AI Based Resource Management for 5G Network Slicing: History, Use Cases, and Research Directions
ABSTRACT 5G, 6G, and beyond networks promise to support vertical industrial services with strict QoS parameters, but the hardware‐based "one‐size‐fits‐all" model of legacy networks lacks the flexibility needed for diverse services. The foundation of 5G networks lies in softwarization, with...
Saved in:
| Published in: | Concurrency and computation Vol. 37; no. 2 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken, USA
John Wiley & Sons, Inc
25.01.2025
Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 1532-0626, 1532-0634 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | ABSTRACT
5G, 6G, and beyond networks promise to support vertical industrial services with strict QoS parameters, but the hardware‐based "one‐size‐fits‐all" model of legacy networks lacks the flexibility needed for diverse services. The foundation of 5G networks lies in softwarization, with network slicing, Software Defined Networking (SDN), and Network Function Virtualisation (NFV) serving as its core components. The network‐slicing‐based shared network environment necessitates an intelligent and flexible resource management approach. In this case, traditional approaches are no longer suitable for dealing with a dynamic network environment. With recent advancements, AI‐based approaches have the potential to manage resources autonomously. This paradigm shift underscores the need for deep and extensive investigation. However, existing literature on this subject is fragmented and lacks a cohesive overview of network slicing. To address these gaps, our review paper aims to provide a comprehensive scope of network slicing in a unified manner. In this sequence at first, this paper presented a conceptual overview of network slicing and enabling technologies, including SDN, NFV, and edge computing. Secondly, this paper identifies the relevant phases of resource management and presents AI‐based resource management for network traffic classification, admission, allocation, and scheduling. Finally, it also discusses the deployment of network slicing‐enabled key use cases and their practical deployment, the research gap, and open research challenges. To the best of our knowledge, this is the first attempt to critically analyze and present a consolidated review of the state of the art in network slicing resource management modules and network slicing‐enabled key industrial use cases. This paper aims to guide researchers in developing innovative solutions and assist network players in the practical deployment of network slices for industrial applications. |
|---|---|
| AbstractList | 5G, 6G, and beyond networks promise to support vertical industrial services with strict QoS parameters, but the hardware‐based "one‐size‐fits‐all" model of legacy networks lacks the flexibility needed for diverse services. The foundation of 5G networks lies in softwarization, with network slicing, Software Defined Networking (SDN), and Network Function Virtualisation (NFV) serving as its core components. The network‐slicing‐based shared network environment necessitates an intelligent and flexible resource management approach. In this case, traditional approaches are no longer suitable for dealing with a dynamic network environment. With recent advancements, AI‐based approaches have the potential to manage resources autonomously. This paradigm shift underscores the need for deep and extensive investigation. However, existing literature on this subject is fragmented and lacks a cohesive overview of network slicing. To address these gaps, our review paper aims to provide a comprehensive scope of network slicing in a unified manner. In this sequence at first, this paper presented a conceptual overview of network slicing and enabling technologies, including SDN, NFV, and edge computing. Secondly, this paper identifies the relevant phases of resource management and presents AI‐based resource management for network traffic classification, admission, allocation, and scheduling. Finally, it also discusses the deployment of network slicing‐enabled key use cases and their practical deployment, the research gap, and open research challenges. To the best of our knowledge, this is the first attempt to critically analyze and present a consolidated review of the state of the art in network slicing resource management modules and network slicing‐enabled key industrial use cases. This paper aims to guide researchers in developing innovative solutions and assist network players in the practical deployment of network slices for industrial applications. ABSTRACT 5G, 6G, and beyond networks promise to support vertical industrial services with strict QoS parameters, but the hardware‐based "one‐size‐fits‐all" model of legacy networks lacks the flexibility needed for diverse services. The foundation of 5G networks lies in softwarization, with network slicing, Software Defined Networking (SDN), and Network Function Virtualisation (NFV) serving as its core components. The network‐slicing‐based shared network environment necessitates an intelligent and flexible resource management approach. In this case, traditional approaches are no longer suitable for dealing with a dynamic network environment. With recent advancements, AI‐based approaches have the potential to manage resources autonomously. This paradigm shift underscores the need for deep and extensive investigation. However, existing literature on this subject is fragmented and lacks a cohesive overview of network slicing. To address these gaps, our review paper aims to provide a comprehensive scope of network slicing in a unified manner. In this sequence at first, this paper presented a conceptual overview of network slicing and enabling technologies, including SDN, NFV, and edge computing. Secondly, this paper identifies the relevant phases of resource management and presents AI‐based resource management for network traffic classification, admission, allocation, and scheduling. Finally, it also discusses the deployment of network slicing‐enabled key use cases and their practical deployment, the research gap, and open research challenges. To the best of our knowledge, this is the first attempt to critically analyze and present a consolidated review of the state of the art in network slicing resource management modules and network slicing‐enabled key industrial use cases. This paper aims to guide researchers in developing innovative solutions and assist network players in the practical deployment of network slices for industrial applications. |
| Author | Dubey, Monika Singh, Ashutosh Kumar Mishra, Richa |
| Author_xml | – sequence: 1 givenname: Monika surname: Dubey fullname: Dubey, Monika organization: University of Allahabad, Allahabad – sequence: 2 givenname: Ashutosh Kumar orcidid: 0000-0003-3922-4389 surname: Singh fullname: Singh, Ashutosh Kumar organization: United College of Engineering & Research Allahabad – sequence: 3 givenname: Richa orcidid: 0000-0002-6770-7188 surname: Mishra fullname: Mishra, Richa email: richa_mishra@allduniv.ac.in organization: University of Allahabad, Allahabad |
| BookMark | eNp1kEtPAjEUhRuDiYAm_oQmblww2MfMFNzhiECCjyiux7bcYhGm2A4h_HsHMC6Mru5ZfOfcnNNAtcIVgNA5JW1KCLvSK2h3OBNHqE4TziKS8rj2o1l6ghohzAmhlHBaR2-9Eb6RAab4GYJbew34XhZyBksoSmycx8kAP0C5cf4DvyystsXsGg9tKJ3ftvBrAJxV9tDCsthngPT6Hd9aD7q0rgin6NjIRYCz79tEk7v-JBtG48fBKOuNI81jISLFiRLcsCkILaVKtVDEKEO6qabQpTGfxpRALLXmWgmdKEJJTJk0nClmFG-ii0PsyrvPNYQyn1dtiupjzmnCRNrpiKSiLg-U9i4EDyZfebuUfptTku_my6v58t18Fdr-hWpbyl2l0ku7-MsQHQwbu4Dtv8F59tTf81_hmYGw |
| CitedBy_id | crossref_primary_10_1007_s13198_025_02841_1 crossref_primary_10_1016_j_comcom_2025_108218 |
| Cites_doi | 10.1145/1143844.1143865 10.1016/j.comnet.2019.106984 10.1016/j.comcom.2023.01.002 10.1186/s13638-021-01983-7 10.1145/3579342.3579350 10.1109/TCCN.2019.2952882 10.1002/ett.4201 10.1109/ACCESS.2020.2972105 10.46610/JONSCN.2022.v08i03.001 10.1109/ICAC347590.2019.9036741 10.1038/sdata.2015.55 10.1109/MN55117.2022.9887734 10.1109/ACCESS.2021.3072435 10.1002/ett.3761 10.1109/MCOM.001.1900461 10.1109/TCCN.2020.2988908 10.1109/IWMN.2019.8804984 10.3390/sym15020538 10.1109/ACCESS.2021.3111143 10.1109/COMST.2018.2846401 10.3390/s22083031 10.1109/JSYST.2022.3172658 10.1109/OJCOMS.2021.3071496 10.1109/MC.1974.6323581 10.1109/ISDEA.2010.335 10.1109/ACCESS.2021.3136361 10.1109/TNSM.2019.2899609 10.3390/jsan10040060 10.1186/s40537-023-00727-2 10.1162/neco.1989.1.3.295 10.1109/INFOCOM.2017.8057230 10.1016/j.future.2019.09.042 10.1109/TII.2020.3036867 10.1109/ACCESS.2020.2975072 10.1109/COMST.2022.3158270 10.1002/ett.4721 10.1109/ACCESS.2020.2967626 10.1109/MNET.001.1800528 10.1109/ACCESS.2021.3071649 10.1109/TVT.2019.2959193 10.1109/JIOT.2022.3200431 10.3390/electronics10222786 10.1109/TVT.2019.2922668 10.1109/JSAC.2019.2959186 10.1007/978-3-030-25748-4_2 10.1109/COMST.2020.2971781 10.1109/TNSM.2020.3019248 10.1109/ACCESS.2023.3267985 10.1007/s11704-018-7277-8 10.1016/j.comnet.2023.109720 10.1145/3485983.3494850 10.1109/MNET.011.1900458 10.3390/app12136617 10.1109/PCEMS55161.2022.9807927 10.1007/s11042-019-7283-3 10.1109/OJCOMS.2020.3010270 10.31274/itaa_proceedings-180814-1204 10.1109/TMC.2018.2809750 10.1109/TWC.2018.2859918 10.1109/JSAC.2018.2815318 10.23919/ONDM.2018.8396119 10.1089/big.2020.0159 10.1109/TNSM.2018.2863563 10.1007/978-3-031-08341-9_7 10.1109/NOMS54207.2022.9789903 10.1002/ett.3652 10.1109/LCOMM.2020.3001227 10.1109/ACCESS.2021.3050155 10.1145/3372224.3419195 10.1109/JSAC.2019.2959245 10.1155/2020/8836315 10.3390/app13010448 10.23919/WAC.2018.8430419 10.1109/ACCESS.2019.2905347 10.1109/MWC.001.2100338 10.1109/PIMRC.2017.8292737 10.1109/ICCWorkshops49005.2020.9145236 10.2298/CSIS200710055Y 10.1109/COMST.2021.3067807 10.3390/app10217670 10.1109/OJCOMS.2021.3131370 10.1016/j.suscom.2018.10.006 10.1109/MWC.001.1900292 10.1109/ACCESS.2020.3040949 10.1145/3551661.3561359 10.1109/MNET.2018.1800104 10.24963/ijcai.2018/505 10.1109/ACCESS.2022.3148703 10.1109/ACCESS.2023.3243985 10.1016/j.procs.2020.04.289 10.1016/j.icte.2021.01.003 10.1002/dac.5296 10.1109/LNET.2019.2959733 10.1002/cpe.6352 10.1613/jair.301 10.1109/VTCSpring.2018.8417782 10.1155/2021/1425732 10.1109/CCNC49032.2021.9369463 10.1109/CCWC47524.2020.9031158 10.3390/jsan10030051 10.3390/electronics10010027 10.3390/fi14080230 10.1109/ACCESS.2020.3006502 10.23919/JCC.2020.03.006 10.1109/IWCMC55113.2022.9824988 10.1109/TNSM.2020.3028197 10.3390/electronics12102336 10.1049/iet-its.2019.0111 10.1155/2021/3596095 10.1016/j.procs.2021.12.317 10.1109/MWC.001.2000069 10.1016/j.comcom.2023.02.009 10.1109/5GWF.2019.8911618 10.1109/ACCESS.2020.2970118 10.1109/GLOBECOM48099.2022.10001658 10.1007/s10115-022-01756-8 10.1002/net.21715 10.1002/dac.4757 10.1109/5GWF.2018.8516953 10.3390/telecom4010006 10.1016/j.array.2022.100142 10.1109/GCWkshps50303.2020.9367536 10.1002/nem.2018 10.1016/j.iot.2020.100351 10.1109/TNSM.2022.3189925 10.1109/EuCNC.2019.8802054 10.1155/2022/9958786 10.1109/TNET.2016.2623950 10.1109/ACCESS.2021.3051695 10.1016/B978-0-12-804418-6.00001-7 |
| ContentType | Journal Article |
| Copyright | 2024 John Wiley & Sons Ltd. 2025 John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. – notice: 2025 John Wiley & Sons Ltd. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/cpe.8327 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1532-0634 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_cpe_8327 CPE8327 |
| Genre | researchArticle |
| GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OB 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AGHNM AGYGG AHBTC AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX CITATION O8X 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3477-b30b73f2de7caab6c7b0fbf096c1e9143d410e4acc3cb7c5b010412af32b2fb3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001358416600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1532-0626 |
| IngestDate | Wed Aug 13 09:58:42 EDT 2025 Tue Nov 18 22:35:32 EST 2025 Sat Nov 29 03:49:55 EST 2025 Mon Aug 11 05:48:07 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3477-b30b73f2de7caab6c7b0fbf096c1e9143d410e4acc3cb7c5b010412af32b2fb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3922-4389 0000-0002-6770-7188 |
| PQID | 3152768875 |
| PQPubID | 2045170 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_3152768875 crossref_primary_10_1002_cpe_8327 crossref_citationtrail_10_1002_cpe_8327 wiley_primary_10_1002_cpe_8327_CPE8327 |
| PublicationCentury | 2000 |
| PublicationDate | 25 January 2025 |
| PublicationDateYYYYMMDD | 2025-01-25 |
| PublicationDate_xml | – month: 01 year: 2025 text: 25 January 2025 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
| PublicationTitle | Concurrency and computation |
| PublicationYear | 2025 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2021; 23 2023; 34 2023; 4 2020; 17 2023; 227 2022; 24 2019; 16 2020; 14 2020; 58 2020; 167 2022; 64 2022; 22 2020; 10 1974; 7 2015; 2083 2022; 29 2020; 18 2020; 8 2020; 7 2021; 32 2021; 34 2020; 1 2021; 33 2019; 68 2020; 171 2019; 69 2020; 48 1996; 4 2018; 32 2021; 2021 2018; 36 2021; 9 2015; 2 2019; 7 2023; 10 2021; 7 2018; 28 2022; 198 1989; 1 2019; 6 2023; 11 2021; 2 2023; 12 2017; 69 2023; 15 2019; 2 2019; 33 2019; 78 2019; 38 2023; 202 2020; 34 2020; 102 2022; 117163 2018; 20 2022; 49 2021; 13 2018; 17 2021; 10 2022; 2023 2020; 2020 2022; 2022 2021; 11 2020; 31 2023 2022 2021 2021; 18 2022; 8 2022; 9 2020; 28 2022; 12 2020; 27 2019 2022; 13 2022; 14 2017 2020; 24 2015 2020; 22 2022; 10 2022; 11 2020; 21 2022; 16 2016; 25 2023; 50 2018; 15 2022; 19 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_123_1 Li J. (e_1_2_7_127_1) 2021; 11 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 Nunez‐Agurto D. (e_1_2_7_68_1) 2022; 49 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_142_1 e_1_2_7_146_1 e_1_2_7_116_1 e_1_2_7_90_1 Brown G. (e_1_2_7_21_1) 2017 Ayala‐Romero J. A. (e_1_2_7_53_1) 2020; 21 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_56_1 e_1_2_7_150_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_135_1 e_1_2_7_158_1 e_1_2_7_139_1 Series M. (e_1_2_7_9_1) 2015; 2083 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_8_1 e_1_2_7_124_1 Kaloxylos A. (e_1_2_7_55_1) 2021 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 Johansson L. (e_1_2_7_105_1) 2019 e_1_2_7_120_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_143_1 e_1_2_7_29_1 e_1_2_7_147_1 Jiang W. (e_1_2_7_71_1) 2022; 117163 Dubey M. (e_1_2_7_130_1) 2022; 2023 e_1_2_7_117_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_151_1 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_136_1 e_1_2_7_159_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_102_1 Wang Z. (e_1_2_7_125_1) 2022; 2022 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 Cui Y. (e_1_2_7_75_1) 2020; 2020 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_140_1 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_148_1 e_1_2_7_118_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_156_1 Xuan H. (e_1_2_7_113_1) 2020; 48 e_1_2_7_137_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_122_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_160_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_27_1 e_1_2_7_145_1 e_1_2_7_149_1 e_1_2_7_119_1 Farsimadan E. (e_1_2_7_161_1) 2023 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_38_1 e_1_2_7_153_1 e_1_2_7_134_1 e_1_2_7_157_1 e_1_2_7_138_1 |
| References_xml | – volume: 2021 start-page: 102 issue: 1 year: 2021 article-title: Network Slicing: A Next Generation 5G Perspective publication-title: EURASIP Journal on Wireless Communications and Networking – year: 2022 article-title: A Comprehensive Survey on Software‐Defined Networking for Smart Communities publication-title: International Journal of Communication Systems – volume: 23 start-page: 957 issue: 2 year: 2021 end-page: 994 article-title: Survey on Network Slicing for Internet of Things Realization in 5G Networks publication-title: IEEE Communications Surveys & Tutorials – volume: 14 start-page: 1 year: 2020 end-page: 26 article-title: Varna‐Based Optimization: A Novel Method for Capacitated Controller Placement Problem in SDN publication-title: Frontiers of Computer Science – start-page: 1 year: 2017 end-page: 18 – volume: 32 issue: 3 year: 2021 article-title: Toward 6G: Understanding Network Requirements and Key Performance Indicators publication-title: Transactions on Emerging Telecommunications Technologies – volume: 11 start-page: 171 issue: 3 year: 2021 end-page: 180 article-title: Health Care 4.0: A Vision for Smart and Connected Health Care. publication-title: Systems Engineering – volume: 2 start-page: 1 issue: 1 year: 2015 end-page: 15 article-title: A Multi‐Source Dataset of Urban Life in the City of Milan and the Province of Trentino publication-title: Scientific Data – year: 2023 article-title: A Study of Some ML and DL‐Based Strategies for Network Security publication-title: Informatica – volume: 2 start-page: 5 issue: 1 year: 2019 end-page: 9 article-title: Admission Control and Network Slicing for Multi‐Numerology 5G Wireless Networks publication-title: IEEE Networking Letters – volume: 14 start-page: 182 issue: 3 year: 2020 end-page: 189 article-title: CogITS: Cognition‐Enabled Network Management for 5G V2X Communication publication-title: IET Intelligent Transport Systems – volume: 8 start-page: 122229 year: 2020 end-page: 122240 article-title: An End‐To‐End Network Slicing Algorithm Based on Deep Q‐Learning for 5G Network publication-title: IEEE Access – volume: 9 start-page: 12706 year: 2021 end-page: 12716 article-title: Reinforcement Learning‐Based Resource Management Model for Fog Radio Access Network Architectures in 5G publication-title: IEEE Access – volume: 227 year: 2023 article-title: Resource Allocation in Multi‐Access Edge Computing for 5G‐And‐Beyond Networks publication-title: Computer Networks – volume: 9 start-page: 10903 year: 2021 end-page: 10924 article-title: Cloud‐Native Network Slicing Using Software Defined Networking Based Multi‐Access Edge Computing: A Survey publication-title: IEEE Access – volume: 16 start-page: 4686 issue: 3 year: 2022 end-page: 4697 article-title: Admission Control for 5G Core Network Slicing Based on Deep Reinforcement Learning publication-title: IEEE Systems Journal – volume: 7 start-page: 414 issue: 4 year: 2021 end-page: 420 article-title: Nearest Neighbour Methods and Their Applications in Design of 5G & Beyond Wireless Networks publication-title: ICT Express – volume: 33 start-page: 196 issue: 6 year: 2019 end-page: 204 article-title: Intelligent Network Slicing for V2X Services Toward 5G publication-title: IEEE Network – volume: 28 issue: 3 year: 2018 article-title: A Survey and Classification of Controller Placement Problem in SDN publication-title: International Journal of Network Management – volume: 31 issue: 2 year: 2020 article-title: Heuristic Approaches for the Reliable SDN Controller Placement Problem publication-title: Transactions on Emerging Telecommunications Technologies – volume: 171 start-page: 2665 year: 2020 end-page: 2674 article-title: 5G for Military Communications publication-title: Procedia Computer Science – volume: 22 start-page: 905 issue: 2 year: 2020 end-page: 929 article-title: A Survey on 5G Usage Scenarios and Traffic Models publication-title: IEEE Communications Surveys & Tutorials – volume: 13 year: 2021 article-title: An Integrated Fuzzy‐Based Admission Control System (IFACS) for 5G Wireless Networks: Its Implementation and Performance Evaluation publication-title: Internet of Things – volume: 27 start-page: 16 issue: 1 year: 2020 end-page: 23 article-title: Artificial Intelligence Enabled Wireless Networking for 5G and Beyond: Recent Advances and Future Challenges publication-title: IEEE Wireless Communications – volume: 49 issue: 4 year: 2022 article-title: Machine Learning‐Based Traffic Classification in Software‐Defined Networking: A Systematic Literature Review, Challenges, and Future Research Directions publication-title: IAENG International Journal of Computer Science – volume: 9 start-page: 3 issue: 1 year: 2021 end-page: 21 article-title: Deep Learning for Time Series Forecasting: A Survey publication-title: Big Data – volume: 10 start-page: 2786 issue: 22 year: 2021 article-title: Machine Learning in Beyond 5G/6G Networks—State‐Of‐The‐Art and Future Trends publication-title: Electronics – volume: 18 start-page: 979 issue: 3 year: 2021 end-page: 999 article-title: Deep Reinforcement Learning for Resource Allocation With Network Slicing in Cognitive Radio Network publication-title: Computer Science and Information Systems – volume: 21 start-page: 2652 issue: 7 year: 2020 end-page: 2670 article-title: Vrain: Deep Learning Based Orchestration for Computing and Radio Resources in Vrans publication-title: IEEE Transactions on Mobile Computing – volume: 17 start-page: 5595 issue: 8 year: 2020 end-page: 5604 article-title: NFV and Blockchain Enabled 5G for Ultra‐Reliable and Low‐Latency Communications in Industry: Architecture and Performance Evaluation publication-title: IEEE Transactions on Industrial Informatics – volume: 2023 start-page: 96 year: 2022 article-title: 5G in Healthcare: Revolutionary Use‐Cases and QoS Provisioning Powered by Network Slicing publication-title: Intelligent Systems and Smart Infrastructure: Proceedings of ICISSI – volume: 117163 year: 2022 article-title: Cellular Traffic Prediction With Machine Learning: A Survey publication-title: Expert Systems with Applications – year: 2019 – volume: 2083 start-page: 1 year: 2015 end-page: 21 article-title: IMT Vision–Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond publication-title: Recommendation ITU – volume: 17 start-page: 2197 issue: 4 year: 2020 end-page: 2211 article-title: Network Slice Reconfiguration by Exploiting Deep Reinforcement Learning With Large Action Space publication-title: IEEE Transactions on Network and Service Management – volume: 9 start-page: 23472 issue: 23 year: 2022 end-page: 23485 article-title: Edge Computing for Internet of Everything: A Survey publication-title: IEEE Internet of Things Journal – volume: 4 start-page: 67 year: 2023 end-page: 99 article-title: Mobile Services for Smart Agriculture and Forestry, Biodiversity Monitoring, and Water Management: Challenges for 5G/6G Networks publication-title: Telecom – year: 2023 article-title: Optimizing Communication and Computational Resource Allocations in Network Slicing Using Twin‐GAN‐Based DRL for 5G Hybrid C‐RAN publication-title: Computer Communications – volume: 15 start-page: 1661 issue: 4 year: 2018 end-page: 1675 article-title: Towards 5G: A Reinforcement Learning‐Based Scheduling Solution for Data Traffic Management publication-title: IEEE Transactions on Network and Service Management – volume: 19 start-page: 5120 issue: 4 year: 2022 end-page: 5132 article-title: An Overview of Inter‐Slice & Intra‐Slice Resource Allocation in b5g Telecommunication Networks publication-title: IEEE Transactions on Network and Service Management – volume: 24 start-page: 2005 issue: 9 year: 2020 end-page: 2009 article-title: The LSTM‐Based Advantage Actor‐Critic Learning for Resource Management in Network Slicing With User Mobility publication-title: IEEE Communications Letters – volume: 34 issue: 3 year: 2023 article-title: 5G Network Slicing With Unmanned Aerial Vehicles: Taxonomy, Survey, and Future Directions publication-title: Transactions on Emerging Telecommunications Technologies – volume: 167 year: 2020 article-title: 5G Network Slicing Using SDN and NFV: A Survey of Taxonomy, Architectures and Future Challenges publication-title: Computer Networks – volume: 68 start-page: 7691 issue: 8 year: 2019 end-page: 7703 article-title: Intelligent Resource Scheduling for 5G Radio Access Network Slicing publication-title: IEEE Transactions on Vehicular Technology – volume: 15 start-page: 538 issue: 2 year: 2023 article-title: A Survey on Resource Management for Cloud Native Mobile Computing: Opportunities and Challenges publication-title: Symmetry – volume: 33 issue: 20 year: 2021 article-title: 5G Network Slicing: Fundamental Concepts, Architectures, Algorithmics, Projects Practices, and Open Issues publication-title: Concurrency and Computation: Practice and Experience – volume: 13 start-page: 448 issue: 1 year: 2022 article-title: Resource Allocation for Network Slicing in RAN Using Case‐Based Reasoning publication-title: Applied Sciences – volume: 10 start-page: 15860 year: 2022 end-page: 15875 article-title: Admission Control and Virtual Network Embedding in 5g Networks: A Deep Reinforcement‐Learning Approach publication-title: IEEE Access – volume: 2021 start-page: 1 year: 2021 end-page: 8 article-title: Artistic Style Conversion Based on 5G Virtual Reality and Virtual Reality Visual Space publication-title: Mobile Information Systems – volume: 8 start-page: 23022 year: 2020 end-page: 23040 article-title: Internet of Things (IoT) for Next‐Generation Smart Systems: A Review of Current Challenges, Future Trends and Prospects for Emerging 5G‐IoT Scenarios publication-title: IEEE Access – volume: 10 start-page: 46 issue: 1 year: 2023 article-title: A Survey on Deep Learning Tools Dealing With Data Scarcity: Definitions, Challenges, Solutions, Tips, and Applications publication-title: Journal of Big Data – volume: 198 start-page: 750 year: 2022 end-page: 756 article-title: An Overview of the 3GPP Identified Use Cases for V2X Services publication-title: Procedia Computer Science – volume: 102 start-page: 965 year: 2020 end-page: 977 article-title: IoT Network Slicing on Virtual Layers of Homogeneous Data for Improved Algorithm Operation in Smart Buildings publication-title: Future Generation Computer Systems – volume: 2022 year: 2022 article-title: The Application of 5G Network Technology in the Innovative Development of Physical Education publication-title: Mobile Information Systems – volume: 25 start-page: 1147 issue: 2 year: 2016 end-page: 1161 article-title: Understanding Mobile Traffic Patterns of Large Scale Cellular Towers in Urban Environment publication-title: IEEE/ACM Transactions on Networking – volume: 11 start-page: 17922 year: 2023 end-page: 17944 article-title: Blockchain for Dynamic Spectrum Access and Network Slicing: A Review publication-title: IEEE Access – volume: 202 start-page: 110 year: 2023 end-page: 123 article-title: Joint QoS and Energy‐Efficient Resource Allocation and Scheduling in 5G Network Slicing publication-title: Computer Communications – volume: 9 start-page: 166962 year: 2021 end-page: 166969 article-title: 5G‐Enabled Education 4.0: Enabling Technologies, Challenges, and Solutions. publication-title: Access – volume: 58 start-page: 46 issue: 6 year: 2020 end-page: 51 article-title: Federated Learning for Wireless Communications: Motivation, Opportunities, and Challenges publication-title: IEEE Communications Magazine – volume: 8 start-page: 29525 year: 2020 end-page: 29537 article-title: End‐To‐End Network Slicing in Radio Access Network, Transport Network and Core Network Domains publication-title: IEEE Access – volume: 8 start-page: 14977 year: 2020 end-page: 14990 article-title: A Survey on Slice Admission Control Strategies and Optimization Schemes in 5g Network publication-title: IEEE Access – volume: 8 issue: 3 year: 2022 article-title: m‐MTC for Optimized Communication in 5G publication-title: Journal of Network Security Computer Networks – volume: 29 start-page: 96 issue: 1 year: 2022 end-page: 103 article-title: AI‐Native Network Slicing for 6G Networks publication-title: IEEE Wireless Communications – volume: 9 start-page: 56178 year: 2021 end-page: 56190 article-title: Multi‐Agent Reinforcement Learning‐Based Resource Management for End‐To‐End Network Slicing publication-title: IEEE Access – volume: 36 start-page: 542 issue: 3 year: 2018 end-page: 557 article-title: vSPACE: VNF Simultaneous Placement, Admission Control and Embedding publication-title: IEEE Journal on Selected Areas in Communications – volume: 17 start-page: 2252 issue: 10 year: 2018 end-page: 2265 article-title: Data‐Driven Evaluation of Anticipatory Networking in LTE Networks publication-title: IEEE Transactions on Mobile Computing – volume: 32 issue: 1 year: 2021 article-title: Network Slicing for Vehicular Communication publication-title: Transactions on Emerging Telecommunications Technologies – volume: 7 start-page: 37251 year: 2019 end-page: 37268 article-title: 5G Communication: An Overview of Vehicle‐To‐Everything, Drones, and Healthcare Use‐Cases publication-title: IEEE Access – year: 2022 article-title: Dynamically Resource Allocation in Beyond 5G (B5G) Network RAN Slicing Using Deep Deterministic Policy Gradient publication-title: Wireless Communications and Mobile Computing – volume: 1 start-page: 295 issue: 3 year: 1989 end-page: 311 article-title: Unsupervised Learning publication-title: Neural Computation – year: 2021 – volume: 10 start-page: 51 issue: 3 year: 2021 article-title: A Virtualization Infrastructure Cost Model for 5g Network Slice Provisioning in a Smart Factory publication-title: Journal of Sensor and Actuator Networks – volume: 48 start-page: 1 year: 2020 end-page: 7 article-title: Vnf Service Chain Deployment Algorithm in 5g Communication Based on Reinforcement Learning publication-title: IAENG International Journal of Computer Science – volume: 38 start-page: 361 issue: 2 year: 2019 end-page: 376 article-title: DeepCog: Optimizing Resource Provisioning in Network Slicing With AI‐Based Capacity Forecasting publication-title: IEEE Journal on Selected Areas in Communications – volume: 17 start-page: 6419 issue: 10 year: 2018 end-page: 6432 article-title: Network Slicing for Guaranteed Rate Services: Admission Control and Resource Allocation Games publication-title: IEEE Transactions on Wireless Communications – volume: 64 start-page: 3197 issue: 12 year: 2022 end-page: 3234 article-title: Interpretable Deep Learning: Interpretation, Interpretability, Trustworthiness, and Beyond publication-title: Knowledge and Information Systems – volume: 24 start-page: 1175 issue: 2 year: 2022 end-page: 1211 article-title: A Survey of Intelligent Network Slicing Management for Industrial IoT: Integrated Approaches for Smart Transportation, Smart Energy, and Smart Factory publication-title: IEEE Communications Surveys & Tutorials – volume: 12 start-page: 6617 issue: 13 year: 2022 article-title: Integration of Network Slicing and Machine Learning Into Edge Networks for Low‐Latency Services in 5G and Beyond Systems publication-title: Applied Sciences – volume: 11 start-page: 39123 year: 2022 end-page: 39153 article-title: Machine Learning in Network Slicing‐A Survey publication-title: IEEE Access – volume: 12 start-page: 2336 issue: 10 year: 2023 article-title: Survey of Intelligent Agricultural IoT Based on 5G publication-title: Electronics – volume: 8 start-page: 214696 year: 2020 end-page: 214706 article-title: Resource Allocation for Network Slicing in Mobile Networks publication-title: IEEE Access – volume: 18 start-page: 1946 issue: 2 year: 2020 end-page: 1961 article-title: Mobile Traffic Classification Through Physical Control Channel Fingerprinting: A Deep Learning Approach publication-title: IEEE Transactions on Network and Service Management – volume: 7 start-page: 304 issue: 1 year: 2020 end-page: 318 article-title: Delay‐Aware VNF Scheduling: A Reinforcement Learning Approach With Variable Action Set publication-title: IEEE Transactions on Cognitive Communications and Networking – volume: 50 start-page: 28 issue: 3 year: 2023 end-page: 31 article-title: Model‐Based Resource Management for Fine‐Grained Services publication-title: ACM SIGMETRICS Performance Evaluation Review – volume: 69 start-page: 151 issue: 1 year: 2017 end-page: 163 article-title: Lightpath Admission Control and Rerouting in Dynamic Flex‐Grid Optical Transport Networks publication-title: Networks – volume: 1 start-page: 957 year: 2020 end-page: 975 article-title: 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions publication-title: IEEE Open Journal of the Communications Society – volume: 10 start-page: 7670 issue: 21 year: 2020 article-title: Towards Flexible Integration of 5G and IIoT Technologies in Industry 4.0: A Practical Use Case publication-title: Applied Sciences – year: 2015 – volume: 32 start-page: 42 issue: 6 year: 2018 end-page: 49 article-title: Improving Traffic Forecasting for 5G Core Network Scalability: A Machine Learning Approach publication-title: IEEE Network – volume: 20 start-page: 2595 issue: 4 year: 2018 end-page: 2621 article-title: Deep Learning for Intelligent Wireless Networks: A Comprehensive Survey publication-title: IEEE Communications Surveys & Tutorials – volume: 2020 start-page: 1 year: 2020 end-page: 10 article-title: Machine Learning‐Based Resource Allocation Strategy for Network Slicing in Vehicular Networks publication-title: Wireless Communications and Mobile Computing – volume: 2 start-page: 2645 year: 2021 end-page: 2659 article-title: Techno‐Economic Study of 5G Network Slicing to Improve Rural Connectivity in India publication-title: IEEE Open Journal of the Communications Society – volume: 2 start-page: 836 year: 2021 end-page: 886 article-title: Survey on 6G Frontiers: Trends, Applications, Requirements, Technologies and Future Research publication-title: IEEE Open Journal of the Communications Society – volume: 27 start-page: 108 issue: 6 year: 2020 end-page: 115 article-title: Automatic Network Slicing for IoT in Smart City publication-title: IEEE Wireless Communications – volume: 34 issue: 7 year: 2021 article-title: On Using Reinforcement Learning for Network Slice Admission Control in 5G: Offline vs. Online publication-title: International Journal of Communication Systems – volume: 34 start-page: 91 issue: 4 year: 2020 end-page: 97 article-title: Reliability for Smart Healthcare: A Network Slicing Perspective publication-title: IEEE Network – volume: 8 start-page: 36009 year: 2020 end-page: 36028 article-title: Network Slicing: Recent Advances, Taxonomy, Requirements, and Open Research Challenges publication-title: IEEE Access – volume: 78 start-page: 24707 year: 2019 end-page: 24737 article-title: Dynamic Network Slicing Management of Multimedia Scenarios for Future Remote Healthcare publication-title: Multimedia Tools and Applications – volume: 6 start-page: 858 issue: 2 year: 2019 end-page: 871 article-title: An Artificial Intelligence Framework for Slice Deployment and Orchestration in 5G Networks publication-title: IEEE Transactions on Cognitive Communications and Networking – volume: 28 year: 2020 article-title: A Creative IoT Agriculture Platform for Cloud Fog Computing publication-title: Sustainable Computing Informatics & Systems – volume: 14 start-page: 230 issue: 8 year: 2022 article-title: Multi‐Agent‐Based Traffic Prediction and Traffic Classification for Autonomic Network Management Systems for Future Networks publication-title: Future Internet – volume: 69 start-page: 2079 issue: 2 year: 2019 end-page: 2091 article-title: End‐To‐End Slicing With Optimized Communication and Computing Resource Allocation in Multi‐Tenant 5G Systems publication-title: IEEE Transactions on Vehicular Technology – volume: 17 start-page: 58 issue: 3 year: 2020 end-page: 77 article-title: Artificial Intelligence‐Empowered Resource Management for Future Wireless Communications: A Survey publication-title: China Communications – volume: 10 start-page: 27 issue: 1 year: 2020 article-title: Internet Traffic Classification With Federated Learning publication-title: Electronics – volume: 22 start-page: 3031 issue: 8 year: 2022 article-title: Deep Reinforcement Learning for Resource Management on Network Slicing: A Survey publication-title: Sensors – volume: 7 start-page: 34 issue: 6 year: 1974 end-page: 45 article-title: Survey of Virtual Machine Research publication-title: Computer – volume: 4 start-page: 237 year: 1996 end-page: 285 article-title: Reinforcement Learning: A Survey publication-title: Journal of Artificial Intelligence Research – volume: 2021 start-page: 1 year: 2021 end-page: 7 article-title: Prediction of IoT Traffic Using the Gated Recurrent Unit Neural Network‐(GRU‐NN‐) Based Predictive Model publication-title: Security and Communication Networks – volume: 9 start-page: 127595 year: 2021 end-page: 127610 article-title: Timely Admission Control for Network Slicing in 5G With Machine Learning publication-title: IEEE Access – year: 2022 article-title: Application in 5G and Beyond Network Slicing and Virtualization publication-title: Array – year: 2017 – volume: 38 start-page: 350 issue: 2 year: 2019 end-page: 360 article-title: Offline SLA‐Constrained Deep Learning for 5G Networks Reliable and Dynamic End‐To‐End Slicing publication-title: IEEE Journal on Selected Areas in Communications – volume: 10 start-page: 60 issue: 4 year: 2021 article-title: Trends in Intelligent Communication Systems: Review of Standards, Major Research Projects, and Identification of Research Gaps publication-title: Journal of Sensor and Actuator Networks – volume: 9 start-page: 88902 year: 2021 end-page: 88930 article-title: Softwarization of 5G Networks–Implications to Open Platforms and Standardizations publication-title: IEEE Access – volume: 16 start-page: 591 issue: 2 year: 2019 end-page: 605 article-title: Reconfiguration in Network Slicing—Optimizing the Profit and Performance publication-title: IEEE Transactions on Network and Service Management – ident: e_1_2_7_47_1 doi: 10.1145/1143844.1143865 – ident: e_1_2_7_27_1 doi: 10.1016/j.comnet.2019.106984 – ident: e_1_2_7_112_1 doi: 10.1016/j.comcom.2023.01.002 – ident: e_1_2_7_34_1 doi: 10.1186/s13638-021-01983-7 – ident: e_1_2_7_88_1 doi: 10.1145/3579342.3579350 – ident: e_1_2_7_144_1 – ident: e_1_2_7_103_1 doi: 10.1109/TCCN.2019.2952882 – ident: e_1_2_7_13_1 doi: 10.1002/ett.4201 – ident: e_1_2_7_20_1 doi: 10.1109/ACCESS.2020.2972105 – volume-title: Latency and Traffic Aware Container Placement in Distributed Cloud year: 2019 ident: e_1_2_7_105_1 – ident: e_1_2_7_25_1 – ident: e_1_2_7_160_1 – ident: e_1_2_7_5_1 doi: 10.46610/JONSCN.2022.v08i03.001 – ident: e_1_2_7_48_1 doi: 10.1109/ICAC347590.2019.9036741 – ident: e_1_2_7_114_1 – ident: e_1_2_7_79_1 doi: 10.1038/sdata.2015.55 – ident: e_1_2_7_155_1 doi: 10.1109/MN55117.2022.9887734 – ident: e_1_2_7_111_1 doi: 10.1109/ACCESS.2021.3072435 – ident: e_1_2_7_14_1 doi: 10.1002/ett.3761 – ident: e_1_2_7_73_1 doi: 10.1109/MCOM.001.1900461 – ident: e_1_2_7_143_1 – ident: e_1_2_7_98_1 doi: 10.1109/TCCN.2020.2988908 – volume: 48 start-page: 1 year: 2020 ident: e_1_2_7_113_1 article-title: Vnf Service Chain Deployment Algorithm in 5g Communication Based on Reinforcement Learning publication-title: IAENG International Journal of Computer Science – ident: e_1_2_7_76_1 doi: 10.1109/IWMN.2019.8804984 – volume-title: Service‐Oriented 5G Core Networks year: 2017 ident: e_1_2_7_21_1 – ident: e_1_2_7_38_1 – ident: e_1_2_7_24_1 – ident: e_1_2_7_45_1 doi: 10.3390/sym15020538 – ident: e_1_2_7_82_1 doi: 10.1109/ACCESS.2021.3111143 – ident: e_1_2_7_158_1 doi: 10.1109/COMST.2018.2846401 – ident: e_1_2_7_30_1 doi: 10.3390/s22083031 – ident: e_1_2_7_84_1 doi: 10.1109/JSYST.2022.3172658 – ident: e_1_2_7_12_1 doi: 10.1109/OJCOMS.2021.3071496 – ident: e_1_2_7_18_1 doi: 10.1109/MC.1974.6323581 – ident: e_1_2_7_153_1 doi: 10.1109/ISDEA.2010.335 – volume: 2022 year: 2022 ident: e_1_2_7_125_1 article-title: The Application of 5G Network Technology in the Innovative Development of Physical Education publication-title: Mobile Information Systems – ident: e_1_2_7_123_1 doi: 10.1109/ACCESS.2021.3136361 – ident: e_1_2_7_93_1 doi: 10.1109/TNSM.2019.2899609 – ident: e_1_2_7_36_1 doi: 10.3390/jsan10040060 – ident: e_1_2_7_157_1 doi: 10.1186/s40537-023-00727-2 – ident: e_1_2_7_146_1 – ident: e_1_2_7_51_1 doi: 10.1162/neco.1989.1.3.295 – ident: e_1_2_7_70_1 doi: 10.1109/INFOCOM.2017.8057230 – ident: e_1_2_7_137_1 doi: 10.1016/j.future.2019.09.042 – ident: e_1_2_7_46_1 doi: 10.1109/TII.2020.3036867 – ident: e_1_2_7_31_1 doi: 10.1109/ACCESS.2020.2975072 – ident: e_1_2_7_39_1 doi: 10.1109/COMST.2022.3158270 – ident: e_1_2_7_134_1 doi: 10.1002/ett.4721 – ident: e_1_2_7_147_1 – ident: e_1_2_7_33_1 doi: 10.1109/ACCESS.2020.2967626 – ident: e_1_2_7_116_1 doi: 10.1109/MNET.001.1800528 – ident: e_1_2_7_17_1 doi: 10.1109/ACCESS.2021.3071649 – ident: e_1_2_7_150_1 – ident: e_1_2_7_95_1 doi: 10.1109/TVT.2019.2959193 – ident: e_1_2_7_7_1 doi: 10.1109/JIOT.2022.3200431 – ident: e_1_2_7_8_1 doi: 10.3390/electronics10222786 – ident: e_1_2_7_96_1 doi: 10.1109/TVT.2019.2922668 – ident: e_1_2_7_77_1 doi: 10.1109/JSAC.2019.2959186 – ident: e_1_2_7_81_1 doi: 10.1007/978-3-030-25748-4_2 – ident: e_1_2_7_66_1 doi: 10.1109/COMST.2020.2971781 – volume: 2023 start-page: 96 year: 2022 ident: e_1_2_7_130_1 article-title: 5G in Healthcare: Revolutionary Use‐Cases and QoS Provisioning Powered by Network Slicing publication-title: Intelligent Systems and Smart Infrastructure: Proceedings of ICISSI – ident: e_1_2_7_94_1 doi: 10.1109/TNSM.2020.3019248 – ident: e_1_2_7_29_1 doi: 10.1109/ACCESS.2023.3267985 – ident: e_1_2_7_141_1 – ident: e_1_2_7_15_1 doi: 10.1007/s11704-018-7277-8 – ident: e_1_2_7_44_1 doi: 10.1016/j.comnet.2023.109720 – ident: e_1_2_7_62_1 doi: 10.1145/3485983.3494850 – ident: e_1_2_7_128_1 doi: 10.1109/MNET.011.1900458 – ident: e_1_2_7_41_1 doi: 10.3390/app12136617 – ident: e_1_2_7_120_1 doi: 10.1109/PCEMS55161.2022.9807927 – ident: e_1_2_7_129_1 doi: 10.1007/s11042-019-7283-3 – ident: e_1_2_7_11_1 doi: 10.1109/OJCOMS.2020.3010270 – ident: e_1_2_7_19_1 doi: 10.31274/itaa_proceedings-180814-1204 – ident: e_1_2_7_69_1 doi: 10.1109/TMC.2018.2809750 – ident: e_1_2_7_83_1 doi: 10.1109/TWC.2018.2859918 – ident: e_1_2_7_104_1 doi: 10.1109/JSAC.2018.2815318 – ident: e_1_2_7_110_1 doi: 10.23919/ONDM.2018.8396119 – ident: e_1_2_7_154_1 doi: 10.1089/big.2020.0159 – ident: e_1_2_7_97_1 doi: 10.1109/TNSM.2018.2863563 – ident: e_1_2_7_133_1 doi: 10.1007/978-3-031-08341-9_7 – volume: 21 start-page: 2652 issue: 7 year: 2020 ident: e_1_2_7_53_1 article-title: Vrain: Deep Learning Based Orchestration for Computing and Radio Resources in Vrans publication-title: IEEE Transactions on Mobile Computing – volume: 49 issue: 4 year: 2022 ident: e_1_2_7_68_1 article-title: Machine Learning‐Based Traffic Classification in Software‐Defined Networking: A Systematic Literature Review, Challenges, and Future Research Directions publication-title: IAENG International Journal of Computer Science – ident: e_1_2_7_80_1 doi: 10.1109/NOMS54207.2022.9789903 – ident: e_1_2_7_118_1 doi: 10.1002/ett.3652 – ident: e_1_2_7_63_1 doi: 10.1109/LCOMM.2020.3001227 – ident: e_1_2_7_37_1 doi: 10.1109/ACCESS.2021.3050155 – ident: e_1_2_7_61_1 doi: 10.1145/3372224.3419195 – ident: e_1_2_7_59_1 doi: 10.1109/JSAC.2019.2959245 – volume: 2020 start-page: 1 year: 2020 ident: e_1_2_7_75_1 article-title: Machine Learning‐Based Resource Allocation Strategy for Network Slicing in Vehicular Networks publication-title: Wireless Communications and Mobile Computing doi: 10.1155/2020/8836315 – ident: e_1_2_7_108_1 doi: 10.3390/app13010448 – ident: e_1_2_7_22_1 doi: 10.23919/WAC.2018.8430419 – ident: e_1_2_7_2_1 doi: 10.1109/ACCESS.2019.2905347 – ident: e_1_2_7_16_1 doi: 10.1109/MWC.001.2100338 – ident: e_1_2_7_72_1 doi: 10.1109/PIMRC.2017.8292737 – ident: e_1_2_7_121_1 doi: 10.1109/ICCWorkshops49005.2020.9145236 – ident: e_1_2_7_58_1 doi: 10.2298/CSIS200710055Y – ident: e_1_2_7_122_1 doi: 10.1109/COMST.2021.3067807 – ident: e_1_2_7_65_1 doi: 10.3390/app10217670 – ident: e_1_2_7_124_1 doi: 10.1109/OJCOMS.2021.3131370 – ident: e_1_2_7_26_1 doi: 10.1016/j.suscom.2018.10.006 – ident: e_1_2_7_4_1 doi: 10.1109/MWC.001.1900292 – ident: e_1_2_7_87_1 doi: 10.1109/ACCESS.2020.3040949 – ident: e_1_2_7_89_1 doi: 10.1145/3551661.3561359 – ident: e_1_2_7_78_1 doi: 10.1109/MNET.2018.1800104 – ident: e_1_2_7_140_1 – ident: e_1_2_7_74_1 doi: 10.24963/ijcai.2018/505 – ident: e_1_2_7_102_1 doi: 10.1109/ACCESS.2022.3148703 – ident: e_1_2_7_156_1 doi: 10.1109/ACCESS.2023.3243985 – ident: e_1_2_7_119_1 doi: 10.1016/j.procs.2020.04.289 – ident: e_1_2_7_49_1 doi: 10.1016/j.icte.2021.01.003 – ident: e_1_2_7_42_1 doi: 10.1002/dac.5296 – ident: e_1_2_7_101_1 doi: 10.1109/LNET.2019.2959733 – ident: e_1_2_7_138_1 – ident: e_1_2_7_35_1 doi: 10.1002/cpe.6352 – ident: e_1_2_7_54_1 doi: 10.1613/jair.301 – ident: e_1_2_7_52_1 doi: 10.1109/VTCSpring.2018.8417782 – ident: e_1_2_7_64_1 doi: 10.1155/2021/1425732 – ident: e_1_2_7_60_1 doi: 10.1109/CCNC49032.2021.9369463 – ident: e_1_2_7_149_1 – volume-title: AI and ML–Enablers for Beyond 5G Networks year: 2021 ident: e_1_2_7_55_1 – ident: e_1_2_7_56_1 doi: 10.1109/CCWC47524.2020.9031158 – ident: e_1_2_7_126_1 doi: 10.3390/jsan10030051 – ident: e_1_2_7_151_1 doi: 10.3390/electronics10010027 – ident: e_1_2_7_100_1 doi: 10.3390/fi14080230 – ident: e_1_2_7_57_1 doi: 10.1109/ACCESS.2020.3006502 – ident: e_1_2_7_32_1 doi: 10.23919/JCC.2020.03.006 – ident: e_1_2_7_43_1 doi: 10.1109/IWCMC55113.2022.9824988 – ident: e_1_2_7_139_1 – ident: e_1_2_7_99_1 doi: 10.1109/TNSM.2020.3028197 – volume: 11 start-page: 171 issue: 3 year: 2021 ident: e_1_2_7_127_1 article-title: Health Care 4.0: A Vision for Smart and Connected Health Care. IISE Transactions on Healthcare publication-title: Systems Engineering – volume: 117163 year: 2022 ident: e_1_2_7_71_1 article-title: Cellular Traffic Prediction With Machine Learning: A Survey publication-title: Expert Systems with Applications – ident: e_1_2_7_131_1 doi: 10.3390/electronics12102336 – ident: e_1_2_7_117_1 doi: 10.1049/iet-its.2019.0111 – year: 2023 ident: e_1_2_7_161_1 article-title: A Study of Some ML and DL‐Based Strategies for Network Security publication-title: Informatica – ident: e_1_2_7_3_1 doi: 10.1155/2021/3596095 – ident: e_1_2_7_115_1 doi: 10.1016/j.procs.2021.12.317 – ident: e_1_2_7_135_1 doi: 10.1109/MWC.001.2000069 – volume: 2083 start-page: 1 year: 2015 ident: e_1_2_7_9_1 article-title: IMT Vision–Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond publication-title: Recommendation ITU – ident: e_1_2_7_50_1 doi: 10.1016/j.comcom.2023.02.009 – ident: e_1_2_7_148_1 – ident: e_1_2_7_90_1 doi: 10.1109/5GWF.2019.8911618 – ident: e_1_2_7_6_1 doi: 10.1109/ACCESS.2020.2970118 – ident: e_1_2_7_91_1 doi: 10.1109/GLOBECOM48099.2022.10001658 – ident: e_1_2_7_159_1 doi: 10.1007/s10115-022-01756-8 – ident: e_1_2_7_86_1 doi: 10.1002/net.21715 – ident: e_1_2_7_85_1 doi: 10.1002/dac.4757 – ident: e_1_2_7_67_1 doi: 10.1109/5GWF.2018.8516953 – ident: e_1_2_7_132_1 doi: 10.3390/telecom4010006 – ident: e_1_2_7_28_1 doi: 10.1016/j.array.2022.100142 – ident: e_1_2_7_145_1 – ident: e_1_2_7_142_1 – ident: e_1_2_7_107_1 doi: 10.1109/GCWkshps50303.2020.9367536 – ident: e_1_2_7_23_1 doi: 10.1002/nem.2018 – ident: e_1_2_7_106_1 doi: 10.1016/j.iot.2020.100351 – ident: e_1_2_7_40_1 doi: 10.1109/TNSM.2022.3189925 – ident: e_1_2_7_136_1 doi: 10.1109/EuCNC.2019.8802054 – ident: e_1_2_7_92_1 doi: 10.1155/2022/9958786 – ident: e_1_2_7_152_1 doi: 10.1109/TNET.2016.2623950 – ident: e_1_2_7_109_1 doi: 10.1109/ACCESS.2021.3051695 – ident: e_1_2_7_10_1 doi: 10.1016/B978-0-12-804418-6.00001-7 |
| SSID | ssj0011031 |
| Score | 2.4205394 |
| Snippet | ABSTRACT
5G, 6G, and beyond networks promise to support vertical industrial services with strict QoS parameters, but the hardware‐based "one‐size‐fits‐all"... 5G, 6G, and beyond networks promise to support vertical industrial services with strict QoS parameters, but the hardware‐based "one‐size‐fits‐all" model of... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | 5G mobile communication Artificial intelligence Communications traffic Edge computing Industrial applications Network function virtualization Network slicing Quality of service architectures Resource management Resource scheduling SDN Software-defined networking State-of-the-art reviews Wireless networks |
| Title | AI Based Resource Management for 5G Network Slicing: History, Use Cases, and Research Directions |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.8327 https://www.proquest.com/docview/3152768875 |
| Volume | 37 |
| WOSCitedRecordID | wos001358416600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1532-0634 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011031 issn: 1532-0626 databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7o5oMvzivOGxFEX4ymSdusvul0KsgQdbK3mqSJCKOOdQr-e5NeNgUFwae-5JSSc8mX5PT7APZoqAJfBwxzTTT2k1aIo8h4OLRYnkqqEpPL-Tze8G631e9Ht2VXpfsXpuCHmBy4uczI67VLcCGz4ylpqBrqIxuOfBbq1IatX4P6-V2ndzO5Q3ACBgVbKsXE4vaKepbQ48r2-2I0RZhfcWq-0HQa__nERVgo4SU6LeJhCWZ0ugyNSroBlZm8Ak-n1-jMLmAJqs7v0bQRBlkgi4JL1C1axNH9wF2_P5-gglPk4xD1Mo3a1jw7RCLN35EnDCoLqI3kVXjoXDy0r3AptoAV8znHkhHJmaGJ5koIGSouiZHG7nCUpyOLqhLfI9oXSjEluQqk28h5VFhfSmokW4Na-prqdUBKBEYGyg-FcXrWviDa85TdhTNtDEuiJhxUkx6rkojc6WEM4oJCmcZ23mI3b03YnYwcFuQbP4zZqvwWl-mXxcyJ9Ya2fgZN2M899Kt93L69cM-Nvw7chHnqNICJh2mwBbXx6E1vw5x6H79ko50yCD8BHvrftQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED7mJuiL8ydOp0YQfTHaJk2z6tOcm4pzDJ3iW23SRIQxh1PB_96kPzYFBcGnvtyVkrtLvkvS7wPYIb5knmIUc-Uo7MU1HweBdrFvsDwRRMY6kfO5a_NOp3Z_H3QLcJz_C5PyQ4w33GxlJPO1LXC7IX04YQ2VQ3Vg8pFPQckzWcSKUDq9bt22x4cIVsEgpUsl2DHAPeeedchh7vt9NZpAzK9ANVlpWuV_feM8zGUAE9XTjFiAghosQjkXb0BZLS_BQ_0CnZglLEb5Dj6aXIVBBsoidoY66SVxdNO3B_CPRyhlFfnYR7cjhRrGfbSPokHyjqRkUDaFmlxehl6r2Wuc40xuAUvqcY4FdQSnmsSKyygSvuTC0UKbHke6KjC4KvZcR3mRlFQKLpmwrZxLIhNNQbSgK1AcPA_UKiAZMS2Y9PxIW0VrL3KU60rTh1OlNY2DCuzlox7KjIrcKmL0w5REmYRm3EI7bhXYHlsOU_qNH2yqeeDCrABHIbVyvb6ZQVkFdpMQ_eofNrpN-1z7q-EWzJz3rtph-6JzuQ6zxCoCOy4mrArF15c3tQHT8v31afSymWXkJ4hP46U |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwGP3QKeKLd3E6NYLoi9E2aRqrT3MXFccY6mRvtUkTEWSOdQr-e5NeNgUFwae-5Cvly3eSk0vPAdgnvmSeYhRz5Sjsxac-DgLtYt9weSKIjHVq5_PQ4u32aa8XdKbgvPgXJtOHGG-4WWSk47UFuBrE-mSiGioH6tjUI5-GGY8FvkHlTP222W2NDxGsg0Eml0qwY4h7oT3rkJMi9vtsNKGYX4lqOtM0F__1jUuwkBNMVM0qYhmmVH8FFgvzBpRjeRUeq9fowkxhMSp28NHkKgwyVBaxS9TOLomjuxd7AP90hjJVkY8j1E0Uqpnw5AhF_fQdKWRQPoSaWl6D-2bjvnaFc7sFLKnHORbUEZxqEisuo0j4kgtHC23WONJVgeFVsec6youkpFJwyYRdyrkkMr0piBZ0HUr9177aACQjpgWTnh9p62jtRY5yXWnW4VRpTeOgDIdF1kOZS5FbR4yXMBNRJqHJW2jzVoa9cctBJr_xQ5tK0XFhDsAkpNau1zcjKCvDQdpFv8aHtU7DPjf_2nAX5jr1Zti6bt9swTyxhsCOiwmrQGk0fFPbMCvfR8_JcCcvyE89FuMg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI+Based+Resource+Management+for+5G+Network+Slicing%3A+History%2C+Use+Cases%2C+and+Research+Directions&rft.jtitle=Concurrency+and+computation&rft.au=Dubey%2C+Monika&rft.au=Singh%2C+Ashutosh+Kumar&rft.au=Mishra%2C+Richa&rft.date=2025-01-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=37&rft.issue=2&rft_id=info:doi/10.1002%2Fcpe.8327&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |