Supervised Mixed Norm Autoencoder for Kinship Verification in Unconstrained Videos

Identifying kinship relations has garnered interest due to several applications such as organizing and tagging the enormous amount of videos being uploaded on the Internet. Existing research in kinship verification primarily focuses on kinship prediction with image pairs. In this research, we propos...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on image processing Ročník 28; číslo 3; s. 1329 - 1341
Hlavní autori: Kohli, Naman, Yadav, Daksha, Vatsa, Mayank, Singh, Richa, Noore, Afzel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.03.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1057-7149, 1941-0042, 1941-0042
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Identifying kinship relations has garnered interest due to several applications such as organizing and tagging the enormous amount of videos being uploaded on the Internet. Existing research in kinship verification primarily focuses on kinship prediction with image pairs. In this research, we propose a new deep learning framework for kinship verification in unconstrained videos using a novel Supervised Mixed Norm AutoEncoder (SMNAE). This new autoencoder formulation introduces class-specific sparsity in the weight matrix. The proposed three-stage SMNAE based kinship verification framework utilizes the learned spatio-temporal representation in the video frames for verifying kinship in a pair of videos. A new kinship video (KIVI) database of more than 500 individuals with variations due to illumination, pose, occlusion, ethnicity, and expression is collected for this research. It comprises a total of 355 true kin video pairs with over 250 000 still frames. The effectiveness of the proposed framework is demonstrated on the KIVI database and six existing kinship databases. On the KIVI database, SMNAE yields video-based kinship verification accuracy of 83.18% which is at least 3.2% better than existing algorithms. The algorithm is also evaluated on six publicly available kinship databases and compared with best reported results. It is observed that the proposed SMNAE consistently yields best results on all the databases.
AbstractList Identifying kinship relations has garnered interest due to several applications such as organizing and tagging the enormous amount of videos being uploaded on the Internet. Existing research in kinship verification primarily focuses on kinship prediction with image pairs. In this research, we propose a new deep learning framework for kinship verification in unconstrained videos using a novel Supervised Mixed Norm AutoEncoder (SMNAE). This new autoencoder formulation introduces class-specific sparsity in the weight matrix. The proposed three-stage SMNAE based kinship verification framework utilizes the learned spatio-temporal representation in the video frames for verifying kinship in a pair of videos. A new kinship video (KIVI) database of more than 500 individuals with variations due to illumination, pose, occlusion, ethnicity, and expression is collected for this research. It comprises a total of 355 true kin video pairs with over 250 000 still frames. The effectiveness of the proposed framework is demonstrated on the KIVI database and six existing kinship databases. On the KIVI database, SMNAE yields video-based kinship verification accuracy of 83.18% which is at least 3.2% better than existing algorithms. The algorithm is also evaluated on six publicly available kinship databases and compared with best reported results. It is observed that the proposed SMNAE consistently yields best results on all the databases.
Identifying kinship relations has garnered interest due to several applications such as organizing and tagging the enormous amount of videos being uploaded on the Internet. Existing research in kinship verification primarily focuses on kinship prediction with image pairs. In this research, we propose a new deep learning framework for kinship verification in unconstrained videos using a novel Supervised Mixed Norm regularization Autoencoder (SMNAE). This new autoencoder formulation introduces class-specific sparsity in the weight matrix. The proposed three-stage SMNAE based kinship verification framework utilizes the learned spatio-temporal representation in the video frames for verifying kinship in a pair of videos. A new kinship video (KIVI) database of more than 500 individuals with variations due to illumination, pose, occlusion, ethnicity, and expression is collected for this research. It comprises a total of 355 true kin video pairs with over 250,000 still frames. The effectiveness of the proposed framework is demonstrated on the KIVI database and six existing kinship databases. On the KIVI database, SMNAE yields video-based kinship verification accuracy of 83.18% which is at least 3.2% better than existing algorithms. The algorithm is also evaluated on six publicly available kinship databases and compared with best reported results. It is observed that the proposed SMNAE consistently yields best results on all the databases.Identifying kinship relations has garnered interest due to several applications such as organizing and tagging the enormous amount of videos being uploaded on the Internet. Existing research in kinship verification primarily focuses on kinship prediction with image pairs. In this research, we propose a new deep learning framework for kinship verification in unconstrained videos using a novel Supervised Mixed Norm regularization Autoencoder (SMNAE). This new autoencoder formulation introduces class-specific sparsity in the weight matrix. The proposed three-stage SMNAE based kinship verification framework utilizes the learned spatio-temporal representation in the video frames for verifying kinship in a pair of videos. A new kinship video (KIVI) database of more than 500 individuals with variations due to illumination, pose, occlusion, ethnicity, and expression is collected for this research. It comprises a total of 355 true kin video pairs with over 250,000 still frames. The effectiveness of the proposed framework is demonstrated on the KIVI database and six existing kinship databases. On the KIVI database, SMNAE yields video-based kinship verification accuracy of 83.18% which is at least 3.2% better than existing algorithms. The algorithm is also evaluated on six publicly available kinship databases and compared with best reported results. It is observed that the proposed SMNAE consistently yields best results on all the databases.
