Symbolic Computation Applied to the Study of the Kernel of Special Classes of Paired Singular Integral Operators

Operator theory has many applications in several main scientific research areas (structural mechanics, aeronautics, quantum mechanics, ecology, probability theory, electrical engineering, among others) and the importance of its study is globally acknowledged. On the study of the operator’s kernel so...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics in computer science Vol. 15; no. 1; pp. 63 - 90
Main Author: Conceição, Ana C.
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.03.2021
Springer Nature B.V
Subjects:
ISSN:1661-8270, 1661-8289
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Operator theory has many applications in several main scientific research areas (structural mechanics, aeronautics, quantum mechanics, ecology, probability theory, electrical engineering, among others) and the importance of its study is globally acknowledged. On the study of the operator’s kernel some progress has been achieved for some specific classes of singular integral operators whose properties allow the use of particular strategies. However, the existing algorithms allow, in general, to study the dimension of the kernel of some classes of singular integral operators but are not designed to be implemented on a computer. The main goal of this paper is to show how the symbolic and numeric capabilities of a computer algebra system can be used to study the kernel of special classes of paired singular integral operators with essentially bounded coefficients defined on the unit circle. It is described how some factorization algorithms can be used to compute the dimension of the kernel of special classes of singular integral operators. The analytical algorithms [ADimKerPaired-Scalar], [AKerPaired-Scalar], and [ADimKerPaired-Matrix] are presented. The design of these new algorithms was focused on the possibility of implementing on a computer all the extensive symbolic and numeric calculations present in the algorithms. For the essentially bounded hermitian coefficients case, there exist some relations with Hankel operators. The paper contains some interesting and nontrivial examples obtained with the use of a computer algebra system.
AbstractList Operator theory has many applications in several main scientific research areas (structural mechanics, aeronautics, quantum mechanics, ecology, probability theory, electrical engineering, among others) and the importance of its study is globally acknowledged. On the study of the operator’s kernel some progress has been achieved for some specific classes of singular integral operators whose properties allow the use of particular strategies. However, the existing algorithms allow, in general, to study the dimension of the kernel of some classes of singular integral operators but are not designed to be implemented on a computer. The main goal of this paper is to show how the symbolic and numeric capabilities of a computer algebra system can be used to study the kernel of special classes of paired singular integral operators with essentially bounded coefficients defined on the unit circle. It is described how some factorization algorithms can be used to compute the dimension of the kernel of special classes of singular integral operators. The analytical algorithms [ADimKerPaired-Scalar], [AKerPaired-Scalar], and [ADimKerPaired-Matrix] are presented. The design of these new algorithms was focused on the possibility of implementing on a computer all the extensive symbolic and numeric calculations present in the algorithms. For the essentially bounded hermitian coefficients case, there exist some relations with Hankel operators. The paper contains some interesting and nontrivial examples obtained with the use of a computer algebra system.
Author Conceição, Ana C.
Author_xml – sequence: 1
  givenname: Ana C.
  orcidid: 0000-0001-7103-3588
  surname: Conceição
  fullname: Conceição, Ana C.
  email: aconcei@ualg.com
  organization: Center for Functional Analysis, Linear Structures and Applications (CEAFEL) Departamento de Matemática, Universidade do Algarve
BookMark eNp9kFtLwzAYhoNMcJv-Aa8KXldzaA67HMXDcDCheh3SNJ0ZXVOT9GL_3m4VBS92lbzhffJ9PDMwaV1rALhF8B5ByB8CQlywFGKYQpgxkpILMEWMoVRgsZj83jm8ArMQdhAyjDI0BV1x2JeusTrJ3b7ro4rWtcmy6xprqiS6JH6apIh9dUhcfQqvxremOaaiM9qqJskbFYIJx6c3Zf3AFbbd9o3yyaqNZuuHzqYzXkXnwzW4rFUTzM3POQcfT4_v-Uu63jyv8uU61STjMUU4wzUWVckNqSutBFVlxhYMcUw1pZmuSkYEFIqwujQUcw05VlQwRKtKYUrm4G78t_Puqzchyp3rfTuMlJhCLBiHfDG0xNjS3oXgTS21HR1Er2wjEZRHv3L0Kwe_8uRXkgHF_9DO273yh_MQGaEwlNut8X9bnaG-ASISj5A
CitedBy_id crossref_primary_10_3390_mca27010003
Cites_doi 10.1016/S0024-3795(02)00288-4
10.1007/978-3-0346-0158-0_6
10.1007/BF01199887
10.1007/s11786-016-0264-2
10.1007/s10444-012-9279-7
10.1023/A:1022972315465
10.1017/CBO9780511623998
10.1007/BF01679671
10.1007/978-3-0348-8003-9
10.1073/pnas.74.4.1324
10.7153/oam-09-27
10.1002/mana.200510533
10.1007/978-3-540-69969-9
10.1134/S0037446606010058
10.1007/BF01736697
10.1007/s11786-016-0271-3
10.1007/978-3-642-61631-0
10.1017/S0308210500001529
10.1007/BF01203119
10.1007/BF01195587
10.1007/s00020-003-1277-1
10.1007/978-94-017-0227-0_8
10.24033/asens.1469
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2020
Springer Nature Switzerland AG 2020.
