Robust estimation of fixed effect parameters and variances of linear mixed models: the minimum density power divergence approach

Many real-life data sets can be analyzed using linear mixed models (LMMs). Since these are ordinarily based on normality assumptions, under small deviations from the model the inference can be highly unstable when the associated parameters are estimated by classical methods. On the other hand, the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in statistical analysis : AStA : a journal of the German Statistical Society Jg. 108; H. 1; S. 127 - 157
Hauptverfasser: Saraceno, Giovanni, Ghosh, Abhik, Basu, Ayanendranath, Agostinelli, Claudio
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2024
Springer Nature B.V
Schlagworte:
ISSN:1863-8171, 1863-818X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Many real-life data sets can be analyzed using linear mixed models (LMMs). Since these are ordinarily based on normality assumptions, under small deviations from the model the inference can be highly unstable when the associated parameters are estimated by classical methods. On the other hand, the density power divergence (DPD) family, which measures the discrepancy between two probability density functions, has been successfully used to build robust estimators with high stability associated with minimal loss in efficiency. Here, we develop the minimum DPD estimator (MDPDE) for independent but non-identically distributed observations for LMMs according to the variance components model. We prove that the theoretical properties hold, including consistency and asymptotic normality of the estimators. The influence function and sensitivity measures are computed to explore the robustness properties. As a data-based choice of the MDPDE tuning parameter α is very important, we propose two candidates as “optimal” choices, where optimality is in the sense of choosing the strongest downweighting that is necessary for the particular data set. We conduct a simulation study comparing the proposed MDPDE, for different values of α , with S-estimators, M-estimators and the classical maximum likelihood estimator, considering different levels of contamination. Finally, we illustrate the performance of our proposal on a real-data example.
AbstractList Many real-life data sets can be analyzed using linear mixed models (LMMs). Since these are ordinarily based on normality assumptions, under small deviations from the model the inference can be highly unstable when the associated parameters are estimated by classical methods. On the other hand, the density power divergence (DPD) family, which measures the discrepancy between two probability density functions, has been successfully used to build robust estimators with high stability associated with minimal loss in efficiency. Here, we develop the minimum DPD estimator (MDPDE) for independent but non-identically distributed observations for LMMs according to the variance components model. We prove that the theoretical properties hold, including consistency and asymptotic normality of the estimators. The influence function and sensitivity measures are computed to explore the robustness properties. As a data-based choice of the MDPDE tuning parameter α is very important, we propose two candidates as “optimal” choices, where optimality is in the sense of choosing the strongest downweighting that is necessary for the particular data set. We conduct a simulation study comparing the proposed MDPDE, for different values of α, with S-estimators, M-estimators and the classical maximum likelihood estimator, considering different levels of contamination. Finally, we illustrate the performance of our proposal on a real-data example.
Many real-life data sets can be analyzed using linear mixed models (LMMs). Since these are ordinarily based on normality assumptions, under small deviations from the model the inference can be highly unstable when the associated parameters are estimated by classical methods. On the other hand, the density power divergence (DPD) family, which measures the discrepancy between two probability density functions, has been successfully used to build robust estimators with high stability associated with minimal loss in efficiency. Here, we develop the minimum DPD estimator (MDPDE) for independent but non-identically distributed observations for LMMs according to the variance components model. We prove that the theoretical properties hold, including consistency and asymptotic normality of the estimators. The influence function and sensitivity measures are computed to explore the robustness properties. As a data-based choice of the MDPDE tuning parameter $$\alpha$$ α is very important, we propose two candidates as “optimal” choices, where optimality is in the sense of choosing the strongest downweighting that is necessary for the particular data set. We conduct a simulation study comparing the proposed MDPDE, for different values of $$\alpha$$ α , with S-estimators, M-estimators and the classical maximum likelihood estimator, considering different levels of contamination. Finally, we illustrate the performance of our proposal on a real-data example.
Many real-life data sets can be analyzed using linear mixed models (LMMs). Since these are ordinarily based on normality assumptions, under small deviations from the model the inference can be highly unstable when the associated parameters are estimated by classical methods. On the other hand, the density power divergence (DPD) family, which measures the discrepancy between two probability density functions, has been successfully used to build robust estimators with high stability associated with minimal loss in efficiency. Here, we develop the minimum DPD estimator (MDPDE) for independent but non-identically distributed observations for LMMs according to the variance components model. We prove that the theoretical properties hold, including consistency and asymptotic normality of the estimators. The influence function and sensitivity measures are computed to explore the robustness properties. As a data-based choice of the MDPDE tuning parameter α is very important, we propose two candidates as “optimal” choices, where optimality is in the sense of choosing the strongest downweighting that is necessary for the particular data set. We conduct a simulation study comparing the proposed MDPDE, for different values of α , with S-estimators, M-estimators and the classical maximum likelihood estimator, considering different levels of contamination. Finally, we illustrate the performance of our proposal on a real-data example.
Author Saraceno, Giovanni
Basu, Ayanendranath
Ghosh, Abhik
Agostinelli, Claudio
Author_xml – sequence: 1
  givenname: Giovanni
  orcidid: 0000-0002-1753-2367
  surname: Saraceno
  fullname: Saraceno, Giovanni
  email: gsaracen@buffalo.edu
  organization: Department of Mathematics, University of Trento, Department of Biostatistics, University at Buffalo
– sequence: 2
  givenname: Abhik
  surname: Ghosh
  fullname: Ghosh, Abhik
  organization: Interdisciplinary Statistical Research Unit, Indian Statistical Institute
– sequence: 3
  givenname: Ayanendranath
  surname: Basu
  fullname: Basu, Ayanendranath
  organization: Interdisciplinary Statistical Research Unit, Indian Statistical Institute
– sequence: 4
  givenname: Claudio
  surname: Agostinelli
  fullname: Agostinelli, Claudio
  organization: Department of Mathematics, University of Trento
BookMark eNp9kM9LwzAUx4NMcJv-A54CnqtJ0zatNxn-goEgCt5Cmr5sHWtSk3a6nfzTzVbRm6c88j7f93ifCRoZawChc0ouKSH8ylNC8zgiMYsISTiLdkdoTPOMRTnN30a_NacnaOL9ipCMJjEdo69nW_a-w-C7upFdbQ22Guv6EyoMWoPqcCudbKAD57E0Fd5IV0ujwO_BdW1AOtwc-MZWsPbXuFtC-DF10ze4AuPrbotb-wEOV_UG3AJCGsu2dVaq5Sk61nLt4eznnaLXu9uX2UM0f7p_nN3MI8US3kW0ZBktyypmsS5zWqqMFwpyzlJgCeWcyVJpTTjNElmkrOAyDV1FZF7lhGcZm6KLYW5Y-96Hc8XK9s6ElSIu0uCiKCgPVDxQylnvHWjRuuDFbQUlYm9aDKZFMC0OpsUuhNgQ8gE2C3B_o_9JfQNkdIW4
Cites_doi 10.2307/2532192
10.1198/10618600152628059
10.2307/2334137
10.1007/s11634-020-00430-7
10.1002/0471722073
10.1080/01621459.1997.10473612
10.18637/jss.v075.i06
10.2307/2533273
10.1198/016214504000000340
10.1016/S0169-7161(97)15015-5
10.1111/j.1467-842X.1993.tb01311.x
10.1093/biomet/85.3.549
10.1007/s11749-015-0445-3
10.1201/b10956
10.1198/016214505000000772
10.1111/biom.12890
10.1007/978-1-4419-9816-3_12
10.1002/sim.8377
10.1016/S0378-3758(96)00050-X
10.1177/0962280217738142
10.1080/01621459.2015.1115358
10.1080/01621459.1974.10482962
10.1111/1467-9868.00327
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s10182-023-00473-z
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Statistics
EISSN 1863-818X
EndPage 157
ExternalDocumentID 10_1007_s10182_023_00473_z
GrantInformation_xml – fundername: Università degli Studi di Trento
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
1N0
203
23M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9R
PF0
PT4
QOS
R89
R9I
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z81
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABRTQ
ADHKG
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c347t-1b361bbd232fb81bc679ce8735e341773abcff07164a95397a5e87c0a8d807663
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000960614700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1863-8171
IngestDate Mon Oct 06 16:31:09 EDT 2025
Sat Nov 29 03:15:04 EST 2025
Fri Feb 21 02:41:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 62G05
Linear mixed models
Minimum density power divergence estimator
Robustness
62G35
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-1b361bbd232fb81bc679ce8735e341773abcff07164a95397a5e87c0a8d807663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1753-2367
OpenAccessLink https://link.springer.com/10.1007/s10182-023-00473-z
PQID 2954219917
PQPubID 2043627
PageCount 31
ParticipantIDs proquest_journals_2954219917
crossref_primary_10_1007_s10182_023_00473_z
springer_journals_10_1007_s10182_023_00473_z
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Journal of the German Statistical Society
PublicationTitle Advances in statistical analysis : AStA : a journal of the German Statistical Society
PublicationTitleAbbrev AStA Adv Stat Anal
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References McCulloch, C.E., Searle, S.R.: Generalized, Linear, and Mixed Models. John Wiley & Sons, Wiley Series in Probability and Statistics (2001)
HugginsRMOn the robust analysis of variance components models for pedigree dataAust. J. Stat.19933514357123968310.1111/j.1467-842X.1993.tb01311.x
WelshAHRichardsonAM13 approaches to the robust estimation of mixed modelsHandbook Stat.19971534338410.1016/S0169-7161(97)15015-5
RichardsonAMWelshAHRobust restricted maximum likelihood in mixed linear modelsBiometrics19955141429143910.2307/2533273
HampelFRContributions to the Theory of Robust Estimation1968BerkeleyUniversity of California
PinheiroJCLiuCWuYNEfficient algorithms for robust estimation in linear mixed-effects models using the multivariate t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document} distributionJ. Comput. Graph. Stat.2001102249276193970010.1198/10618600152628059
ChristensenRMixed models and variance componentsPlane Answers to Complex Questions: The Theory of Linear Models2011New York, NYSpringer29133110.1007/978-1-4419-9816-3_12
YauKKWKukAYCRobust estimation in generalized linear mixed modelsJ. Royal Stat. Soc.2002641101117188184710.1111/1467-9868.00327
LangeKLLittleRJATaylorJMGRobust statistical modeling using the t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document} distributionJ. Am. Stat. Assoc.1989844088818961134486
Koller, M.: Robust estimation of linear mixed models. PhD thesis, ETH Zürich (2013)
HampelFRThe influence curve and its role in robust estimationJ. Am. Stat. Assoc.19746934638339336265710.1080/01621459.1974.10482962
Pinheiro, J., Bates, D., R Core Team: Nlme: Linear and Nonlinear Mixed Effects Models. (2022). R package version 3.1-157. https://CRAN.R-project.org/package=nlme
HugginsRMStaudteRGVariance components models for dependent cell populationsJ. Am. Stat. Assoc.1994894251929
BasuAHarrisIRHjortNJonesMCRobust and efficient estimation by minimizing a density power divergenceBiometrika1998853549559166587310.1093/biomet/85.3.549
CastillaEGhoshAMartinNPardoLRobust semiparametric inference for polytomous logistic regression with complex survey designAdv. Data Anal. Classificat.2021153701734430698010.1007/s11634-020-00430-7
KollerKrobustlmm: An R package for robust estimation of linear mixed-effects modelsJ. Stat. Softw.20167561242016fsts.book.....K10.18637/jss.v075.i06
StahelWAWelshAApproaches to robust estimation in the simplest variance components modelJ. Stat. Plan. Infer.1994572295319144024110.1016/S0378-3758(96)00050-X
PotthoffRFRoySNA generalized multivariate analysis of variance model useful especially for growth curve problemsBiometrika1964513/431332618106210.2307/2334137
Agostinelli, C., Yohai, V.J.: robustvarComp: Robust Estimation for Variance Component Models. (2019). R package version 0.1-6
GhoshABasuARobust and efficient estimation in the parametric proportional hazards model under random censoringStat. Med.2019382752835299403240410.1002/sim.837731660630
AgostinelliCYohaiVJComposite robust estimators for linear mixed modelsJ. Am. Stat. Assoc.20161115161764177436017341:CAS:528:DC%2BC2sXlsVKmug%3D%3D10.1080/01621459.2015.1115358
GhoshABasuARobust estimation in generalized linear models: The density power divergence approachTEST201625269290349351910.1007/s11749-015-0445-3
CoptSVictoria-FeserMPHigh breakdown inference in the mixed linear modelJ. Am. Stat. Assoc.20061012923001:CAS:528:DC%2BD2sXms1Oqsg%3D%3D10.1198/016214505000000772
GhoshABasuARobust estimation for independent non-homogeneous observations using density power divergence with applications to linear regressionElectr. J. Stat.20137242024563117102
RichardsonAMBounded influence estimation in the mixed linear modelJ. Am. Stat. Assoc.199792437154161143610410.1080/01621459.1997.10473612
R Core Team: R: A Language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2019). R Foundation for Statistical Computing
SinhaSKRobust analysis of generalized linear mixed modelsJ. Am. Stat. Assoc.200499466451460206283010.1198/016214504000000340
BasuAParkCShioyaHStatistical Inference: The Minimum Distance Approach2011Chapman and HallCRC Press10.1201/b10956
CastillaEGhoshAMartinNPardoLNew robust statistical procedures for the polytomous logistic regression modelsBiometrics201874412821291390814610.1111/biom.1289029772052
GhoshARobust inference under the beta regression model with application to health care studiesStat. Methods Med. Res.2019283871888392289610.1177/096228021773814229179655
HugginsRMA robust approach to the analysis of repeated measuresBiometrics1993493715720124348710.2307/2532192
A Ghosh (473_CR11) 2016; 25
A Ghosh (473_CR10) 2013; 7
S Copt (473_CR8) 2006; 101
AH Welsh (473_CR30) 1997; 15
E Castilla (473_CR6) 2021; 15
WA Stahel (473_CR29) 1994; 57
SK Sinha (473_CR28) 2004; 99
R Christensen (473_CR7) 2011
473_CR25
RM Huggins (473_CR16) 1993; 49
A Ghosh (473_CR9) 2019; 28
RM Huggins (473_CR17) 1994; 89
RF Potthoff (473_CR24) 1964; 51
KKW Yau (473_CR31) 2002; 64
RM Huggins (473_CR15) 1993; 35
AM Richardson (473_CR27) 1995; 51
A Basu (473_CR3) 1998; 85
E Castilla (473_CR5) 2018; 74
A Ghosh (473_CR12) 2019; 38
473_CR21
473_CR1
A Basu (473_CR4) 2011
FR Hampel (473_CR13) 1968
473_CR22
473_CR18
K Koller (473_CR19) 2016; 75
JC Pinheiro (473_CR23) 2001; 10
FR Hampel (473_CR14) 1974; 69
C Agostinelli (473_CR2) 2016; 111
AM Richardson (473_CR26) 1997; 92
KL Lange (473_CR20) 1989; 84
References_xml – reference: StahelWAWelshAApproaches to robust estimation in the simplest variance components modelJ. Stat. Plan. Infer.1994572295319144024110.1016/S0378-3758(96)00050-X
– reference: KollerKrobustlmm: An R package for robust estimation of linear mixed-effects modelsJ. Stat. Softw.20167561242016fsts.book.....K10.18637/jss.v075.i06
– reference: Pinheiro, J., Bates, D., R Core Team: Nlme: Linear and Nonlinear Mixed Effects Models. (2022). R package version 3.1-157. https://CRAN.R-project.org/package=nlme
– reference: BasuAParkCShioyaHStatistical Inference: The Minimum Distance Approach2011Chapman and HallCRC Press10.1201/b10956
– reference: CastillaEGhoshAMartinNPardoLNew robust statistical procedures for the polytomous logistic regression modelsBiometrics201874412821291390814610.1111/biom.1289029772052
– reference: PotthoffRFRoySNA generalized multivariate analysis of variance model useful especially for growth curve problemsBiometrika1964513/431332618106210.2307/2334137
– reference: WelshAHRichardsonAM13 approaches to the robust estimation of mixed modelsHandbook Stat.19971534338410.1016/S0169-7161(97)15015-5
– reference: R Core Team: R: A Language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2019). R Foundation for Statistical Computing
– reference: AgostinelliCYohaiVJComposite robust estimators for linear mixed modelsJ. Am. Stat. Assoc.20161115161764177436017341:CAS:528:DC%2BC2sXlsVKmug%3D%3D10.1080/01621459.2015.1115358
– reference: CoptSVictoria-FeserMPHigh breakdown inference in the mixed linear modelJ. Am. Stat. Assoc.20061012923001:CAS:528:DC%2BD2sXms1Oqsg%3D%3D10.1198/016214505000000772
– reference: BasuAHarrisIRHjortNJonesMCRobust and efficient estimation by minimizing a density power divergenceBiometrika1998853549559166587310.1093/biomet/85.3.549
– reference: RichardsonAMWelshAHRobust restricted maximum likelihood in mixed linear modelsBiometrics19955141429143910.2307/2533273
– reference: YauKKWKukAYCRobust estimation in generalized linear mixed modelsJ. Royal Stat. Soc.2002641101117188184710.1111/1467-9868.00327
– reference: Agostinelli, C., Yohai, V.J.: robustvarComp: Robust Estimation for Variance Component Models. (2019). R package version 0.1-6
– reference: GhoshARobust inference under the beta regression model with application to health care studiesStat. Methods Med. Res.2019283871888392289610.1177/096228021773814229179655
– reference: PinheiroJCLiuCWuYNEfficient algorithms for robust estimation in linear mixed-effects models using the multivariate t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document} distributionJ. Comput. Graph. Stat.2001102249276193970010.1198/10618600152628059
– reference: CastillaEGhoshAMartinNPardoLRobust semiparametric inference for polytomous logistic regression with complex survey designAdv. Data Anal. Classificat.2021153701734430698010.1007/s11634-020-00430-7
– reference: GhoshABasuARobust estimation in generalized linear models: The density power divergence approachTEST201625269290349351910.1007/s11749-015-0445-3
– reference: HugginsRMOn the robust analysis of variance components models for pedigree dataAust. J. Stat.19933514357123968310.1111/j.1467-842X.1993.tb01311.x
– reference: SinhaSKRobust analysis of generalized linear mixed modelsJ. Am. Stat. Assoc.200499466451460206283010.1198/016214504000000340
– reference: ChristensenRMixed models and variance componentsPlane Answers to Complex Questions: The Theory of Linear Models2011New York, NYSpringer29133110.1007/978-1-4419-9816-3_12
– reference: LangeKLLittleRJATaylorJMGRobust statistical modeling using the t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document} distributionJ. Am. Stat. Assoc.1989844088818961134486
– reference: RichardsonAMBounded influence estimation in the mixed linear modelJ. Am. Stat. Assoc.199792437154161143610410.1080/01621459.1997.10473612
– reference: HampelFRContributions to the Theory of Robust Estimation1968BerkeleyUniversity of California
– reference: GhoshABasuARobust estimation for independent non-homogeneous observations using density power divergence with applications to linear regressionElectr. J. Stat.20137242024563117102
– reference: HugginsRMA robust approach to the analysis of repeated measuresBiometrics1993493715720124348710.2307/2532192
– reference: McCulloch, C.E., Searle, S.R.: Generalized, Linear, and Mixed Models. John Wiley & Sons, Wiley Series in Probability and Statistics (2001)
– reference: GhoshABasuARobust and efficient estimation in the parametric proportional hazards model under random censoringStat. Med.2019382752835299403240410.1002/sim.837731660630
– reference: HampelFRThe influence curve and its role in robust estimationJ. Am. Stat. Assoc.19746934638339336265710.1080/01621459.1974.10482962
– reference: HugginsRMStaudteRGVariance components models for dependent cell populationsJ. Am. Stat. Assoc.1994894251929
– reference: Koller, M.: Robust estimation of linear mixed models. PhD thesis, ETH Zürich (2013)
– volume-title: Contributions to the Theory of Robust Estimation
  year: 1968
  ident: 473_CR13
– volume: 49
  start-page: 715
  issue: 3
  year: 1993
  ident: 473_CR16
  publication-title: Biometrics
  doi: 10.2307/2532192
– volume: 10
  start-page: 249
  issue: 2
  year: 2001
  ident: 473_CR23
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/10618600152628059
– volume: 51
  start-page: 313
  issue: 3/4
  year: 1964
  ident: 473_CR24
  publication-title: Biometrika
  doi: 10.2307/2334137
– volume: 15
  start-page: 701
  issue: 3
  year: 2021
  ident: 473_CR6
  publication-title: Adv. Data Anal. Classificat.
  doi: 10.1007/s11634-020-00430-7
– ident: 473_CR22
– ident: 473_CR21
  doi: 10.1002/0471722073
– volume: 92
  start-page: 154
  issue: 437
  year: 1997
  ident: 473_CR26
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1997.10473612
– volume: 75
  start-page: 1
  issue: 6
  year: 2016
  ident: 473_CR19
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v075.i06
– volume: 84
  start-page: 881
  issue: 408
  year: 1989
  ident: 473_CR20
  publication-title: J. Am. Stat. Assoc.
– volume: 51
  start-page: 1429
  issue: 4
  year: 1995
  ident: 473_CR27
  publication-title: Biometrics
  doi: 10.2307/2533273
– ident: 473_CR18
– volume: 99
  start-page: 451
  issue: 466
  year: 2004
  ident: 473_CR28
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214504000000340
– volume: 15
  start-page: 343
  year: 1997
  ident: 473_CR30
  publication-title: Handbook Stat.
  doi: 10.1016/S0169-7161(97)15015-5
– ident: 473_CR1
– volume: 7
  start-page: 2420
  year: 2013
  ident: 473_CR10
  publication-title: Electr. J. Stat.
– volume: 35
  start-page: 43
  issue: 1
  year: 1993
  ident: 473_CR15
  publication-title: Aust. J. Stat.
  doi: 10.1111/j.1467-842X.1993.tb01311.x
– volume: 85
  start-page: 549
  issue: 3
  year: 1998
  ident: 473_CR3
  publication-title: Biometrika
  doi: 10.1093/biomet/85.3.549
– volume: 25
  start-page: 269
  year: 2016
  ident: 473_CR11
  publication-title: TEST
  doi: 10.1007/s11749-015-0445-3
– volume-title: Statistical Inference: The Minimum Distance Approach
  year: 2011
  ident: 473_CR4
  doi: 10.1201/b10956
– volume: 101
  start-page: 292
  year: 2006
  ident: 473_CR8
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214505000000772
– volume: 74
  start-page: 1282
  issue: 4
  year: 2018
  ident: 473_CR5
  publication-title: Biometrics
  doi: 10.1111/biom.12890
– volume: 89
  start-page: 19
  issue: 425
  year: 1994
  ident: 473_CR17
  publication-title: J. Am. Stat. Assoc.
– start-page: 291
  volume-title: Plane Answers to Complex Questions: The Theory of Linear Models
  year: 2011
  ident: 473_CR7
  doi: 10.1007/978-1-4419-9816-3_12
– volume: 38
  start-page: 5283
  issue: 27
  year: 2019
  ident: 473_CR12
  publication-title: Stat. Med.
  doi: 10.1002/sim.8377
– ident: 473_CR25
– volume: 57
  start-page: 295
  issue: 2
  year: 1994
  ident: 473_CR29
  publication-title: J. Stat. Plan. Infer.
  doi: 10.1016/S0378-3758(96)00050-X
– volume: 28
  start-page: 871
  issue: 3
  year: 2019
  ident: 473_CR9
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/0962280217738142
– volume: 111
  start-page: 1764
  issue: 516
  year: 2016
  ident: 473_CR2
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2015.1115358
– volume: 69
  start-page: 383
  issue: 346
  year: 1974
  ident: 473_CR14
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1974.10482962
– volume: 64
  start-page: 101
  issue: 1
  year: 2002
  ident: 473_CR31
  publication-title: J. Royal Stat. Soc.
  doi: 10.1111/1467-9868.00327
SSID ssj0061421
Score 2.3086753
Snippet Many real-life data sets can be analyzed using linear mixed models (LMMs). Since these are ordinarily based on normality assumptions, under small deviations...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 127
SubjectTerms Asymptotic methods
Datasets
Divergence
Econometrics
Economics
Finance
Influence functions
Insurance
Management
Mathematical models
Mathematics and Statistics
Maximum likelihood estimators
Normality
Optimization
Original Paper
Parameter estimation
Probability density functions
Probability Theory and Stochastic Processes
Robustness
Statistics
Statistics for Business
Title Robust estimation of fixed effect parameters and variances of linear mixed models: the minimum density power divergence approach
URI https://link.springer.com/article/10.1007/s10182-023-00473-z
https://www.proquest.com/docview/2954219917
Volume 108
WOSCitedRecordID wos000960614700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1863-818X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061421
  issn: 1863-8171
  databaseCode: RSV
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60CvbioypWq-TgTQOb3bZJvYlYPBWpD3pbkt0EPGxbutuiPfnTndkHVdGDXvaSEJaZSb4vZOYbgHODnEJpvOQ4xD7eRgrLlbX4if2go20QSc_kzSbkYKBGo959WRSWVtnu1ZNkflJ_KnZDLswRYzhJHAZ8uQ4bCHeKtuPw4bk6fxFvimor1Q24ElKUpTI_r_EVjlYc89uzaI42_Z3__ecubJfskl0X4bAHa3bcgK2q-DhtQJ3IZaHNvA_vw4mZpxkjoY2igpFNHHMvrzZmRZ4HI2XwhDJmUqbHMVvgzZrCJKWJRFD1jCX5_LyjTnrFkE8ykitJ5gmLKTk-e2NT6sTGYsoAyaU_WSVkfgBP_dvHmztedmTgUdCWGRcm6Apj0I--M0h4o67sRVbJoGMRDaUMtImc8-gOpnsdpDq6g6ORp1WsPInk5hBq48nYHgGLYtEWTlMTWq-NhtPCaOF8X7gYDz5lmnBROSacFsIb4UpimUwcoonD3MThsgmtyndhuQnTkJ4wfUrtkk24rHy1Gv59teO_TT-Buo9Up8hMa0Etm83tKWxGC_Tn7CwPzg9fiOCE
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60CvXioyrWZw7eNLDZ3TapNxFFUYtold6WZDcBD33QbUV78qc7sw-qoge97GVDWGay-b6Qb74BODTIKZTGQ45D7OMhUliurMVH4gcNbYNYeiZrNiHbbdXttu6KorC0VLuXV5LZTv2p2A25MEeM4WRxGPDpPCyEiFgk5Lt_eCr3X8SbvNpKNQOuhBRFqczPc3yFoxnH_HYtmqHNxcr_vnMVlgt2yU7z5bAGc7Zfg2pZfJzWYInIZe7NvA7v9wMzSceMjDbyCkY2cMw9v9qE5ToPRs7gPVLMpEz3E_aCJ2taJikNJIKqR6yXjc866qQnDPkkI7uS3qTHEhLHj9_YkDqxsYQUIJn1JyuNzDfg8eK8c3bJi44MPA5COebCBE1hDObRdwYJb9yUrdgqGTQsoqGUgTaxcx6dwXSrgVRHN_Bt7GmVKE8iudmESn_Qt1vA4kSEwmlqQuuFGDgtjBbO94VLcONTpg5HZWKiYW68Ec0slinEEYY4ykIcTeuwW-YuKn7CNKIrTJ-kXbIOx2WuZq9_n237b8MPoHrZub2Jbq7a1zuw5CPtyVVqu1AZjyZ2DxbjF8ztaD9bqB_uheNo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH4aHWK98HPTOn75wG1YjZO2drkhoNoEqirYUG-RHdsSh6ZVk1ZbT_zpey9pVIbggLjkEsuK_By_78nf9z2AE4OYQmkscjzmPt5CCMuVc_iwYdTWLkpkYIpmE7LfV8Nhd_BExV-w3asryVLTQC5Nad6cWN98InxDXMwx33CyO4z4Yg0-tqhpENXrd_fVWYy5p1ReqU7ElZBiKZt5eY7_U9MKbz67Ii0yT2_r_d-8DZtL1MnOy22yAx9cugufKlFytgt1Ap2lZ_MePN6OzSzLGRlwlMpGNvbMP_xxlpX8D0aO4SNi0mRMp5bNseKm7ZPRQAKuespGxfii0052xhBnMrIxGc1GzBJpPv_LJtShjVlihhSWoKwyOP8Mv3tXvy5-8GWnBp5ELZlzYaKOMAbjG3qDQDjpyG7ilIzaDrOklJE2ifcB1Wa620YIpNv4Ngm0siqQCHq-QC0dp-4rsMSKlvCamtMGGNFAC6OFD0PhLR6IyjTgexWkeFIacsQr62Va4hiXOC6WOF404KCKY7z8ObOYrjZDonzJBpxWcVu9fn22b28bfgwbg8tefPOzf70P9RDRUEleO4BaPp25Q1hP5hja6VGxZ_8BZhvsTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+estimation+of+fixed+effect+parameters+and+variances+of+linear+mixed+models%3A+the+minimum+density+power+divergence+approach&rft.jtitle=Advances+in+statistical+analysis+%3A+AStA+%3A+a+journal+of+the+German+Statistical+Society&rft.au=Saraceno%2C+Giovanni&rft.au=Ghosh%2C+Abhik&rft.au=Basu%2C+Ayanendranath&rft.au=Agostinelli%2C+Claudio&rft.date=2024-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1863-8171&rft.eissn=1863-818X&rft.volume=108&rft.issue=1&rft.spage=127&rft.epage=157&rft_id=info:doi/10.1007%2Fs10182-023-00473-z&rft.externalDocID=10_1007_s10182_023_00473_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8171&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8171&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8171&client=summon