Identifying kinship relations has garnered interest due to several applications such as organizing and tagging the enormous amount of videos being uploaded on the Internet. Existing research in kinship verification primarily focuses on kinship prediction with image pairs. In this research, we propose a new deep learning framework for kinship verification in unconstrained videos using a novel Supervised Mixed Norm regularization Autoencoder (SMNAE). This new autoencoder formulation introduces class-specific sparsity in the weight matrix. The proposed three-stage SMNAE based kinship verification framework utilizes the learned spatio-temporal representation in the video frames for verifying kinship in a pair of videos. A new kinship video (KIVI) database of more than 500 individuals with variations due to illumination, pose, occlusion, ethnicity, and expression is collected for this research. It comprises a total of 355 true kin video pairs with over 250,000 still frames. The effectiveness of the proposed framework is demonstrated on the KIVI database and six existing kinship databases. On the KIVI database, SMNAE yields video-based kinship verification accuracy of 83.18% which is at least 3.2% better than existing algorithms. The algorithm is also evaluated on six publicly available kinship databases and compared with best reported results. It is observed that the proposed SMNAE consistently yields best results on all the databases.
Author Singh, Richa
Kohli, Naman
Vatsa, Mayank
Noore, Afzel
Yadav, Daksha
Author_xml – sequence: 1
  givenname: Naman
  surname: Kohli
  fullname: Kohli, Naman
  email: nakohli@mix.wvu.edu
  organization: Lane Dept. of Comput. Sci. & Electr. Eng., West Virginia Univ., Morgantown, WV, USA
– sequence: 2
  givenname: Daksha
  surname: Yadav
  fullname: Yadav, Daksha
  email: dayadav@mix.wvu.edu
  organization: Lane Dept. of Comput. Sci. & Electr. Eng., West Virginia Univ., Morgantown, WV, USA
– sequence: 3
  givenname: Mayank
  surname: Vatsa
  fullname: Vatsa, Mayank
  email: mayank@iiitd.ac.in
  organization: Indraprastha Inst. of Inf. Technol. Delhi, New Delhi, India
– sequence: 4
  givenname: Richa
  surname: Singh
  fullname: Singh, Richa
  email: rsingh@iiitd.ac.in
  organization: Indraprastha Inst. of Inf. Technol. Delhi, New Delhi, India
– sequence: 5
  givenname: Afzel
  surname: Noore
  fullname: Noore, Afzel
  email: afzel.noore@tamuk.edu
  organization: Texas A&M Univ. - Kingsville, Kingsville, TX, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29993718$$D View this record in MEDLINE/PubMed
BookMark eNp9kTtPHDEURq2IiHcfKRIaiSbNbK4fM7ZLhCBBAYISoLWM51ox2rUXewYl_z7e7IaCgsa-xTn21fftka2YIhLygcKMUtCfby9uZgyomjElQCl4R3apFrQFEGyrztDJVlKhd8heKY8AVHS03yY7TGvNJVW75MfPaYn5ORQcmqvwu57XKS-ak2lMGF0aMDc-5eZbiOVXWDb3mIMPzo4hxSbE5q4ysYzZhljV-zBgKgfkvbfzgoebe5_cnZ_dnn5tL79_uTg9uWwdF3JsKXDKGTiPlvmBcic6572wHagHC7KX0EuPkrOBQa95Z6nHOkvHQQjNB75PPq3fXeb0NGEZzSIUh_O5jZimYqqmuOCgRUWPX6GPacqxbmcY5bLrhNKyUkcbanpY4GCWOSxs_mP-p1UBWAMup1Iy-heEglkVYmohZlWI2RRSlf6V4sL4L75VaPO3xI9rMSDiyz-K952ikv8F1IOWFw
CODEN IIPRE4
CitedBy_id crossref_primary_10_1109_TCYB_2019_2923756
crossref_primary_10_1016_j_neunet_2022_03_020
crossref_primary_10_1016_j_patcog_2023_109742
crossref_primary_10_1109_TPAMI_2021_3063078