Copyright_xml – notice: Springer Nature Switzerland AG 2020
– notice: Springer Nature Switzerland AG 2020.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11786-020-00463-3
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1661-8289
EndPage 90
ExternalDocumentID 10_1007_s11786_020_00463_3
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BAPOH
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UCJ
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c347t-1242f28db7e3fdca85ab46961725c554cdb63808a36fbe527c072a58615dda253
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000522946100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1661-8270
IngestDate Thu Sep 25 00:39:26 EDT 2025
Sat Nov 29 06:37:38 EST 2025
Tue Nov 18 21:30:58 EST 2025
Fri Feb 21 02:50:07 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Primary 68W30
Factorization algorithms
47G10
Wolfram
47A68
47B35
Kernel of paired singular integral operators
Secondary 30E20
Symbolic computation
Essentially bounded matrix functions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-1242f28db7e3fdca85ab46961725c554cdb63808a36fbe527c072a58615dda253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7103-3588
OpenAccessLink http://hdl.handle.net/10400.1/14645
PQID 2502867079
PQPubID 2044127
PageCount 28
ParticipantIDs proquest_journals_2502867079
crossref_citationtrail_10_1007_s11786_020_00463_3
crossref_primary_10_1007_s11786_020_00463_3
springer_journals_10_1007_s11786_020_00463_3
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Mathematics in computer science
PublicationTitleAbbrev Math.Comput.Sci
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References FeldmanIGohbergIKrupnikNAn explicit factorization algorithmIntegral Equ. Oper. Theory2004492149164206037010.1007/s00020-003-1277-1
GohbergIKrupnikNOne-dimensional linear singular integral equationsOper. Theory Adv. Appl.199253199211382080781.47038
CâmaraMCdos SantosAFGeneralised factorization for a class of n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} matrix functions—partial indices and explicit formulasIntegral Equ. Oper. Theory199420219823010.1007/BF01679671
Conceição, A.C.: Factorization of Some Classes of Matrix Functions and its Applications (in Portuguese). Ph.D. thesis, University of Algarve, Faro (2007)
RudinWReal and Complex Analysis1987New YorkMcGraw-Hill0925.00005
Conceição, A.C.: Computing the kernel of special classes of paired singular integral operators with Mathematica software. In: Loja, A., Barbosa, J.I., Rodrigues, J.A. (eds.) Proceedings of the 4th International Conference on Numerical and Symbolic Computation: Developments and Applications, Porto - Portugal (2019)
Conceição, A.C., Pereira, J.C.: Using wolfram mathematica in spectral theory. In: Loja, A., Barbosa, J.I., Rodrigues, J.A. (eds.) Proceedings of the 3rd International Conference on Numerical and Symbolic Computation: Developments and Applications, Guimarães, Portugal, pp. 295–304 (2017)
FeldmanIMarcusAOn some properties of factorization indicesIntegral Equ. Oper Theory1998303326337160868110.1007/BF01195587
VoroninAFA method for determining the partial indices of symmetric matrix functionsSib. Math. J.2011524153281025010.1134/S0037446606010058
Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. London Mathematical Society: Lecture Note Series, vol. 149. Cambridge University Press, Cambridge (1991)
CâmaraMCdos SantosAFCarpentierMExplicit Wiewer–Hopf factorisation and non-linear Riemann–Hilbert problemsProc. R. Soc. Edinb. Sect. (A)20021321457410.1017/S0308210500001529
ConceiçãoACMarreirosRCPereiraJCSymbolic computation applied to the study of the kernel of a singular integral operator with non-Carleman shift and conjugationMath. Comput. Sci.2016103365386354468810.1007/s11786-016-0271-3
ClanceyKGohbergIFactorization of matrix functions and singular integral operatorsOper. Theory Adv. Appl.1981319816577620474.47023
JanashiaGLagvilavaEOn factorization and partial indices of unitary matrix-functions of one classGeorgian Math. J.199745439442146932710.1023/A:1022972315465
ConceiçãoACPereiraJCExploring the spectra of some classes of singular integral operators with symbolic computationMath. Comput. Sci.2016102291309350760610.1007/s11786-016-0264-2
GohbergIKrupnikNOne-dimensional linear singular integral equationsOper. Theory Adv. Appl.199254199211829870781.47038
ConceiçãoACPereiraJCExploring the spectra of some classes of paired singular integral operators: the scalar and matrix casesLib. Math. (new series)20143423533836071342.47006
ConceiçãoACKravchenkoVGAbout explicit factorization of some classes of non-rational matrix functionsMath. Nachr.20072809–1010221034233465710.1002/mana.200510533
EhrhardtTSpeckF-OTransformation techniques towards the factorization of non-rational 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} matrix functionsLinear Algebra Appl.20023531–35390191874910.1016/S0024-3795(02)00288-4
KravchenkoVGLitvinchukGSIntroduction to the Theory of Singular Integral Operators with Shift. Mathematics and its Applications1994DordrechtKluwer0811.47049
PlemeljJRiemannshe Funktionenscharen mit gegebener MonodromiegruppeMonat. Math. Phys.19081921124510.1007/BF01736697
BallJAClanceyKFAn elementary description of partial indices of rational matrix functionsIntegral Equ. Oper. Theory1990133316322104777210.1007/BF01199887
FaddeevLDTkhatayanLAHamiltonian Methods in the Theory of Solitons1987BerlinSpringer10.1007/978-3-540-69969-9
KravchenkoVGMigdal’skiiAIA regularization algorithm for some boundary-value problems of linear conjugationDokl. Math.199552319321
LitvinchukGSSpitkovskiiIMFactorization of measurable matrix functionsOper. Theory Adv. Appl.19872519871015716
ConceiçãoACKravchenkoVGPereiraJCComputing some classes of Cauchy type singular integrals with Mathematica softwareAdv. Comput. Math.2013392273288308251410.1007/s10444-012-9279-7
MikhlinSGPrössdorfSSingular Integral Operators1986BerlinSpringer10.1007/978-3-642-61631-0
AktosunTKlausMvan der MeeCExplicit Wiener–Hopf factorization for certain non-rational matrix functionsIntegral Equ. Oper. Theory199215687990010.1007/BF01203119
ConceiçãoACKravchenkoVGTeixeiraFSSamkoSLebreAdos SantosAFFactorization of some classes of matrix functions and the resolvent of a Hankel operatorFSORP2003 Factorization, Singular Operators and Related Problems, Funchal, Portugal2003DordrechtKluwer10111010.1007/978-94-017-0227-0_8
GohbergIKaashoekMASpitkovskyIMGohbergIManojlovivNdos SantosAFAn overview of matrix factorization theory and operator applicationsFactorization and Integrable Systems, Operator Theory: Advances and Applications2003BaselBirkhäuser110210.1007/978-3-0348-8003-9
CalderónAPCauchy integrals on Lipschitz curves and related operatorsProc. Nat. Acad. Sci. USA19977441324132746656810.1073/pnas.74.4.1324
Conceição, A.C., Kravchenko, V.G., Pereira, J.C.: Rational functions factorization algorithm: a symbolic computation for the scalar and matrix cases. In: Proceedings of the 1st National Conference on Symbolic Computation in Education and Research (CD-ROM), P02, 13 pp. Instituto Superior Técnico, Lisboa, Portugal, April 2–3 (2012)
ConceiçãoACMarreirosRCOn the kernel of a singular integral operator with non-Carleman shift and conjugationOper. Matrices201592433456333857510.7153/oam-09-27
LitvinchukGSSolvability Theory of Boundary Value Problems and Singular Integral Equations with Shift. Mathematics and its Applications2000DordrechtKluwer0980.45001
PrössdorfSSome Classes of Singular Equations1978AmsterdamNorth-Holland0416.45003
ConceiçãoACKravchenkoVGPereiraJCBallJBolotnikovVRodmanLHeltonJSpitkovskyIFactorization algorithm for some special non-rational matrix functionsTopics in Operator Theory, Operator Theory: Advances and Applications2010BaselBirkhäuser8710910.1007/978-3-0346-0158-0_6
ConceiçãoACKravchenkoVGTeixeiraFSBüttcherAKaashoekMALebreABdos SantosAFSpeckF-OFactorization of matrix funtions and the resolvents of certain operators Singular Integral OperatorsFactorization and Applications—Operator Theory: Advances and Applications2003BaselBirkhäuser911001057.47025
DavisGOpérateurs intégraux singuliers sur certaines courbes du plan complexeAnn. Sci. Ecole Norm. S.198417115718910.24033/asens.1469
Nikol’skiiNKTreatise on the Shift Operator. Spectral Function Theory. Grundlehren der mathematischen Wissenschaften1986BerlinSpringer
GarnettJBBounded Analytic Functions. Graduate Texts in Mathematics2007BerlinSpringer
AC Conceição (463_CR13) 2010
AC Conceição (463_CR14) 2003
J Plemelj (463_CR37) 1908; 19
GS Litvinchuk (463_CR33) 2000
G Davis (463_CR21) 1984; 17
AC Conceição (463_CR20) 2014; 34
AC Conceição (463_CR11) 2013; 39
463_CR18
VG Kravchenko (463_CR32) 1995; 52
T Aktosun (463_CR2) 1992; 15
VG Kravchenko (463_CR31) 1994
I Gohberg (463_CR28) 1992; 54
I Gohberg (463_CR27) 2003
W Rudin (463_CR39) 1987
SG Mikhlin (463_CR35) 1986
AF Voronin (463_CR40) 2011; 52
MC Câmara (463_CR6) 2002; 132
I Feldman (463_CR25) 1998; 30
S Prössdorf (463_CR38) 1978
LD Faddeev (463_CR23) 1987
JB Garnett (463_CR26) 2007
AC Conceição (463_CR15) 2003
I Feldman (463_CR24) 2004; 49
G Janashia (463_CR30) 1997; 4
AP Calderón (463_CR4) 1997; 74
463_CR1
463_CR12
K Clancey (463_CR7) 1981; 3
T Ehrhardt (463_CR22) 2002; 353
MC Câmara (463_CR5) 1994; 20
I Gohberg (463_CR29) 1992; 53
GS Litvinchuk (463_CR34) 1987; 25
AC Conceição (463_CR10) 2007; 280
AC Conceição (463_CR19) 2016; 10
463_CR9
NK Nikol’skii (463_CR36) 1986
AC Conceição (463_CR17) 2016; 10
JA Ball (463_CR3) 1990; 13
AC Conceição (463_CR16) 2015; 9
463_CR8
References_xml – reference: ConceiçãoACKravchenkoVGAbout explicit factorization of some classes of non-rational matrix functionsMath. Nachr.20072809–1010221034233465710.1002/mana.200510533
– reference: JanashiaGLagvilavaEOn factorization and partial indices of unitary matrix-functions of one classGeorgian Math. J.199745439442146932710.1023/A:1022972315465
– reference: LitvinchukGSSolvability Theory of Boundary Value Problems and Singular Integral Equations with Shift. Mathematics and its Applications2000DordrechtKluwer0980.45001
– reference: ConceiçãoACKravchenkoVGTeixeiraFSBüttcherAKaashoekMALebreABdos SantosAFSpeckF-OFactorization of matrix funtions and the resolvents of certain operators Singular Integral OperatorsFactorization and Applications—Operator Theory: Advances and Applications2003BaselBirkhäuser911001057.47025
– reference: BallJAClanceyKFAn elementary description of partial indices of rational matrix functionsIntegral Equ. Oper. Theory1990133316322104777210.1007/BF01199887
– reference: Conceição, A.C., Pereira, J.C.: Using wolfram mathematica in spectral theory. In: Loja, A., Barbosa, J.I., Rodrigues, J.A. (eds.) Proceedings of the 3rd International Conference on Numerical and Symbolic Computation: Developments and Applications, Guimarães, Portugal, pp. 295–304 (2017)
– reference: ConceiçãoACMarreirosRCOn the kernel of a singular integral operator with non-Carleman shift and conjugationOper. Matrices201592433456333857510.7153/oam-09-27
– reference: EhrhardtTSpeckF-OTransformation techniques towards the factorization of non-rational 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} matrix functionsLinear Algebra Appl.20023531–35390191874910.1016/S0024-3795(02)00288-4
– reference: PlemeljJRiemannshe Funktionenscharen mit gegebener MonodromiegruppeMonat. Math. Phys.19081921124510.1007/BF01736697
– reference: ConceiçãoACKravchenkoVGTeixeiraFSSamkoSLebreAdos SantosAFFactorization of some classes of matrix functions and the resolvent of a Hankel operatorFSORP2003 Factorization, Singular Operators and Related Problems, Funchal, Portugal2003DordrechtKluwer10111010.1007/978-94-017-0227-0_8
– reference: ConceiçãoACPereiraJCExploring the spectra of some classes of paired singular integral operators: the scalar and matrix casesLib. Math. (new series)20143423533836071342.47006
– reference: FeldmanIGohbergIKrupnikNAn explicit factorization algorithmIntegral Equ. Oper. Theory2004492149164206037010.1007/s00020-003-1277-1
– reference: Nikol’skiiNKTreatise on the Shift Operator. Spectral Function Theory. Grundlehren der mathematischen Wissenschaften1986BerlinSpringer
– reference: FaddeevLDTkhatayanLAHamiltonian Methods in the Theory of Solitons1987BerlinSpringer10.1007/978-3-540-69969-9
– reference: CâmaraMCdos SantosAFCarpentierMExplicit Wiewer–Hopf factorisation and non-linear Riemann–Hilbert problemsProc. R. Soc. Edinb. Sect. (A)20021321457410.1017/S0308210500001529
– reference: Conceição, A.C.: Computing the kernel of special classes of paired singular integral operators with Mathematica software. In: Loja, A., Barbosa, J.I., Rodrigues, J.A. (eds.) Proceedings of the 4th International Conference on Numerical and Symbolic Computation: Developments and Applications, Porto - Portugal (2019)
– reference: ConceiçãoACKravchenkoVGPereiraJCComputing some classes of Cauchy type singular integrals with Mathematica softwareAdv. Comput. Math.2013392273288308251410.1007/s10444-012-9279-7
– reference: Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. London Mathematical Society: Lecture Note Series, vol. 149. Cambridge University Press, Cambridge (1991)
– reference: Conceição, A.C., Kravchenko, V.G., Pereira, J.C.: Rational functions factorization algorithm: a symbolic computation for the scalar and matrix cases. In: Proceedings of the 1st National Conference on Symbolic Computation in Education and Research (CD-ROM), P02, 13 pp. Instituto Superior Técnico, Lisboa, Portugal, April 2–3 (2012)
– reference: GohbergIKaashoekMASpitkovskyIMGohbergIManojlovivNdos SantosAFAn overview of matrix factorization theory and operator applicationsFactorization and Integrable Systems, Operator Theory: Advances and Applications2003BaselBirkhäuser110210.1007/978-3-0348-8003-9
– reference: MikhlinSGPrössdorfSSingular Integral Operators1986BerlinSpringer10.1007/978-3-642-61631-0
– reference: RudinWReal and Complex Analysis1987New YorkMcGraw-Hill0925.00005
– reference: ConceiçãoACKravchenkoVGPereiraJCBallJBolotnikovVRodmanLHeltonJSpitkovskyIFactorization algorithm for some special non-rational matrix functionsTopics in Operator Theory, Operator Theory: Advances and Applications2010BaselBirkhäuser8710910.1007/978-3-0346-0158-0_6
– reference: GohbergIKrupnikNOne-dimensional linear singular integral equationsOper. Theory Adv. Appl.199254199211829870781.47038
– reference: ConceiçãoACMarreirosRCPereiraJCSymbolic computation applied to the study of the kernel of a singular integral operator with non-Carleman shift and conjugationMath. Comput. Sci.2016103365386354468810.1007/s11786-016-0271-3
– reference: GarnettJBBounded Analytic Functions. Graduate Texts in Mathematics2007BerlinSpringer
– reference: DavisGOpérateurs intégraux singuliers sur certaines courbes du plan complexeAnn. Sci. Ecole Norm. S.198417115718910.24033/asens.1469
– reference: PrössdorfSSome Classes of Singular Equations1978AmsterdamNorth-Holland0416.45003
– reference: ConceiçãoACPereiraJCExploring the spectra of some classes of singular integral operators with symbolic computationMath. Comput. Sci.2016102291309350760610.1007/s11786-016-0264-2
– reference: CalderónAPCauchy integrals on Lipschitz curves and related operatorsProc. Nat. Acad. Sci. USA19977441324132746656810.1073/pnas.74.4.1324
– reference: CâmaraMCdos SantosAFGeneralised factorization for a class of n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} matrix functions—partial indices and explicit formulasIntegral Equ. Oper. Theory199420219823010.1007/BF01679671
– reference: Conceição, A.C.: Factorization of Some Classes of Matrix Functions and its Applications (in Portuguese). Ph.D. thesis, University of Algarve, Faro (2007)
– reference: FeldmanIMarcusAOn some properties of factorization indicesIntegral Equ. Oper Theory1998303326337160868110.1007/BF01195587
– reference: LitvinchukGSSpitkovskiiIMFactorization of measurable matrix functionsOper. Theory Adv. Appl.19872519871015716
– reference: AktosunTKlausMvan der MeeCExplicit Wiener–Hopf factorization for certain non-rational matrix functionsIntegral Equ. Oper. Theory199215687990010.1007/BF01203119
– reference: KravchenkoVGLitvinchukGSIntroduction to the Theory of Singular Integral Operators with Shift. Mathematics and its Applications1994DordrechtKluwer0811.47049
– reference: GohbergIKrupnikNOne-dimensional linear singular integral equationsOper. Theory Adv. Appl.199253199211382080781.47038
– reference: ClanceyKGohbergIFactorization of matrix functions and singular integral operatorsOper. Theory Adv. Appl.1981319816577620474.47023
– reference: KravchenkoVGMigdal’skiiAIA regularization algorithm for some boundary-value problems of linear conjugationDokl. Math.199552319321
– reference: VoroninAFA method for determining the partial indices of symmetric matrix functionsSib. Math. J.2011524153281025010.1134/S0037446606010058
– volume-title: Some Classes of Singular Equations
  year: 1978
  ident: 463_CR38
– volume: 353
  start-page: 53
  issue: 1–3
  year: 2002
  ident: 463_CR22
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(02)00288-4
– start-page: 87
  volume-title: Topics in Operator Theory, Operator Theory: Advances and Applications
  year: 2010
  ident: 463_CR13
  doi: 10.1007/978-3-0346-0158-0_6
– volume: 13
  start-page: 316
  issue: 3
  year: 1990
  ident: 463_CR3
  publication-title: Integral Equ. Oper. Theory
  doi: 10.1007/BF01199887
– ident: 463_CR8
– volume: 10
  start-page: 291
  issue: 2
  year: 2016
  ident: 463_CR19
  publication-title: Math. Comput. Sci.
  doi: 10.1007/s11786-016-0264-2
– volume: 39
  start-page: 273
  issue: 2
  year: 2013
  ident: 463_CR11
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-012-9279-7
– volume-title: Real and Complex Analysis
  year: 1987
  ident: 463_CR39
– volume: 52
  start-page: 319
  year: 1995
  ident: 463_CR32
  publication-title: Dokl. Math.
– volume-title: Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift. Mathematics and its Applications
  year: 2000
  ident: 463_CR33
– volume: 54
  start-page: 1992
  year: 1992
  ident: 463_CR28
  publication-title: Oper. Theory Adv. Appl.
– volume: 4
  start-page: 439
  issue: 5
  year: 1997
  ident: 463_CR30
  publication-title: Georgian Math. J.
  doi: 10.1023/A:1022972315465
– volume-title: Introduction to the Theory of Singular Integral Operators with Shift. Mathematics and its Applications
  year: 1994
  ident: 463_CR31
– ident: 463_CR1
  doi: 10.1017/CBO9780511623998
– volume: 20
  start-page: 198
  issue: 2
  year: 1994
  ident: 463_CR5
  publication-title: Integral Equ. Oper. Theory
  doi: 10.1007/BF01679671
– volume: 3
  start-page: 1981
  year: 1981
  ident: 463_CR7
  publication-title: Oper. Theory Adv. Appl.
– start-page: 91
  volume-title: Factorization and Applications—Operator Theory: Advances and Applications
  year: 2003
  ident: 463_CR15
– start-page: 1
  volume-title: Factorization and Integrable Systems, Operator Theory: Advances and Applications
  year: 2003
  ident: 463_CR27
  doi: 10.1007/978-3-0348-8003-9
– ident: 463_CR18
– volume: 25
  start-page: 1987
  year: 1987
  ident: 463_CR34
  publication-title: Oper. Theory Adv. Appl.
– volume: 53
  start-page: 1992
  year: 1992
  ident: 463_CR29
  publication-title: Oper. Theory Adv. Appl.
– volume-title: Treatise on the Shift Operator. Spectral Function Theory. Grundlehren der mathematischen Wissenschaften
  year: 1986
  ident: 463_CR36
– volume: 74
  start-page: 1324
  issue: 4
  year: 1997
  ident: 463_CR4
  publication-title: Proc. Nat. Acad. Sci. USA
  doi: 10.1073/pnas.74.4.1324
– volume: 9
  start-page: 433
  issue: 2
  year: 2015
  ident: 463_CR16
  publication-title: Oper. Matrices
  doi: 10.7153/oam-09-27
– ident: 463_CR9
– ident: 463_CR12
– volume: 280
  start-page: 1022
  issue: 9–10
  year: 2007
  ident: 463_CR10
  publication-title: Math. Nachr.
  doi: 10.1002/mana.200510533
– volume-title: Hamiltonian Methods in the Theory of Solitons
  year: 1987
  ident: 463_CR23
  doi: 10.1007/978-3-540-69969-9
– volume: 52
  start-page: 41
  year: 2011
  ident: 463_CR40
  publication-title: Sib. Math. J.
  doi: 10.1134/S0037446606010058
– volume: 19
  start-page: 211
  year: 1908
  ident: 463_CR37
  publication-title: Monat. Math. Phys.
  doi: 10.1007/BF01736697
– volume: 10
  start-page: 365
  issue: 3
  year: 2016
  ident: 463_CR17
  publication-title: Math. Comput. Sci.
  doi: 10.1007/s11786-016-0271-3
– volume-title: Singular Integral Operators
  year: 1986
  ident: 463_CR35
  doi: 10.1007/978-3-642-61631-0
– volume: 132
  start-page: 45
  issue: 1
  year: 2002
  ident: 463_CR6
  publication-title: Proc. R. Soc. Edinb. Sect. (A)
  doi: 10.1017/S0308210500001529
– volume: 15
  start-page: 879
  issue: 6
  year: 1992
  ident: 463_CR2
  publication-title: Integral Equ. Oper. Theory
  doi: 10.1007/BF01203119
– volume: 30
  start-page: 326
  issue: 3
  year: 1998
  ident: 463_CR25
  publication-title: Integral Equ. Oper Theory
  doi: 10.1007/BF01195587
– volume-title: Bounded Analytic Functions. Graduate Texts in Mathematics
  year: 2007
  ident: 463_CR26
– volume: 49
  start-page: 149
  issue: 2
  year: 2004
  ident: 463_CR24
  publication-title: Integral Equ. Oper. Theory
  doi: 10.1007/s00020-003-1277-1
– start-page: 101
  volume-title: FSORP2003 Factorization, Singular Operators and Related Problems, Funchal, Portugal
  year: 2003
  ident: 463_CR14
  doi: 10.1007/978-94-017-0227-0_8
– volume: 34
  start-page: 35
  issue: 2
  year: 2014
  ident: 463_CR20
  publication-title: Lib. Math. (new series)
– volume: 17
  start-page: 157
  issue: 1
  year: 1984
  ident: 463_CR21
  publication-title: Ann. Sci. Ecole Norm. S.
  doi: 10.24033/asens.1469
SSID ssj0062141
Score 2.1804297
Snippet Operator theory has many applications in several main scientific research areas (structural mechanics, aeronautics, quantum mechanics, ecology, probability...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 63
SubjectTerms Aeronautical engineering
Algorithms
Computer algebra
Computer Science
Integrals
Kernels
Mathematics
Mathematics and Statistics
Operators (mathematics)
Probability theory
Quantum mechanics
Title Symbolic Computation Applied to the Study of the Kernel of Special Classes of Paired Singular Integral Operators
URI https://link.springer.com/article/10.1007/s11786-020-00463-3
https://www.proquest.com/docview/2502867079
Volume 15
WOSCitedRecordID wos000522946100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1661-8289
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062141
  issn: 1661-8270
  databaseCode: RSV
  dateStart: 20071201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RS8MwED50-qAPTqfidEoefNPAmq5t-ijiUNQ5nMreStKkIMxtrFPYv_eSphZFBX1Mewkhl-S-I3f3ARwLT-pYZTH1slDQjsokRSvIqEBfhBtQIYVNFL6Jej0-HMZ9lxSWl9Hu5ZOkvamrZDcv4iZg1mRCd0Kf-suwguaOG8KG-8FTef-GrOCr9NDyUM6itkuV-X6Mz-aowphfnkWttenW_zfPTdhw6JKcFdthC5b0uAH1krmBuIPcgPXbj2qt-TZMB4sXaeoDk0LSKos4fErmE4KyxAQcLsgks41rPRvrkWk5_npiyTV1bj71BV6jigxw0ibGlVwVFSlG5G6q7aN-vgOP3YuH80vqmBho6neiOUUQwDLGTSlmP1Op4IGQ6Fcb9BOkCEhSJfEct7nww0zqgEVpO2Ii4AiXlBIs8HehNp6M9R4QpjRDWBIiqkff0pNcCiWFIZ5B15CzThO8UiFJ6sqUG7aMUVIVWDYLnOACJ3aBE78JJx99pkWRjl-lW6WeE3dg8wSRIMNJtaO4CaelXqvfP4-2_zfxA1hjJirGRrG1oDafvepDWE3f5s_57Mhu5HcGK-r9
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60CurBt1itmoM3DXSzr_Qooih9KLaKtyXZZEGobelWof_eSTbboqigx-xOQsgkmW_IzDcAp8KTuqGyBvWySNBAZZKiFWRUoC_CDaiQwiYKt-JOhz8_N-5dUlheRruXT5L2pp4nu3kxNwGzJhM6iHzqL8JSgBbLMOY_dJ_K-zdiRb1KDy0P5Syuu1SZ78f4bI7mGPPLs6i1Ntcb_5vnJqw7dEkuiu2wBQt6sA0bZeUG4g7yNqy1Z2yt-Q6MutNXafiBSSFplUUcPiWTIUFZYgIOp2SY2UZTjwe6b1qufj2xxTV1bj7dC7xGFenipE2MK7ktGCn65G6k7aN-vguP11e9yxvqKjHQ1A_iCUUQwDLGDRWzn6lU8FBI9KsN-glTBCSpkniO61z4USZ1yOK0HjMRcoRLSgkW-ntQGQwHeh8IU5ohLIkQ1aNv6UkuhZLCFJ5B15CzoApeqZAkdTTlplpGP5kTLJsFTnCBE7vAiV-Fs1mfUUHS8at0rdRz4g5sniASZDipetyownmp1_nvn0c7-Jv4Cazc9NqtpHXbaR7CKjMRMjairQaVyfhNH8Fy-j55ycfHdlN_ABH_7eE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5BQQge6ChDFAr4gbfNWuL8ch-nQUXV0lXqNvUtsmNHmtSlVROQ-t9z5yQtIIaEeHRysRyf7ftOvvsO4KPytR2afMj9PFY8NLnmaAUFV-iLSAIVWrlE4Wkym8nlcjj_KYvfRbu3V5J1TgOxNBXV2cbkZ4fENz-RFDxLWdFhHPDgITwKKZCe_PXFTXsWx6KuXemjFeJSJF6TNvPnPn41TQe8-dsVqbM8o-7_j_kInjeok53Xy-QFPLBFD7ptRQfWbPAePPu6Z3EtX8JmsbvTxBvMakmnRNbgVlatGcoyCkTcsXXuGhO7LeyKWk1de-aKbtqSHs0VHq-GLfAHKPaVjWumihW73Fh32V8ew_Xo89XFF95UaOBZECYVR3AgciGJojnITaZkpDT624SKogyBSmY07m9PqiDOtY1EknmJUJFEGGWMElHwCjrFurCvgQljBcKVGNE--py-lloZraggDbqMUoR98FvlpFlDX05VNFbpgXiZJjjFCU7dBKdBH07232xq8o6_Sg9anafNRi5TRIgCB-Ulwz6ctjo-vL6_tzf_Jv4Bnsw_jdLpeDZ5C08FBc64QLcBdKrtN_sOHmffq9ty-96t7x8gDPbF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Symbolic+Computation+Applied+to+the+Study+of+the+Kernel+of+Special+Classes+of+Paired+Singular+Integral+Operators&rft.jtitle=Mathematics+in+computer+science&rft.au=Concei%C3%A7%C3%A3o%2C+Ana+C.&rft.date=2021-03-01&rft.pub=Springer+International+Publishing&rft.issn=1661-8270&rft.eissn=1661-8289&rft.volume=15&rft.issue=1&rft.spage=63&rft.epage=90&rft_id=info:doi/10.1007%2Fs11786-020-00463-3&rft.externalDocID=10_1007_s11786_020_00463_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1661-8270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1661-8270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1661-8270&client=summon