GCMCDTI: Graph convolutional autoencoder framework for predicting drug-target interactions based on matrix completion

Identification of potential drug-target interactions (DTIs) plays a pivotal role in the development of drug and target discovery in the public healthcare sector. However, biological experiments for predicting interactions between drugs and targets are still expensive, complicated, and time-consuming...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bioinformatics and computational biology Jg. 20; H. 5; S. 2250023
Hauptverfasser: Li, Jing, Zhang, Chen, Li, Zhengwei, Nie, Ru, Han, Pengyong, Yang, Wenjia, Liao, Hongmei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 01.10.2022
ISSN:1757-6334, 1757-6334
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Identification of potential drug-target interactions (DTIs) plays a pivotal role in the development of drug and target discovery in the public healthcare sector. However, biological experiments for predicting interactions between drugs and targets are still expensive, complicated, and time-consuming. Thus, computational methods are widely applied for aiding drug-target interaction prediction. In this paper, we propose a novel model, named GCMCDTI, for DTIs prediction which adopts a graph convolutional network based on matrix completion. We regard the association prediction between drugs and targets as link prediction and treat the process as matrix completion, and then a graph convolutional auto-encoder framework is employed to construct the drug and target embeddings. Then, a bilinear decoder is applied to reconstruct the DTI matrix. We conduct our experiments on four benchmark datasets consisting of enzymes, G protein-coupled receptors (GPCRs), ion channels, and nuclear receptors. The five-fold cross-validation results achieve the high average AUC values of 95.78%, 95.31%, 93.90%, and 91.77%, respectively. To further evaluate our method, we compare our proposed method with other state-of-the-art approaches. The comparison results illustrate that our proposed method obtains improvement in performance on DTI prediction. The proposed method will be a good choice in the field of DTI prediction.Identification of potential drug-target interactions (DTIs) plays a pivotal role in the development of drug and target discovery in the public healthcare sector. However, biological experiments for predicting interactions between drugs and targets are still expensive, complicated, and time-consuming. Thus, computational methods are widely applied for aiding drug-target interaction prediction. In this paper, we propose a novel model, named GCMCDTI, for DTIs prediction which adopts a graph convolutional network based on matrix completion. We regard the association prediction between drugs and targets as link prediction and treat the process as matrix completion, and then a graph convolutional auto-encoder framework is employed to construct the drug and target embeddings. Then, a bilinear decoder is applied to reconstruct the DTI matrix. We conduct our experiments on four benchmark datasets consisting of enzymes, G protein-coupled receptors (GPCRs), ion channels, and nuclear receptors. The five-fold cross-validation results achieve the high average AUC values of 95.78%, 95.31%, 93.90%, and 91.77%, respectively. To further evaluate our method, we compare our proposed method with other state-of-the-art approaches. The comparison results illustrate that our proposed method obtains improvement in performance on DTI prediction. The proposed method will be a good choice in the field of DTI prediction.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1757-6334
1757-6334
DOI:10.1142/S0219720022500238