crossref_primary_10_1007_s11042_025_20762_w
crossref_primary_10_1109_TIP_2021_3104192
crossref_primary_10_1007_s11263_022_01605_9
crossref_primary_10_1016_j_compeleceng_2024_109375
crossref_primary_10_1016_j_ins_2021_07_046
crossref_primary_10_1109_ACCESS_2025_3582532
crossref_primary_10_1109_TIP_2020_3034027
crossref_primary_10_1109_ACCESS_2025_3605630
crossref_primary_10_1109_TPAMI_2020_3036993
crossref_primary_10_1109_TIP_2021_3077111
crossref_primary_10_1007_s11042_021_11466_y
crossref_primary_10_1007_s13748_025_00402_y
crossref_primary_10_1016_j_imavis_2023_104727
crossref_primary_10_1016_j_image_2022_116829
crossref_primary_10_1109_ACCESS_2019_2929939
crossref_primary_10_1109_TCYB_2022_3220040
crossref_primary_10_1007_s00371_024_03493_1
crossref_primary_10_1016_j_neucom_2022_12_031
crossref_primary_10_1016_j_jvcir_2021_103265
crossref_primary_10_1016_j_jmsy_2020_05_005
crossref_primary_10_1016_j_neucom_2019_09_089
Cites_doi 10.1109/TMM.2012.2187436
10.1145/2393347.2396297
10.1145/2072298.2071911
10.1109/ICIP.2017.8296446
10.1109/ICASSP.2008.4518498
10.1007/BF00994018
10.1109/ICPR.2014.735
10.1109/ICCV.2013.189
10.1109/ICIP.2016.7532894
10.1109/TPAMI.2016.2522416
10.1109/TIP.2016.2609811
10.1109/FG.2017.35
10.1109/TIFS.2017.2668221
10.1109/TPAMI.2007.1110
10.1109/LSP.2007.898300
10.1109/ICCVW.2011.6130343
10.1109/TPAMI.2016.2569436
10.1109/BTAS.2014.6996299
10.1109/TIP.2017.2717505
10.1109/ICIP.2010.5652590
10.1109/TMM.2015.2461462
10.1145/2964284.2967219
10.1145/2502081.2502142
10.1109/ICCV.2017.269
10.1016/j.imavis.2016.08.009
10.1109/CVPR.2014.227
10.1109/BTAS.2012.6374584
10.1109/WIFS.2016.7823901
10.1109/ICIP.2013.6738614
10.1109/ACCESS.2016.2635147
10.1109/TCYB.2014.2376934
10.1016/j.inffus.2015.08.006
10.1098/rspb.2009.0677
10.1109/TIFS.2014.2327757
10.1109/TIFS.2015.2446438
10.1016/j.imavis.2017.01.005
10.1016/j.cviu.2017.12.003
10.1109/LSP.2015.2490805
10.1109/TPAMI.2013.134
10.1007/978-3-319-41501-7_60
10.1109/CVPRW.2011.5981801
10.1109/BTAS.2015.7358768
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2018.2840880
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 1341
ExternalDocumentID 29993718
10_1109_TIP_2018_2840880
8365817
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Nvidia
  funderid: 10.13039/100007065
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
NPM
RIG
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c347t-1031320cfea2fd13c45cff4a508ba0767067fe732d206935a1fe2d27c304493d3
IEDL.DBID RIE
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000451258900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Mon Sep 29 05:33:05 EDT 2025
Mon Jun 30 10:22:22 EDT 2025
Wed Feb 19 02:09:29 EST 2025
Tue Nov 18 22:00:27 EST 2025
Sat Nov 29 03:21:08 EST 2025
Wed Aug 27 02:44:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-1031320cfea2fd13c45cff4a508ba0767067fe732d206935a1fe2d27c304493d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5952-2274
PMID 29993718
PQID 2137554897
PQPubID 85429
PageCount 13
ParticipantIDs pubmed_primary_29993718
crossref_primary_10_1109_TIP_2018_2840880
proquest_journals_2137554897
crossref_citationtrail_10_1109_TIP_2018_2840880
proquest_miscellaneous_2068343094
ieee_primary_8365817
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref52
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
hu (ref14) 2014
ref45
ref47
ref41
ref49
ref8
ref7
ref4
ref3
ref6
ref5
ref40
boutellaa (ref46) 2017
lu (ref13) 2014; 36
ref35
ref34
ref37
wagner (ref2) 2017
ref31
ref30
ref33
ref32
nesterov (ref43) 2007
ref39
zhang (ref44) 2014
ref38
parkhi (ref48) 2015
kofman (ref1) 2016
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ng (ref36) 2011
xia (ref9) 2011
jenatton (ref42) 2010
References_xml – ident: ref11
  doi: 10.1109/TMM.2012.2187436
– ident: ref5
  doi: 10.1145/2393347.2396297
– ident: ref4
  doi: 10.1145/2072298.2071911
– ident: ref30
  doi: 10.1109/ICIP.2017.8296446
– ident: ref40
  doi: 10.1109/ICASSP.2008.4518498
– ident: ref45
  doi: 10.1007/BF00994018
– year: 2017
  ident: ref46
  publication-title: Kinship verification from videos using spatio-temporal texture features and deep learning
– start-page: 487
  year: 2010
  ident: ref42
  article-title: Proximal methods for sparse hierarchical dictionary learning
  publication-title: Proc Int Conf Mach Learn
– ident: ref17
  doi: 10.1109/ICPR.2014.735
– ident: ref33
  doi: 10.1109/ICCV.2013.189
– ident: ref26
  doi: 10.1109/ICIP.2016.7532894
– ident: ref25
  doi: 10.1109/TPAMI.2016.2522416
– start-page: 1
  year: 2011
  ident: ref36
  article-title: Sparse autoencoder
  publication-title: Cs294a lecture notes
– ident: ref31
  doi: 10.1109/TIP.2016.2609811
– ident: ref28
  doi: 10.1109/FG.2017.35
– start-page: 2539
  year: 2011
  ident: ref9
  article-title: Kinship verification through transfer learning
  publication-title: Proc Int Joint Conf Artif Intell
– ident: ref52
  doi: 10.1109/TIFS.2017.2668221
– ident: ref47
  doi: 10.1109/TPAMI.2007.1110
– year: 2017
  ident: ref2
  publication-title: Facebook Says Video Is Huge-100-Million-Hours-Per-Day Huge
– ident: ref39
  doi: 10.1109/LSP.2007.898300
– ident: ref35
  doi: 10.1109/ICCVW.2011.6130343
– ident: ref38
  doi: 10.1109/TPAMI.2016.2569436
– year: 2007
  ident: ref43
  article-title: Gradient methods for minimizing composite objective function
– ident: ref51
  doi: 10.1109/BTAS.2014.6996299
– ident: ref29
  doi: 10.1109/TIP.2017.2717505
– ident: ref3
  doi: 10.1109/ICIP.2010.5652590
– ident: ref20
  doi: 10.1109/TMM.2015.2461462
– ident: ref22
  doi: 10.1145/2964284.2967219
– start-page: 1355
  year: 2014
  ident: ref44
  article-title: Feature selection at the discrete limit
  publication-title: Proc AAAI Conf Artif Intell
– ident: ref41
  doi: 10.1145/2502081.2502142
– ident: ref34
  doi: 10.1109/ICCV.2017.269
– ident: ref24
  doi: 10.1016/j.imavis.2016.08.009
– start-page: 252
  year: 2014
  ident: ref14
  article-title: Large margin multi-metric learning for face and kinship verification in the wild
  publication-title: Proc Asian Conf Comput Vis
– ident: ref16
  doi: 10.1109/CVPR.2014.227
– ident: ref6
  doi: 10.1109/BTAS.2012.6374584
– ident: ref8
  doi: 10.1109/WIFS.2016.7823901
– ident: ref12
  doi: 10.1109/ICIP.2013.6738614
– ident: ref23
  doi: 10.1109/ACCESS.2016.2635147
– ident: ref18
  doi: 10.1109/TCYB.2014.2376934
– ident: ref21
  doi: 10.1016/j.inffus.2015.08.006
– ident: ref50
  doi: 10.1098/rspb.2009.0677
– ident: ref15
  doi: 10.1109/TIFS.2014.2327757
– ident: ref37
  doi: 10.1109/TIFS.2015.2446438
– ident: ref49
  doi: 10.1016/j.imavis.2017.01.005
– start-page: 41.1
  year: 2015
  ident: ref48
  article-title: Deep face recognition
  publication-title: Proc Brit Mach Vis Conf
– ident: ref32
  doi: 10.1016/j.cviu.2017.12.003
– ident: ref19
  doi: 10.1109/LSP.2015.2490805
– volume: 36
  start-page: 331
  year: 2014
  ident: ref13
  article-title: Neighborhood repulsed metric learning for kinship verification
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.134
– ident: ref27
  doi: 10.1007/978-3-319-41501-7_60
– ident: ref10
  doi: 10.1109/CVPRW.2011.5981801
– ident: ref7
  doi: 10.1109/BTAS.2015.7358768
– year: 2016
  ident: ref1
  publication-title: The Troubling Rise of Rapid DNA Testing
SSID ssj0014516
Score 2.4674456
Snippet Identifying kinship relations has garnered interest due to several applications such as organizing and tagging the enormous amount of videos being uploaded on...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1329
SubjectTerms Algorithms
Feature extraction
Frames (data processing)
Image reconstruction
Lighting
Machine learning
Measurement
Occlusion
Videos
Weight
Title Supervised Mixed Norm Autoencoder for Kinship Verification in Unconstrained Videos
URI https://ieeexplore.ieee.org/document/8365817
https://www.ncbi.nlm.nih.gov/pubmed/29993718
https://www.proquest.com/docview/2137554897
https://www.proquest.com/docview/2068343094
Volume 28
WOSCitedRecordID wos000451258900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6SkEN7aF5tsm0aVOilUGctS7akYwgNLSFLaJOwN2PrAYZgh_W69Od3JGtNC22hFyPQSBYajeaTZjQD8J4yVxuZ54nmdZFwW9BESmUTPACZglFulHUh2YRYLORyqW634OP0FsZaG5zP7LkvBlu-6fTgr8rmkqG-pGIbtoUoxrdak8XAJ5wNls1cJAJh_8Ykmar53Zdb78Mlz3ErRqFKf1NBIafK3-FlUDNXe_83wH14EeEkuRj5fwBbtj2EvQgtSRTc_hCe_xJ38Ai-fhue_B7RI81N8wO_C4Su5GJYdz6upbErgliWXDfBl4s8YDMX7_ZI05J7pPGBZyvs0ZCHxtiufwn3V5_uLj8nMblCohkX64SGoI2pdrbKnKFM81w7xysEbHWVikKgGnNWsMxkaaFYXlFnsSw0SzlXzLBXsNN2rT0BgltUZTNleFbl3NXe8Emdy2oPbajO1Azmm_kudYw87sf4WIYTSKpK5FDpOVRGDs3gw9TiaYy68Q_aI8-IiS7yYAanG5aWUSz7MqNMIH6SCqvfTdUoUN5KUrW2G5AmLSTjDI-9Mzgel8LUN-puHz9Qvv7zP9_AMxyZGl3UTmFnvRrsW9jV39dNvzrDVbuUZ2HV_gRxOeb3
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3_a9UwED_mFNQfnG46n06N4C-C3UuatGl-HOLY2PYY-jb2W2nzBQrSjtfX4Z_vJc0rCir4SwnkkoZcLvdJ7nIH8IFxV5siyxIt6jwRNmdJUSib4AHI5JwJo6wLySbkYlHc3KjLLfg0vYWx1gbnM3voi8GWbzo9-KuyecFRXzJ5D-5nQqR0fK012Qx8ytlg28xkIhH4b4ySVM2Xp5fei6s4xM0YxYr-poRCVpW_A8ygaI53_m-IT-FJBJTkaFwBz2DLtruwE8EliaLb78LjXyIP7sHXb8Ot3yV6pLlofuB3geCVHA3rzke2NHZFEM2SsyZ4c5FrbObi7R5pWnKFND70bIU9GnLdGNv1z-Hq-Mvy80kS0yskmgu5TlgI20i1s1XqDONaZNo5USFkqysqc4mKzFnJU5PSXPGsYs5iWWpOhVDc8Bew3XatfQkEN6nKpsqItMqEq73pkzmX1h7cMJ2qGcw3813qGHvcj_F7Gc4gVJXIodJzqIwcmsHHqcXtGHfjH7R7nhETXeTBDA42LC2jYPZlyrhEBFUorH4_VaNIeTtJ1dpuQBqaF1xwPPjOYH9cClPfqL19BMHi1Z__-Q4eniwvzsvz08XZa3iEo1Sjw9oBbK9Xg30DD_TduulXb8Pa_QkoJ-lW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+Mixed+Norm+Autoencoder+for+Kinship+Verification+in+Unconstrained+Videos&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Kohli%2C+Naman&rft.au=Yadav%2C+Daksha&rft.au=Vatsa%2C+Mayank&rft.au=Singh%2C+Richa&rft.date=2019-03-01&rft.issn=1941-0042&rft.eissn=1941-0042&rft_id=info:doi/10.1109%2FTIP.2018.2840880&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon