – volume: 439 start-page: 353 issue: 7074 year: 2006 ident: 1357_CR5 publication-title: Nature doi: 10.1038/nature04296 – volume: 7 start-page: 397 issue: 3 year: 1998 ident: 1357_CR19 publication-title: J. Comput. Graph. Stat. doi: 10.1080/10618600.1998.10474784 – volume: 96 start-page: 1348 issue: 456 year: 2001 ident: 1357_CR17 publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214501753382273 – volume: 7 start-page: 311 issue: 4–5 year: 2014 ident: 1357_CR35 publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000051 – ident: 1357_CR51 – volume: 58 start-page: 1534 issue: 6 year: 2013 ident: 1357_CR54 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2012.2228038 – volume: 62 start-page: 641 issue: 3 year: 2014 ident: 1357_CR37 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2293126 – ident: 1357_CR14 doi: 10.1109/ICASSP.2016.7472453 – volume: 55 start-page: 922 issue: 4 year: 2010 ident: 1357_CR28 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2010.2041686 – volume: 244 start-page: 26 issue: 1 year: 2015 ident: 1357_CR44 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2014.11.031 – ident: 1357_CR24 – ident: 1357_CR7 – volume: 27 start-page: 2597 issue: 4 year: 2017 ident: 1357_CR30 publication-title: SIAM J. Optim. doi: 10.1137/16M1084316 |
| SSID | ssj0001388 |
| Score | 2.6313827 |
| Snippet | This paper considers nonconvex distributed constrained optimization over networks, modeled as directed (possibly time-varying) graphs. We introduce the first... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 497 |
| SubjectTerms | Algorithms Calculus of Variations and Optimal Control; Optimization Combinatorics Convergence Economic models Engineering education Full Length Paper Graph theory Machine learning Mathematical and Computational Physics Mathematical Methods in Physics Mathematical models Mathematics Mathematics and Statistics Mathematics of Computing Nonlinear programming Numerical Analysis Optimization Theoretical |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgMMDAN6JQUAY2sEjifNgTQkAFQ6sOIHWLnIsjVYK2NKXl53OXOi0gtQtSlsSJ4vic87N99x5jl16sQ-nGFIfjah5o1-VaZTFXwtXGz3wf0pnYRNxuy25XdeyCW2HDKiufWDrqbAC0Rn7j4ywdobaMxO3wg5NqFO2uWgmNdbaByMajkK6W35l7Yk9IWUm2Ek6wSTM2dc4rgy4plEuEMZ_-HpgWaPPPBmk57jR3_1vjPbZjEadzN-si-2zN9A_Y9g8eQjxrzclbi0P2_EBkuqSDZTKnP-iXgelfDhCSJEEJvDpAR_NuMzgdCgJ1SKOeT_SIsqacrFfyYBdH7LX5-HL_xK3iAgcRxGPupZnK00DJVKKdpJsjGAiNAN9okkxHKAIuSC-AUAE2OKggSgENmgMeRmhxzGpYL3PCHD-PKGnWTZWCQOIsNDeBBi-HUOooj7I686rmTsDSkdNHvCULImUyUYImSkoTJdM6u5o_M5yRcay8u1HZJbE_ZpEsjLKkWBAjHsK8OruuDL8oXv6y09UvO2NbiLTULM63wWrj0ac5Z5swGfeK0UXZa78BB9jyJQ priority: 102 providerName: ProQuest |
| Title | Distributed nonconvex constrained optimization over time-varying digraphs |
| URI | https://link.springer.com/article/10.1007/s10107-018-01357-w https://www.proquest.com/docview/2202666863 https://www.proquest.com/docview/2238023615 |
| Volume | 176 |
| WOSCitedRecordID | wos000471047200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB68HvTBW1yPpQ--aSBt2iZ59EQRl8VbX0qapiDoKtv1-PnOdNtdFRUUykCbtE0naeYLmZkPYMOXJlJckh8ONyw0nDOjM8m04MYFWRDYtE82IVstdX2t21VQWFF7u9dbkuVM_SHYzS_dJMn5SkSSvY7COJo7RYQNp2eXg_nXF0rVRK2EDqpQme-f8dkcDTHml23R0toczPyvnbMwXaFLb7s_HOZgxHXmYepDzkE8Oxkkai0W4GiPEucS55XLvM5jp3RCf_MsoUYij8CrjzipPFTRmh45fHrER89eTJcipLzsrsx5XSzCxcH--e4hq9gVmBWh7DE_zXSehlqlCvtE8RwNf-SEDZwhenSEHZZb5Yc20hZho9VhnFrsvNzi4YQRSzCG7XLL4AV5TAGyPNXahgpXnLkLjfVzGykT53HWAL9WcmKr1OP0EffJMGkyKS1BpSWl0pLXBmwO7nnqJ974tfZa3XdJ9RMWSRDgAjOOVSx-KBaU_Q4hXQO26q4cFv_8spW_VV-FSURZuu_juwZjve6zW4cJ-9K7K7pNGJVXN00Y39lvtU_x7FgylCd8l2TQJinPULaj22Y5zt8BR1HwGg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7BUolygD6ouoW2ObSn1iKx87APqKp4iBWw4kAlbqkzcSQk2KWbZRf-VH8jM3nslkpw44CUi-MktuPJzOd45huAL0FiI-0n7IfjWxFa3xfW5IkwyrdO5lJiViebSPp9fXZmThbgbxsLw26VrU6sFHU-RP5HviVplU5QW8fqx9UfwVmjeHe1TaFRi8Whu53Skq3c7u3S_H6Vcn_vdOdANFkFBKowGYsgy02RhUZnmvqi_YIMXuQUSmc5LTiZW_RRByFGBgkuoQnjDKnTBdLhlFX03EVYCplZjF0F5clM8wdK6zZFLOOSJkinCdULKidPdh1TUSKm9w3hHN3-tyFb2bn9tef2hl7BaoOovZ_1J_AaFtzgDaz8w7NIpeMZOW35Fnq7TBbMeb5c7g2Gg8rx_sZDRsqcMIPODkmRXjYRqh47uXpUdmJiRxwV5uXnFc93uQ6_nmRk76BD_XLvwZNFzEHBfmYMhppW2YULLQYFRtrGRZx3IWinN8WGbp0HcZHOiaJZJFISibQSiXTahW-ze65qspFHr95s5SBtFE-ZzoXggWrFjH8EY7vwvRW0efXDjX14vLHPsHxwenyUHvX6hxvwklClqX2aN6EzHl27j_ACJ-PzcvSp-mI8-P3UAngH6iFPUg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEH7-J0ah9807K06SV5FOdwqGPghb2VNE1hoNtY6-bPN6eXbYoTROhLm7RNz0mTL-Q73wE4t3zhMuIjD4cI0xGEmIJHvskpEcqObFuGebIJv91m3S7vzEXxZ2z3cksyj2lAlaZ-Wh9GcX0u8M3KKJNIxKKub06WYcVBIj2u1x9fpmOxRRkrk7YiUijCZn5-xtepaYY3v22RZjNPc-v_bd6GzQJ1Gld5N9mBJdXfhY05LUJ99jAVcE32oNVAQV3MhaUioz_oZ-T0D0MimsSkEvrqQA82b0UUp4FEUAPz1JtjMcLIKSPqZVrYyT48N2-erm_NIuuCKanjp6YVRjwOHc5Cpn3FSKwBgauotJXAtOkajkgimeVIl0sNJyV3vFBqp8ZSH4oKegAV3S51CIYdexg4S0LOpcP0SjRWjpBWLF0mvNiLqmCVBg9kIUmOH_EazMSU0WiBNlqQGS2YVOFies8wF-T4tXat9GNQ_JxJYNt64el5zKMLiimq4mmoV4XL0q2z4sUvO_pb9TNY6zSawX2rfXcM6xqI8ZwGXINKOnpXJ7Aqx2kvGZ1mXfoTIGn0pw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+nonconvex+constrained+optimization+over+time-varying+digraphs&rft.jtitle=Mathematical+programming&rft.au=Scutari%2C+Gesualdo&rft.au=Sun%2C+Ying&rft.date=2019-07-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=176&rft.issue=1-2&rft.spage=497&rft.epage=544&rft_id=info:doi/10.1007%2Fs10107-018-01357-w&rft.externalDocID=10_1007_s10107_018_01357_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |