Automated Defect Detection in Non-planar Objects Using Deep Learning Algorithms

The non-uniformity of non-planar object inspection data makes their analysis challenging. This paper reports a study of the use of recurrent neural network and artificial feed-forward neural network in pulsed thermography during the automated inspection of non-planar carbon fiber reinforced plastic...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of nondestructive evaluation Ročník 41; číslo 1; s. 14
Hlavní autoři: Tao, Yuntao, Hu, Caiqi, Zhang, Hai, Osman, Ahmad, Ibarra-Castanedo, Clemente, Fang, Qiang, Sfarra, Stefano, Dai, Xiaobiao, Maldague, Xavier, Duan, Yuxia
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.03.2022
Springer Nature B.V
Témata:
ISSN:0195-9298, 1573-4862
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The non-uniformity of non-planar object inspection data makes their analysis challenging. This paper reports a study of the use of recurrent neural network and artificial feed-forward neural network in pulsed thermography during the automated inspection of non-planar carbon fiber reinforced plastic samples. The time series, including the raw temperature–time series and sequenced signals obtained from the first derivative after thermographic signal reconstruction was used to train and test the models respectively. Quantitative comparisons of testing results showed that the long short-term memory recurrent neural network model was more accurate in handling time dependent information compared to the artificial feed-forward neural network model.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0195-9298
1573-4862
DOI:10.1007/s10921-022-00845-6