Distributed nonconvex constrained optimization over time-varying digraphs

This paper considers nonconvex distributed constrained optimization over networks, modeled as directed (possibly time-varying) graphs. We introduce the first algorithmic framework for the minimization of the sum of a smooth nonconvex (nonseparable) function—the agent’s sum-utility—plus a difference-...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming Vol. 176; no. 1-2; pp. 497 - 544
Main Authors: Scutari, Gesualdo, Sun, Ying
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2019
Springer Nature B.V
Subjects:
ISSN:0025-5610, 1436-4646
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper considers nonconvex distributed constrained optimization over networks, modeled as directed (possibly time-varying) graphs. We introduce the first algorithmic framework for the minimization of the sum of a smooth nonconvex (nonseparable) function—the agent’s sum-utility—plus a difference-of-convex function (with nonsmooth convex part). This general formulation arises in many applications, from statistical machine learning to engineering. The proposed distributed method combines successive convex approximation techniques with a judiciously designed perturbed push-sum consensus mechanism that aims to track locally the gradient of the (smooth part of the) sum-utility. Sublinear convergence rate is proved when a fixed step-size (possibly different among the agents) is employed whereas asymptotic convergence to stationary solutions is proved using a diminishing step-size. Numerical results show that our algorithms compare favorably with current schemes on both convex and nonconvex problems.
AbstractList This paper considers nonconvex distributed constrained optimization over networks, modeled as directed (possibly time-varying) graphs. We introduce the first algorithmic framework for the minimization of the sum of a smooth nonconvex (nonseparable) function—the agent’s sum-utility—plus a difference-of-convex function (with nonsmooth convex part). This general formulation arises in many applications, from statistical machine learning to engineering. The proposed distributed method combines successive convex approximation techniques with a judiciously designed perturbed push-sum consensus mechanism that aims to track locally the gradient of the (smooth part of the) sum-utility. Sublinear convergence rate is proved when a fixed step-size (possibly different among the agents) is employed whereas asymptotic convergence to stationary solutions is proved using a diminishing step-size. Numerical results show that our algorithms compare favorably with current schemes on both convex and nonconvex problems.
Author Scutari, Gesualdo
Sun, Ying
Author_xml – sequence: 1
  givenname: Gesualdo
  orcidid: 0000-0002-6453-6870
  surname: Scutari
  fullname: Scutari, Gesualdo
  email: gscutari@purdue.edu
  organization: School of Industrial Engineering, Purdue University
– sequence: 2
  givenname: Ying
  surname: Sun
  fullname: Sun, Ying
  organization: School of Industrial Engineering, Purdue University
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnqOTZJPNHqV-FQQveg672WxNaZM12bbqrzftCoKHwgxDhveZybwTNHLeGYQuCVwTgOImEiBQYCAyJeMF3p2gMcmZwLnIxQiNASjHXBA4Q5MYlwBJJuUYze9s7IOtN71psjRUe7c1n1kqqV1Zl7q-6-3afle99S7zWxOy9DZ4W4Uv6xZZYxeh6t7jOTptq1U0F791it4e7l9nT_j55XE-u33GmuVFj0ndlG2dl7KWtKESWloybpimphKccCqZBi1JrnmpCeG6zEWtG0pbncKwik3R1TC3C_5jY2Kvln4TXFqpKGUSKBOEH1cBFUJIwZJKDiodfIzBtErb_nDo_viVIqD29qrBXpXsVQd71S6h9B_aBbtOnhyH2ADFJHYLE_5-dYT6AZOmkBc
CitedBy_id crossref_primary_10_1016_j_automatica_2024_111700
crossref_primary_10_1109_TSP_2022_3184770
crossref_primary_10_1007_s11590_023_02011_x
crossref_primary_10_1109_TCNS_2024_3395723
crossref_primary_10_1109_TSP_2023_3239799
crossref_primary_10_1137_21M143546X
crossref_primary_10_1016_j_arcontrol_2022_01_003
crossref_primary_10_1109_TSP_2021_3062553
crossref_primary_10_1109_JPROC_2020_3024266
crossref_primary_10_1109_TCNS_2025_3526343
crossref_primary_10_1109_LCSYS_2022_3187918
crossref_primary_10_1137_20M1340071
crossref_primary_10_1109_TAC_2021_3111853
crossref_primary_10_1016_j_sigpro_2021_108020
crossref_primary_10_1016_j_ifacol_2019_12_174
crossref_primary_10_1109_JAS_2024_124869
crossref_primary_10_1109_TAC_2024_3488504
crossref_primary_10_1016_j_amc_2022_127801
crossref_primary_10_1109_TSP_2021_3097211
crossref_primary_10_1109_TSP_2024_3366437
crossref_primary_10_1137_23M1558677
crossref_primary_10_1016_j_jfranklin_2023_07_006
crossref_primary_10_1137_18M121784X
crossref_primary_10_1016_j_ifacol_2022_07_248
crossref_primary_10_1109_TNSE_2022_3153386
crossref_primary_10_1360_SSI_2025_0112
crossref_primary_10_1109_TSP_2022_3182883
crossref_primary_10_1109_TAC_2022_3196627
crossref_primary_10_1109_TSP_2021_3086579
crossref_primary_10_1016_j_automatica_2022_110726
crossref_primary_10_1109_TAC_2020_2977940
crossref_primary_10_1109_TSP_2020_3046464
crossref_primary_10_1109_LCSYS_2020_3001998
crossref_primary_10_1109_MSP_2020_2970170
crossref_primary_10_1109_TAC_2025_3540423
crossref_primary_10_1109_TSP_2020_2981204
crossref_primary_10_1109_TAC_2022_3173171
crossref_primary_10_1109_TCNS_2022_3213706
crossref_primary_10_1109_TSIPN_2023_3290397
crossref_primary_10_1109_TSP_2020_2996374
crossref_primary_10_1109_TAC_2023_3251851
crossref_primary_10_1137_20M1361158
crossref_primary_10_1016_j_ijepes_2023_109669
crossref_primary_10_1109_TCNS_2020_3024321
crossref_primary_10_1109_TAC_2025_3545711
crossref_primary_10_1016_j_ifacol_2023_10_117
crossref_primary_10_1109_TAC_2020_3009363
crossref_primary_10_1109_TAC_2023_3248487
crossref_primary_10_1109_TAC_2021_3056535
crossref_primary_10_1109_LCSYS_2023_3341100
crossref_primary_10_1109_TCNS_2022_3232519
crossref_primary_10_1007_s00521_023_09067_x
crossref_primary_10_1016_j_ifacol_2020_12_405
crossref_primary_10_1109_TCNS_2024_3354875
crossref_primary_10_1109_TSP_2021_3092347
crossref_primary_10_1137_19M1259973
crossref_primary_10_1109_TAC_2024_3522188
crossref_primary_10_1109_TSIPN_2025_3539004
crossref_primary_10_1109_TSIPN_2022_3190743
crossref_primary_10_1007_s10287_023_00492_w
crossref_primary_10_1137_20M138956X
crossref_primary_10_1109_TSP_2023_3240652
crossref_primary_10_1109_TIT_2022_3176253
crossref_primary_10_1016_j_sigpro_2023_109345
crossref_primary_10_1007_s10898_022_01221_4
crossref_primary_10_1137_24M1661455
crossref_primary_10_1109_TAC_2025_3555375
crossref_primary_10_1109_TCNS_2024_3354882
crossref_primary_10_1109_TAC_2024_3520513
crossref_primary_10_1109_TSP_2022_3194369
crossref_primary_10_1109_LCSYS_2022_3231223
crossref_primary_10_1007_s40305_025_00583_2
crossref_primary_10_1109_TSIPN_2023_3239698
crossref_primary_10_1109_LCSYS_2020_2971835
crossref_primary_10_1080_10556788_2023_2189713
Cites_doi 10.1198/016214501753382273
10.1038/nature04296
10.1137/S1052623497331063
10.1109/TSP.2013.2293126
10.1109/TAC.2014.2364096
10.1561/2200000051
10.1109/TSP.2015.2461520
10.1007/s10107-016-1072-9
10.1016/j.ejor.2014.11.031
10.1137/16M1084754
10.1137/14096668X
10.1109/TAC.2012.2209984
10.1109/TAC.2010.2041686
10.1109/TSP.2016.2544743
10.1109/TSP.2016.2637317
10.1109/TSP.2011.2146776
10.1109/TSP.2009.2033729
10.1109/TSP.2014.2367458
10.1109/TAC.2007.910665
10.1007/s10107-015-0892-3
10.1109/TSP.2015.2399858
10.1109/TAC.2009.2031203
10.1109/TSP.2012.2198470
10.1109/TAC.2012.2228038
10.1109/TAC.2014.2298712
10.1109/TSIPN.2016.2613678
10.1109/TAC.2008.2009515
10.1137/16M1080173
10.1109/78.738251
10.1109/TSIPN.2016.2524588
10.1137/16M1084316
10.1109/GlobalSIP.2015.7418306
10.1109/TAC.2017.2685559
10.1109/CAMSAP.2015.7383778
10.1109/CDC.2016.7798277
10.1109/CDC.2016.7798263
10.1109/ACC.2010.5530578
10.1109/ICASSP.2017.7952916
10.1109/GlobalSIP.2013.6736937
10.1109/CDC.2015.7402509
10.1080/10618600.1998.10474784
10.1109/ICASSP.2016.7472453
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019
Mathematical Programming is a copyright of Springer, (2019). All Rights Reserved.
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019
– notice: Mathematical Programming is a copyright of Springer, (2019). All Rights Reserved.
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10107-018-01357-w
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 544
ExternalDocumentID 10_1007_s10107_018_01357_w
GrantInformation_xml – fundername: Division of Computing and Communication Foundations
  grantid: 1564044
  funderid: http://dx.doi.org/10.13039/100000143
– fundername: Division of Electrical, Communications and Cyber Systems
  grantid: CAREER 1555850
  funderid: http://dx.doi.org/10.13039/100000148
– fundername: Office of Naval Research Global
  grantid: N00014-16-1-2244
  funderid: http://dx.doi.org/10.13039/100007297
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
6TJ
78A
7WY
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGNMA
BPHCQ
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6~
K7-
KDC
KOV
LAS
LLZTM
M0C
M2P
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PROAC
PT4
PT5
Q2X
QOK
QOS
QWB
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
~02
~8M
~EX
--K
-Y2
1B1
1OL
1SB
28-
2P1
2VQ
5QI
88I
8AO
8FE
8FG
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABQSL
ABRTQ
ABULA
ABUWG
ACBXY
ACSTC
ADHKG
ADXHL
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFFHD
AFFNX
AFGCZ
AFHIU
AFKRA
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
AMVHM
ARAPS
ATHPR
AYFIA
AZQEC
BBWZM
BGLVJ
CAG
CCPQU
CITATION
COF
DWQXO
FRNLG
GNUQQ
H~9
K6V
KOW
L6V
M7S
N2Q
NDZJH
NQ-
O9-
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PTHSS
R4E
RNI
RPZ
RZK
S1Z
S26
S28
SCLPG
T16
UZXMN
VFIZW
XPP
ZWQNP
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c347t-1bd9fb498b82d280f2935e3c2ea6515283c0c814c59c115c946bcd22fc2fce3a3
IEDL.DBID RSV
ISICitedReferencesCount 114
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000471047200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Thu Sep 25 00:41:12 EDT 2025
Thu Sep 25 01:05:51 EDT 2025
Tue Nov 18 20:53:24 EST 2025
Sat Nov 29 03:34:01 EST 2025
Fri Feb 21 02:32:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords 90C90
65K10
91A10
65K15
49M27
90C33
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-1bd9fb498b82d280f2935e3c2ea6515283c0c814c59c115c946bcd22fc2fce3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6453-6870
PQID 2202666863
PQPubID 25307
PageCount 48
ParticipantIDs proquest_journals_2238023615
proquest_journals_2202666863
crossref_citationtrail_10_1007_s10107_018_01357_w
crossref_primary_10_1007_s10107_018_01357_w
springer_journals_10_1007_s10107_018_01357_w
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Rao, Kreutz-Delgado (CR34) 1999; 47
Nedic, Olshevsky (CR27) 2015; 60
CR33
Scutari, Facchinei, Lampariello (CR36) 2017; 65
Fu (CR19) 1998; 7
Facchinei, Lampariello, Scutari (CR15) 2017; 164
Scutari, Facchinei, Song, Palomar, Pang (CR37) 2014; 62
Jakovetić, Xavier, Moura (CR23) 2014; 59
Bianchi, Jakubowicz (CR4) 2013; 58
Bottou, Curtis, Nocedal (CR6) 2018; 60
CR7
CR49
Nedich, Olshevsky, Ozdaglar, Tsitsiklis (CR29) 2009; 54
Bild (CR5) 2006; 439
CR46
CR45
Shi, Ling, Wu, Yin (CR38) 2015; 25
CR43
CR42
CR41
Friedman, Hastie, Tibshirani (CR18) 2009
CR40
Zhu, Martínez (CR54) 2013; 58
Chen, Sayed (CR11) 2012; 60
Jakovetic, Xavier, Moura (CR22) 2011; 59
Nedich, Olshevsky, Shi (CR30) 2017; 27
Nedić, Ozdaglar, Parrilo (CR28) 2010; 55
Chang (CR9) 2014; 64
CR14
Weston, Elisseeff, Schölkopf, Tipping (CR47) 2003; 3
CR13
CR53
CR52
CR51
CR50
Shi, Ling, Wu, Yin (CR39) 2015; 63
Di Lorenzo, Scutari (CR12) 2016; 2
Nedich, Ozdaglar (CR31) 2009; 54
Chang, Hong, Wang (CR10) 2015; 63
Cattivelli, Sayed (CR8) 2010; 58
Mokhtari, Shi, Ling, Ribeiro (CR26) 2016; 2
Palomar, Chiang (CR32) 2007; 52
CR25
Ahn, Pang, Xin (CR1) 2017; 27
CR24
Wright (CR48) 2015; 151
Thi, Dinh, Le, Vo (CR44) 2015; 244
CR21
CR20
Bertsekas (CR2) 1999
Bertsekas, Tsitsiklis (CR3) 2000; 10
Fan, Li (CR17) 2001; 96
Sayed (CR35) 2014; 7
Facchinei, Scutari, Sagratella (CR16) 2015; 63
J Fan (1357_CR17) 2001; 96
DP Bertsekas (1357_CR3) 2000; 10
A Nedich (1357_CR30) 2017; 27
G Scutari (1357_CR36) 2017; 65
1357_CR40
1357_CR41
1357_CR46
G Scutari (1357_CR37) 2014; 62
1357_CR49
1357_CR42
1357_CR43
FS Cattivelli (1357_CR8) 2010; 58
1357_CR45
DP Palomar (1357_CR32) 2007; 52
D Jakovetić (1357_CR23) 2014; 59
M Ahn (1357_CR1) 2017; 27
L Bottou (1357_CR6) 2018; 60
TH Chang (1357_CR10) 2015; 63
A Nedich (1357_CR29) 2009; 54
W Shi (1357_CR39) 2015; 63
TH Chang (1357_CR9) 2014; 64
A Nedić (1357_CR28) 2010; 55
DP Bertsekas (1357_CR2) 1999
1357_CR50
AH Bild (1357_CR5) 2006; 439
1357_CR51
1357_CR52
1357_CR7
J Chen (1357_CR11) 2012; 60
1357_CR13
1357_CR14
J Friedman (1357_CR18) 2009
1357_CR53
A Nedic (1357_CR27) 2015; 60
A Nedich (1357_CR31) 2009; 54
W Shi (1357_CR38) 2015; 25
J Weston (1357_CR47) 2003; 3
M Zhu (1357_CR54) 2013; 58
1357_CR24
1357_CR25
AH Sayed (1357_CR35) 2014; 7
1357_CR20
1357_CR21
P Di Lorenzo (1357_CR12) 2016; 2
F Facchinei (1357_CR16) 2015; 63
SJ Wright (1357_CR48) 2015; 151
BD Rao (1357_CR34) 1999; 47
WJ Fu (1357_CR19) 1998; 7
P Bianchi (1357_CR4) 2013; 58
F Facchinei (1357_CR15) 2017; 164
A Mokhtari (1357_CR26) 2016; 2
D Jakovetic (1357_CR22) 2011; 59
1357_CR33
HL Thi (1357_CR44) 2015; 244
References_xml – ident: CR45
– volume: 96
  start-page: 1348
  issue: 456
  year: 2001
  end-page: 1360
  ident: CR17
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214501753382273
– volume: 439
  start-page: 353
  issue: 7074
  year: 2006
  ident: CR5
  article-title: Oncogenic pathway signatures in human cancers as a guide to targeted therapies
  publication-title: Nature
  doi: 10.1038/nature04296
– volume: 10
  start-page: 627
  issue: 3
  year: 2000
  end-page: 642
  ident: CR3
  article-title: Gradient convergence in gradient methods with errors
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623497331063
– volume: 62
  start-page: 641
  issue: 3
  year: 2014
  end-page: 656
  ident: CR37
  article-title: Decomposition by partial linearization: parallel optimization of multi-agent systems
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2293126
– ident: CR49
– volume: 60
  start-page: 601
  issue: 3
  year: 2015
  end-page: 615
  ident: CR27
  article-title: Distributed optimization over time-varying directed graphs
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2014.2364096
– volume: 7
  start-page: 311
  issue: 4–5
  year: 2014
  end-page: 801
  ident: CR35
  article-title: Adaptation, learning, and optimization over networks
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000051
– ident: CR51
– volume: 63
  start-page: 6013
  issue: 22
  year: 2015
  end-page: 6023
  ident: CR39
  article-title: A proximal gradient algorithm for decentralized composite optimization
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2015.2461520
– volume: 164
  start-page: 55
  issue: 1–2
  year: 2017
  end-page: 90
  ident: CR15
  article-title: Feasible methods for nonconvex nonsmooth problems with applications in green communications
  publication-title: Math. Program.
  doi: 10.1007/s10107-016-1072-9
– volume: 244
  start-page: 26
  issue: 1
  year: 2015
  end-page: 46
  ident: CR44
  article-title: DC approximation approaches for sparse optimization
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2014.11.031
– volume: 27
  start-page: 1637
  issue: 3
  year: 2017
  end-page: 1665
  ident: CR1
  article-title: Difference-of-convex learning: directional stationarity, optimality, and sparsity
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M1084754
– volume: 25
  start-page: 944
  issue: 2
  year: 2015
  end-page: 966
  ident: CR38
  article-title: EXTRA: an exact first-order algorithm for decentralized consensus optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/14096668X
– volume: 58
  start-page: 391
  issue: 2
  year: 2013
  end-page: 405
  ident: CR4
  article-title: Convergence of a multi-agent projected stochastic gradient algorithm for non-convex optimization
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2012.2209984
– ident: CR25
– ident: CR42
– ident: CR21
– ident: CR46
– volume: 55
  start-page: 922
  issue: 4
  year: 2010
  end-page: 938
  ident: CR28
  article-title: Constrained consensus and optimization in multi-agent networks
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2010.2041686
– volume: 64
  start-page: 3719
  issue: 14
  year: 2014
  end-page: 3734
  ident: CR9
  article-title: A proximal dual consensus ADMM method for multi-agent constrained optimization
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2544743
– ident: CR50
– volume: 65
  start-page: 1929
  issue: 8
  year: 2017
  end-page: 1944
  ident: CR36
  article-title: Parallel and distributed methods for constrained nonconvex optimization. Part I: theory
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2637317
– volume: 59
  start-page: 3889
  issue: 8
  year: 2011
  end-page: 3902
  ident: CR22
  article-title: Cooperative convex optimization in networked systems: augmented Lagrangian algorithms with directed gossip communication
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2011.2146776
– volume: 7
  start-page: 397
  issue: 3
  year: 1998
  end-page: 416
  ident: CR19
  article-title: Penalized regressions: the bridge versus the lasso
  publication-title: J. Comput. Graph. Stat.
– year: 1999
  ident: CR2
  publication-title: Nonlinear Programming
– volume: 3
  start-page: 1439
  year: 2003
  end-page: 1461
  ident: CR47
  article-title: Use of the zero-norm with linear models and kernel methods
  publication-title: J. Mach. Learn. Res.
– volume: 58
  start-page: 1035
  issue: 3
  year: 2010
  end-page: 1048
  ident: CR8
  article-title: Diffusion LMS strategies for distributed estimation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2033729
– volume: 63
  start-page: 482
  issue: 2
  year: 2015
  end-page: 497
  ident: CR10
  article-title: Multi-agent distributed optimization via inexact consensus ADMM
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2367458
– volume: 52
  start-page: 2254
  issue: 12
  year: 2007
  end-page: 2269
  ident: CR32
  article-title: Alternative distributed algorithms for network utility maximization: framework and applications
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2007.910665
– volume: 151
  start-page: 3
  issue: 1
  year: 2015
  end-page: 34
  ident: CR48
  article-title: Coordinate descent algorithms
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0892-3
– ident: CR43
– ident: CR14
– ident: CR53
– volume: 63
  start-page: 1874
  issue: 7
  year: 2015
  end-page: 1889
  ident: CR16
  article-title: Parallel selective algorithms for nonconvex big data optimization
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2015.2399858
– volume: 54
  start-page: 2506
  issue: 11
  year: 2009
  end-page: 2517
  ident: CR29
  article-title: On distributed averaging algorithms and quantization effects
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2009.2031203
– volume: 60
  start-page: 4289
  issue: 8
  year: 2012
  end-page: 4305
  ident: CR11
  article-title: Diffusion adaptation strategies for distributed optimization and learning over networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2012.2198470
– ident: CR33
– volume: 58
  start-page: 1534
  issue: 6
  year: 2013
  end-page: 1539
  ident: CR54
  article-title: An approximate dual subgradient algorithm for multi-agent non-convex optimization
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2012.2228038
– ident: CR40
– volume: 59
  start-page: 1131
  issue: 5
  year: 2014
  end-page: 1146
  ident: CR23
  article-title: Fast distributed gradient methods
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2014.2298712
– volume: 2
  start-page: 507
  issue: 4
  year: 2016
  end-page: 522
  ident: CR26
  article-title: A decentralized second-order method with exact linear convergence rate for consensus optimization
  publication-title: IEEE Trans. Signal Inf. Process. Netw.
  doi: 10.1109/TSIPN.2016.2613678
– volume: 54
  start-page: 48
  issue: 1
  year: 2009
  end-page: 61
  ident: CR31
  article-title: Distributed subgradient methods for multi-agent optimization
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2008.2009515
– volume: 60
  start-page: 223
  issue: 2
  year: 2018
  end-page: 311
  ident: CR6
  article-title: Optimization methods for large-scale machine learning
  publication-title: SIAM Rev.
  doi: 10.1137/16M1080173
– volume: 47
  start-page: 187
  issue: 1
  year: 1999
  end-page: 200
  ident: CR34
  article-title: An affine scaling methodology for best basis selection
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.738251
– ident: CR52
– ident: CR13
– volume: 2
  start-page: 120
  issue: 2
  year: 2016
  end-page: 136
  ident: CR12
  article-title: NEXT: in-network nonconvex optimization
  publication-title: IEEE Trans. Signal Inf. Process. Netw.
  doi: 10.1109/TSIPN.2016.2524588
– ident: CR7
– volume: 27
  start-page: 2597
  issue: 4
  year: 2017
  end-page: 2633
  ident: CR30
  article-title: Achieving geometric convergence for distributed optimization over time-varying graphs
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M1084316
– ident: CR41
– ident: CR24
– year: 2009
  ident: CR18
  publication-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics
– ident: CR20
– ident: 1357_CR25
  doi: 10.1109/GlobalSIP.2015.7418306
– volume: 3
  start-page: 1439
  year: 2003
  ident: 1357_CR47
  publication-title: J. Mach. Learn. Res.
– volume: 54
  start-page: 48
  issue: 1
  year: 2009
  ident: 1357_CR31
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2008.2009515
– ident: 1357_CR42
– volume: 151
  start-page: 3
  issue: 1
  year: 2015
  ident: 1357_CR48
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0892-3
– volume: 27
  start-page: 1637
  issue: 3
  year: 2017
  ident: 1357_CR1
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M1084754
– volume: 10
  start-page: 627
  issue: 3
  year: 2000
  ident: 1357_CR3
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623497331063
– volume: 58
  start-page: 1035
  issue: 3
  year: 2010
  ident: 1357_CR8
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2033729
– volume: 2
  start-page: 120
  issue: 2
  year: 2016
  ident: 1357_CR12
  publication-title: IEEE Trans. Signal Inf. Process. Netw.
  doi: 10.1109/TSIPN.2016.2524588
– volume: 59
  start-page: 1131
  issue: 5
  year: 2014
  ident: 1357_CR23
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2014.2298712
– volume: 54
  start-page: 2506
  issue: 11
  year: 2009
  ident: 1357_CR29
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2009.2031203
– volume: 47
  start-page: 187
  issue: 1
  year: 1999
  ident: 1357_CR34
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.738251
– volume: 63
  start-page: 1874
  issue: 7
  year: 2015
  ident: 1357_CR16
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2015.2399858
– volume: 58
  start-page: 391
  issue: 2
  year: 2013
  ident: 1357_CR4
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2012.2209984
– ident: 1357_CR45
  doi: 10.1109/TAC.2017.2685559
– ident: 1357_CR53
– volume: 63
  start-page: 482
  issue: 2
  year: 2015
  ident: 1357_CR10
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2367458
– volume: 63
  start-page: 6013
  issue: 22
  year: 2015
  ident: 1357_CR39
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2015.2461520
– volume-title: Nonlinear Programming
  year: 1999
  ident: 1357_CR2
– volume: 2
  start-page: 507
  issue: 4
  year: 2016
  ident: 1357_CR26
  publication-title: IEEE Trans. Signal Inf. Process. Netw.
  doi: 10.1109/TSIPN.2016.2613678
– volume: 65
  start-page: 1929
  issue: 8
  year: 2017
  ident: 1357_CR36
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2637317
– ident: 1357_CR43
– ident: 1357_CR40
– volume: 25
  start-page: 944
  issue: 2
  year: 2015
  ident: 1357_CR38
  publication-title: SIAM J. Optim.
  doi: 10.1137/14096668X
– volume: 64
  start-page: 3719
  issue: 14
  year: 2014
  ident: 1357_CR9
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2544743
– volume: 60
  start-page: 223
  issue: 2
  year: 2018
  ident: 1357_CR6
  publication-title: SIAM Rev.
  doi: 10.1137/16M1080173
– volume: 164
  start-page: 55
  issue: 1–2
  year: 2017
  ident: 1357_CR15
  publication-title: Math. Program.
  doi: 10.1007/s10107-016-1072-9
– ident: 1357_CR50
– ident: 1357_CR13
  doi: 10.1109/CAMSAP.2015.7383778
– ident: 1357_CR49
  doi: 10.1109/CDC.2016.7798277
– volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics
  year: 2009
  ident: 1357_CR18
– volume: 52
  start-page: 2254
  issue: 12
  year: 2007
  ident: 1357_CR32
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2007.910665
– volume: 60
  start-page: 4289
  issue: 8
  year: 2012
  ident: 1357_CR11
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2012.2198470
– ident: 1357_CR33
  doi: 10.1109/CDC.2016.7798263
– ident: 1357_CR20
  doi: 10.1109/ACC.2010.5530578
– ident: 1357_CR41
  doi: 10.1109/ICASSP.2017.7952916
– ident: 1357_CR46
  doi: 10.1109/GlobalSIP.2013.6736937
– ident: 1357_CR21
– volume: 59
  start-page: 3889
  issue: 8
  year: 2011
  ident: 1357_CR22
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2011.2146776
– ident: 1357_CR52
  doi: 10.1109/CDC.2015.7402509
– volume: 60
  start-page: 601
  issue: 3
  year: 2015
  ident: 1357_CR27
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2014.2364096
– volume: 439
  start-page: 353
  issue: 7074
  year: 2006
  ident: 1357_CR5
  publication-title: Nature
  doi: 10.1038/nature04296
– volume: 7
  start-page: 397
  issue: 3
  year: 1998
  ident: 1357_CR19
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1080/10618600.1998.10474784
– volume: 96
  start-page: 1348
  issue: 456
  year: 2001
  ident: 1357_CR17
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214501753382273
– volume: 7
  start-page: 311
  issue: 4–5
  year: 2014
  ident: 1357_CR35
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000051
– ident: 1357_CR51
– volume: 58
  start-page: 1534
  issue: 6
  year: 2013
  ident: 1357_CR54
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2012.2228038
– volume: 62
  start-page: 641
  issue: 3
  year: 2014
  ident: 1357_CR37
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2293126
– ident: 1357_CR14
  doi: 10.1109/ICASSP.2016.7472453
– volume: 55
  start-page: 922
  issue: 4
  year: 2010
  ident: 1357_CR28
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2010.2041686
– volume: 244
  start-page: 26
  issue: 1
  year: 2015
  ident: 1357_CR44
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2014.11.031
– ident: 1357_CR24
– ident: 1357_CR7
– volume: 27
  start-page: 2597
  issue: 4
  year: 2017
  ident: 1357_CR30
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M1084316
SSID ssj0001388
Score 2.6313827
Snippet This paper considers nonconvex distributed constrained optimization over networks, modeled as directed (possibly time-varying) graphs. We introduce the first...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 497
SubjectTerms Algorithms
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Convergence
Economic models
Engineering education
Full Length Paper
Graph theory
Machine learning
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical models
Mathematics
Mathematics and Statistics
Mathematics of Computing
Nonlinear programming
Numerical Analysis
Optimization
Theoretical
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgMMDAN6JQUAY2sEjifNgTQkAFQ6sOIHWLnIsjVYK2NKXl53OXOi0gtQtSlsSJ4vic87N99x5jl16sQ-nGFIfjah5o1-VaZTFXwtXGz3wf0pnYRNxuy25XdeyCW2HDKiufWDrqbAC0Rn7j4ywdobaMxO3wg5NqFO2uWgmNdbaByMajkK6W35l7Yk9IWUm2Ek6wSTM2dc4rgy4plEuEMZ_-HpgWaPPPBmk57jR3_1vjPbZjEadzN-si-2zN9A_Y9g8eQjxrzclbi0P2_EBkuqSDZTKnP-iXgelfDhCSJEEJvDpAR_NuMzgdCgJ1SKOeT_SIsqacrFfyYBdH7LX5-HL_xK3iAgcRxGPupZnK00DJVKKdpJsjGAiNAN9okkxHKAIuSC-AUAE2OKggSgENmgMeRmhxzGpYL3PCHD-PKGnWTZWCQOIsNDeBBi-HUOooj7I686rmTsDSkdNHvCULImUyUYImSkoTJdM6u5o_M5yRcay8u1HZJbE_ZpEsjLKkWBAjHsK8OruuDL8oXv6y09UvO2NbiLTULM63wWrj0ac5Z5swGfeK0UXZa78BB9jyJQ
  priority: 102
  providerName: ProQuest
Title Distributed nonconvex constrained optimization over time-varying digraphs
URI https://link.springer.com/article/10.1007/s10107-018-01357-w
https://www.proquest.com/docview/2202666863
https://www.proquest.com/docview/2238023615
Volume 176
WOSCitedRecordID wos000471047200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB68HvTBW1yPpQ--aSBt2iZ59EQRl8VbX0qapiDoKtv1-PnOdNtdFRUUykCbtE0naeYLmZkPYMOXJlJckh8ONyw0nDOjM8m04MYFWRDYtE82IVstdX2t21VQWFF7u9dbkuVM_SHYzS_dJMn5SkSSvY7COJo7RYQNp2eXg_nXF0rVRK2EDqpQme-f8dkcDTHml23R0toczPyvnbMwXaFLb7s_HOZgxHXmYepDzkE8Oxkkai0W4GiPEucS55XLvM5jp3RCf_MsoUYij8CrjzipPFTRmh45fHrER89eTJcipLzsrsx5XSzCxcH--e4hq9gVmBWh7DE_zXSehlqlCvtE8RwNf-SEDZwhenSEHZZb5Yc20hZho9VhnFrsvNzi4YQRSzCG7XLL4AV5TAGyPNXahgpXnLkLjfVzGykT53HWAL9WcmKr1OP0EffJMGkyKS1BpSWl0pLXBmwO7nnqJ974tfZa3XdJ9RMWSRDgAjOOVSx-KBaU_Q4hXQO26q4cFv_8spW_VV-FSURZuu_juwZjve6zW4cJ-9K7K7pNGJVXN00Y39lvtU_x7FgylCd8l2TQJinPULaj22Y5zt8BR1HwGg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7BUolygD6ouoW2ObSn1iKx87APqKp4iBWw4kAlbqkzcSQk2KWbZRf-VH8jM3nslkpw44CUi-MktuPJzOd45huAL0FiI-0n7IfjWxFa3xfW5IkwyrdO5lJiViebSPp9fXZmThbgbxsLw26VrU6sFHU-RP5HviVplU5QW8fqx9UfwVmjeHe1TaFRi8Whu53Skq3c7u3S_H6Vcn_vdOdANFkFBKowGYsgy02RhUZnmvqi_YIMXuQUSmc5LTiZW_RRByFGBgkuoQnjDKnTBdLhlFX03EVYCplZjF0F5clM8wdK6zZFLOOSJkinCdULKidPdh1TUSKm9w3hHN3-tyFb2bn9tef2hl7BaoOovZ_1J_AaFtzgDaz8w7NIpeMZOW35Fnq7TBbMeb5c7g2Gg8rx_sZDRsqcMIPODkmRXjYRqh47uXpUdmJiRxwV5uXnFc93uQ6_nmRk76BD_XLvwZNFzEHBfmYMhppW2YULLQYFRtrGRZx3IWinN8WGbp0HcZHOiaJZJFISibQSiXTahW-ze65qspFHr95s5SBtFE-ZzoXggWrFjH8EY7vwvRW0efXDjX14vLHPsHxwenyUHvX6hxvwklClqX2aN6EzHl27j_ACJ-PzcvSp-mI8-P3UAngH6iFPUg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEH7-J0ah9807K06SV5FOdwqGPghb2VNE1hoNtY6-bPN6eXbYoTROhLm7RNz0mTL-Q73wE4t3zhMuIjD4cI0xGEmIJHvskpEcqObFuGebIJv91m3S7vzEXxZ2z3cksyj2lAlaZ-Wh9GcX0u8M3KKJNIxKKub06WYcVBIj2u1x9fpmOxRRkrk7YiUijCZn5-xtepaYY3v22RZjNPc-v_bd6GzQJ1Gld5N9mBJdXfhY05LUJ99jAVcE32oNVAQV3MhaUioz_oZ-T0D0MimsSkEvrqQA82b0UUp4FEUAPz1JtjMcLIKSPqZVrYyT48N2-erm_NIuuCKanjp6YVRjwOHc5Cpn3FSKwBgauotJXAtOkajkgimeVIl0sNJyV3vFBqp8ZSH4oKegAV3S51CIYdexg4S0LOpcP0SjRWjpBWLF0mvNiLqmCVBg9kIUmOH_EazMSU0WiBNlqQGS2YVOFies8wF-T4tXat9GNQ_JxJYNt64el5zKMLiimq4mmoV4XL0q2z4sUvO_pb9TNY6zSawX2rfXcM6xqI8ZwGXINKOnpXJ7Aqx2kvGZ1mXfoTIGn0pw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+nonconvex+constrained+optimization+over+time-varying+digraphs&rft.jtitle=Mathematical+programming&rft.au=Scutari%2C+Gesualdo&rft.au=Sun%2C+Ying&rft.date=2019-07-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=176&rft.issue=1-2&rft.spage=497&rft.epage=544&rft_id=info:doi/10.1007%2Fs10107-018-01357-w&rft.externalDocID=10_1007_s10107_018_01357_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon