An autonomic parallel strategy for exhaustive search tree algorithms on shared or heterogeneous systems

Summary Backtracking branch‐and‐prune (BP) algorithms and their variants are exhaustive search tree techniques widely employed to solve optimization problems in many scientific areas. However, they characteristically often demand significant amounts of computing power for problem sizes representativ...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Concurrency and computation Ročník 36; číslo 6
Hlavní autori: Passos, Fernanda G. O., Rebello, Vinod E. F.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken Wiley Subscription Services, Inc 10.03.2024
Predmet:
ISSN:1532-0626, 1532-0634
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Summary Backtracking branch‐and‐prune (BP) algorithms and their variants are exhaustive search tree techniques widely employed to solve optimization problems in many scientific areas. However, they characteristically often demand significant amounts of computing power for problem sizes representative of real‐world scenarios. Given that their search domains can often be partitioned, these algorithms are frequently designed to execute in parallel by harnessing distributed computing systems. However, to achieve efficient parallel execution times, an effective strategy is required to balance the nonuniform partition workloads across the available resources. Furthermore, with the increasing integration of servers with heterogeneous resources and the adoption of resource sharing, balancing workloads is becoming complex. This paper proposes a strategy to execute parallel BP algorithms more efficiently on even shared or heterogeneous distributed systems. The approach integrates a self‐adjusting dynamic partitioning method in the BP algorithm with a dynamic scheduler, provided by an application middleware, which manages the parallel execution while addressing any issues of imbalance. Empirical results indicate better scalability with efficiencies above 90% for instances of an application case study for the discretizable molecular distance geometry problem (DMDGP). Improvements of up to 38% were obtained in execution speed‐ups compared to a more traditional parallel BP implementation for DMDGP.
AbstractList Backtracking branch‐and‐prune (BP) algorithms and their variants are exhaustive search tree techniques widely employed to solve optimization problems in many scientific areas. However, they characteristically often demand significant amounts of computing power for problem sizes representative of real‐world scenarios. Given that their search domains can often be partitioned, these algorithms are frequently designed to execute in parallel by harnessing distributed computing systems. However, to achieve efficient parallel execution times, an effective strategy is required to balance the nonuniform partition workloads across the available resources. Furthermore, with the increasing integration of servers with heterogeneous resources and the adoption of resource sharing, balancing workloads is becoming complex. This paper proposes a strategy to execute parallel BP algorithms more efficiently on even shared or heterogeneous distributed systems. The approach integrates a self‐adjusting dynamic partitioning method in the BP algorithm with a dynamic scheduler, provided by an application middleware, which manages the parallel execution while addressing any issues of imbalance. Empirical results indicate better scalability with efficiencies above 90% for instances of an application case study for the discretizable molecular distance geometry problem (DMDGP). Improvements of up to 38% were obtained in execution speed‐ups compared to a more traditional parallel BP implementation for DMDGP.
Summary Backtracking branch‐and‐prune (BP) algorithms and their variants are exhaustive search tree techniques widely employed to solve optimization problems in many scientific areas. However, they characteristically often demand significant amounts of computing power for problem sizes representative of real‐world scenarios. Given that their search domains can often be partitioned, these algorithms are frequently designed to execute in parallel by harnessing distributed computing systems. However, to achieve efficient parallel execution times, an effective strategy is required to balance the nonuniform partition workloads across the available resources. Furthermore, with the increasing integration of servers with heterogeneous resources and the adoption of resource sharing, balancing workloads is becoming complex. This paper proposes a strategy to execute parallel BP algorithms more efficiently on even shared or heterogeneous distributed systems. The approach integrates a self‐adjusting dynamic partitioning method in the BP algorithm with a dynamic scheduler, provided by an application middleware, which manages the parallel execution while addressing any issues of imbalance. Empirical results indicate better scalability with efficiencies above 90% for instances of an application case study for the discretizable molecular distance geometry problem (DMDGP). Improvements of up to 38% were obtained in execution speed‐ups compared to a more traditional parallel BP implementation for DMDGP.
Author Rebello, Vinod E. F.
Passos, Fernanda G. O.
Author_xml – sequence: 1
  givenname: Fernanda G. O.
  orcidid: 0000-0002-6647-9822
  surname: Passos
  fullname: Passos, Fernanda G. O.
  email: fernanda.passos@isel.pt, fernanda@midiacom.uff.br
  organization: Lusófona University
– sequence: 2
  givenname: Vinod E. F.
  orcidid: 0000-0003-2715-6796
  surname: Rebello
  fullname: Rebello, Vinod E. F.
  organization: Universidade Federal Fluminense
BookMark eNp10MlOwzAQBmALFYm2IPEIlrhwSfGS9VhVZZEqwQHOluNMliqxg-0AeXtSijggOM0cvpnR_As000YDQpeUrCgh7Eb1sEqyKDpBcxpxFpCYh7OfnsVnaOHcnhBKCadzVK01loM32nSNwr20sm2hxc5b6aEacWksho9aDs43b4AdSKtq7C0Alm1lbOPrzmGjsaulhQJPvAYP1lSgwQwOu9F56Nw5Oi1l6-Diuy7Ry-32eXMf7B7vHjbrXaB4mEQByDRPicoJ50UEOYS0iFPKGclklkuSlHkhGUQJA8aKgiYsj1UWEUjyAmIVlnyJro57e2teB3Be7M1g9XRSsIyFKQuzLJnU6qiUNc5ZKIVqvPSN0dPfTSsoEYcwxRSmOIQ5DVz_Guht00k7_kWDI31vWhj_dWLztP3yn7puh7w
CitedBy_id crossref_primary_10_1002_cpe_70125
crossref_primary_10_1002_cpe_70147
crossref_primary_10_1002_cpe_70110
Cites_doi 10.1002/9781118600283
10.1038/s41594‐020‐00536‐8
10.1109/TPDS.2008.105
10.1109/IPDPS.2011.338
10.1007/978-3-642-15277-1_21
10.1137/S0097539701399551
10.1109/69.755612
10.1109/ICPADS.1997.652576
10.1007/978-3-319-57183-6_5
10.1007/978-1-4612-0515-9
10.1002/cpe.4851
10.1109/AICCSA.2010.5586983
10.1007/s10589‐011‐9402‐6
10.1504/IJHPCN.2008.022299
10.1007/978-3-030-29400-7_14
10.1007/978-3-540-75416-9_24
10.1007/s10589-007-9127-8
10.1023/B:SUPE.0000020179.55383.ad
10.1016/j.jpdc.2015.07.006
10.1007/s10766-013-0268-3
10.1007/978-1-4614-5128-0_3
10.1145/324133.324234
10.1007/s10898‐018‐0610‐9
10.1016/j.jpdc.2017.10.010
10.1109/CAHPC.2005.30
10.1002/cpe.821
10.1007/978-3-642-15582-6_34
10.1145/1380584.1380585
10.1002/cpe.1139
10.1109/ICICICT.2014.6781328
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.7955
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_7955
CPE7955
Genre article
GrantInformation_xml – fundername: City Hall of Niterói
  funderid: PDPA 4411 PT: 25
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  funderid: 88887.310261/2018‐00
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
  funderid: 440014/2020‐4; 404087/2021‐3; 421828/2022‐6
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3475-ea8b80cb033d5ebe41d6813209a9ba07fbda2e572e22dd172b6c950e7bde6c4f3
IEDL.DBID DRFUL
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001122868100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1532-0626
IngestDate Mon Jul 14 10:06:01 EDT 2025
Sat Nov 29 03:49:54 EST 2025
Tue Nov 18 22:37:38 EST 2025
Wed Jan 22 16:14:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3475-ea8b80cb033d5ebe41d6813209a9ba07fbda2e572e22dd172b6c950e7bde6c4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6647-9822
0000-0003-2715-6796
PQID 2924824997
PQPubID 2045170
PageCount 23
ParticipantIDs proquest_journals_2924824997
crossref_citationtrail_10_1002_cpe_7955
crossref_primary_10_1002_cpe_7955
wiley_primary_10_1002_cpe_7955_CPE7955
PublicationCentury 2000
PublicationDate 10 March 2024
PublicationDateYYYYMMDD 2024-03-10
PublicationDate_xml – month: 03
  year: 2024
  text: 10 March 2024
  day: 10
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 19
2010; 6271
2009; 43
2009; 20
2012
2011
2010
2004; 28
1999; 46
2009
1997
2007
2005
2008; 5
2020; 32
2003; 32
2012; 52
1999
2014; 42
2022
2015; 84
2004; 16
2021
2020
2018; 113
2019
1999; 11
2017
2014
2013
2018; 71
2008; 40
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_18_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
Leroy R (e_1_2_7_19_1) 2007
e_1_2_7_29_1
Migdalas A (e_1_2_7_16_1) 2012
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
Nascimento A (e_1_2_7_22_1) 2007
e_1_2_7_38_1
Pezzi G (e_1_2_7_17_1) 2007
Lavor C (e_1_2_7_32_1) 2009
References_xml – start-page: 1
  year: 2020
  end-page: 7
  article-title: Structure and drug binding of the SARS‐CoV‐2 envelope protein transmembrane domain in lipid bilayers
  publication-title: Nat Struct Mol Biol
– volume: 52
  start-page: 115
  issue: 1
  year: 2012
  end-page: 146
  article-title: The discretizable molecular distance geometry problem
  publication-title: Comput Optim Appl
– volume: 32
  issue: 3
  year: 2020
  article-title: A survey of MPI usage in the US exascale computing project
  publication-title: Concurr Comput Pract Exp
– volume: 19
  start-page: 1955
  issue: 14
  year: 2007
  end-page: 1974
  article-title: Distributed and dynamic self‐scheduling of parallel MPI Grid applications
  publication-title: Concurr Comput Pract Exp
– start-page: 376
  year: 1997
  end-page: 381
– start-page: 247
  year: 2007
  end-page: 254
– volume: 32
  start-page: 1260
  issue: 5
  year: 2003
  end-page: 1279
  article-title: The natural work‐stealing algorithm is stable
  publication-title: SIAM J Comput
– year: 2021
– start-page: 69
  year: 2005
  end-page: 76
– start-page: 1798
  year: 2011
  end-page: 1805
– volume: 71
  start-page: 717
  issue: 4
  year: 2018
  end-page: 733
  article-title: A symmetry‐based splitting strategy for discretizable distance geometry problems
  publication-title: J Glob Optim
– volume: 113
  start-page: 92
  year: 2018
  end-page: 114
  article-title: Replicable parallel branch and bound search
  publication-title: J Parallel Distribut Comput
– volume: 84
  start-page: 65
  year: 2015
  end-page: 75
  article-title: On scalable parallel recursive backtracking
  publication-title: J Parallel Distribut Comput
– start-page: 144
  year: 2007
  end-page: 152
– year: 2012
– volume: 20
  start-page: 404
  issue: 3
  year: 2009
  end-page: 418
  article-title: The Design of OpenMP Tasks
  publication-title: IEEE Trans Parallel Distribut Syst
– volume: 6271
  start-page: 217
  year: 2010
  end-page: 229
– volume: 16
  start-page: 425
  issue: 5
  year: 2004
  end-page: 432
  article-title: EasyGrid: Towards a framework for the automatic grid enabling of legacy MPI applications
  publication-title: Concurr Comput Pract Exp
– start-page: 1
  year: 2010
  end-page: 6
– start-page: 186
  year: 2010
  end-page: 197
– year: 2022
– start-page: 31
  year: 2017
  end-page: 39
– volume: 43
  start-page: 23
  issue: 1
  year: 2009
  end-page: 37
  article-title: Solving molecular distance geometry problems by global optimization algorithms
  publication-title: Comput Optim Appl
– start-page: 575
  year: 2007
  end-page: 582
– volume: 40
  start-page: 7:1
  issue: 3
  year: 2008
  end-page: 7:28
  article-title: A survey of autonomic computing‐degrees, models, and applications
  publication-title: ACM Comput Surv
– start-page: 471
  year: 2014
  end-page: 475
– start-page: 47
  year: 2013
  end-page: 60
– start-page: 184
  year: 2019
  end-page: 196
– volume: 11
  start-page: 28
  issue: 1
  year: 1999
  end-page: 35
  article-title: State of the art in parallel search techniques for discrete optimization problems
  publication-title: IEEE Trans Knowl Data Eng
– volume: 5
  start-page: 227
  issue: 4
  year: 2008
  end-page: 240
  article-title: Autonomic application management for large scale MPI programs
  publication-title: Int J High Perform Comput Network
– volume: 42
  start-page: 948
  issue: 6
  year: 2014
  end-page: 967
  article-title: An algorithm template for domain‐based parallel irregular algorithms
  publication-title: Int J Parallel Prog
– volume: 46
  start-page: 720
  issue: 5
  year: 1999
  end-page: 748
  article-title: Scheduling multithreaded computations by work stealing
  publication-title: J ACM
– start-page: 111
  year: 2007
  end-page: 119
– year: 2013
– year: 1999
– volume: 28
  start-page: 215
  issue: 2
  year: 2004
  end-page: 234
  article-title: A library hierarchy for implementing scalable parallel search algorithms
  publication-title: J Supercomput
– start-page: 2304
  year: 2009
  end-page: 2311
– ident: e_1_2_7_2_1
  doi: 10.1002/9781118600283
– volume-title: Parallel Computing in Optimization
  year: 2012
  ident: e_1_2_7_16_1
– ident: e_1_2_7_31_1
  doi: 10.1038/s41594‐020‐00536‐8
– ident: e_1_2_7_23_1
  doi: 10.1109/TPDS.2008.105
– ident: e_1_2_7_10_1
  doi: 10.1109/IPDPS.2011.338
– start-page: 111
  volume-title: Proceedings of Programming Models and Applications on Multicores and Manycores
  year: 2007
  ident: e_1_2_7_19_1
– ident: e_1_2_7_18_1
  doi: 10.1007/978-3-642-15277-1_21
– ident: e_1_2_7_12_1
  doi: 10.1137/S0097539701399551
– ident: e_1_2_7_9_1
  doi: 10.1109/69.755612
– start-page: 575
  volume-title: Proceedings of the 7th IEEE International Symposium on Cluster Computing and the Grid CCGRID '07
  year: 2007
  ident: e_1_2_7_22_1
– ident: e_1_2_7_15_1
  doi: 10.1109/ICPADS.1997.652576
– ident: e_1_2_7_34_1
  doi: 10.1007/978-3-319-57183-6_5
– ident: e_1_2_7_3_1
  doi: 10.1007/978-1-4612-0515-9
– ident: e_1_2_7_25_1
  doi: 10.1002/cpe.4851
– ident: e_1_2_7_36_1
  doi: 10.1109/AICCSA.2010.5586983
– ident: e_1_2_7_33_1
  doi: 10.1007/s10589‐011‐9402‐6
– ident: e_1_2_7_20_1
  doi: 10.1504/IJHPCN.2008.022299
– ident: e_1_2_7_14_1
  doi: 10.1007/978-3-030-29400-7_14
– ident: e_1_2_7_21_1
  doi: 10.1007/978-3-540-75416-9_24
– ident: e_1_2_7_30_1
  doi: 10.1007/s10589-007-9127-8
– ident: e_1_2_7_24_1
– start-page: 2304
  volume-title: Encyclopedia of Optimization
  year: 2009
  ident: e_1_2_7_32_1
– ident: e_1_2_7_11_1
  doi: 10.1023/B:SUPE.0000020179.55383.ad
– ident: e_1_2_7_4_1
  doi: 10.1016/j.jpdc.2015.07.006
– ident: e_1_2_7_29_1
  doi: 10.1007/s10766-013-0268-3
– ident: e_1_2_7_35_1
  doi: 10.1007/978-1-4614-5128-0_3
– ident: e_1_2_7_13_1
  doi: 10.1145/324133.324234
– start-page: 247
  volume-title: 19th International Symposium on Computer Architecture and High Performance Computing
  year: 2007
  ident: e_1_2_7_17_1
– ident: e_1_2_7_38_1
  doi: 10.1007/s10898‐018‐0610‐9
– ident: e_1_2_7_8_1
  doi: 10.1016/j.jpdc.2017.10.010
– ident: e_1_2_7_6_1
  doi: 10.1109/CAHPC.2005.30
– ident: e_1_2_7_5_1
  doi: 10.1002/cpe.821
– ident: e_1_2_7_26_1
– ident: e_1_2_7_37_1
  doi: 10.1007/978-3-642-15582-6_34
– ident: e_1_2_7_27_1
  doi: 10.1145/1380584.1380585
– ident: e_1_2_7_7_1
  doi: 10.1002/cpe.1139
– ident: e_1_2_7_28_1
  doi: 10.1109/ICICICT.2014.6781328
SSID ssj0011031
Score 2.3757505
Snippet Summary Backtracking branch‐and‐prune (BP) algorithms and their variants are exhaustive search tree techniques widely employed to solve optimization problems...
Backtracking branch‐and‐prune (BP) algorithms and their variants are exhaustive search tree techniques widely employed to solve optimization problems in many...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
autonomic computing
Computer networks
Distributed processing
heterogeneous distributed systems
Middleware
parallel branch‐and‐prune algorithms
search tree algorithms
Searching
self‐configuring parallel algorithms
System effectiveness
Workload
Workloads
Title An autonomic parallel strategy for exhaustive search tree algorithms on shared or heterogeneous systems
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.7955
https://www.proquest.com/docview/2924824997
Volume 36
WOSCitedRecordID wos001122868100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB3aTQ-9NG3Skm22RYXQntRoZcuSjkuapYcQQkggNyPJ42zAscN6tyT_vpJlbxJoodCTLyMQ8yG9sWbeABx4BFqqDEuq3NTQVBaaWiYYVZnSJUOhTNI1Cp_I01N1daXP-qrK0AsT-SE2P9xCZHTndQhwY9vDR9JQd4ffpRbiJWxx77ZiBFs_zueXJ5s3hDDAILKlcso8bh-oZxk_HNY-v4weEeZTnNpdNPPt_9niW3jTw0syi_7wDl5gvQPbw-gG0kfyLlzPamLWq9iUTAL_d1VhRdrIVftAPJQleL8IpED-OCQxHkh4wSamum6WN6vFbUuamrSLUMFOvPgiFNY03h-xWbckMkS37-Fyfnxx9JP2MxeoS1IpKBplFXOWJUkhvIHTaZGp0GatjbaGydIWhqOQHDkvCo9-bOa0YChtgZlLy-QDjOqmxj0gPlEsmXQmTZ1KXSqMTVALmWApfWY8xTF8G5Sfu56QPMzFqPJIpcxzr7886G8MXzaSd5GE4w8yk8F-eR-Gbc59dql8gqnlGL52lvrr-vzo7Dh8P_6r4D685h7g0K62bwKj1XKNn-CV-7W6aZefe2f8DXb75aM
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB9qK-iLrR_F01ojiD7F5rLJJqFPpfaoeB5FWujbks3O9grrbrm9E_3vTTa71woKgk_7MoFlPpLfJDO_AXjrEWipUyypdmNLhSoMzZlkVKfalAyltknXKDxVs5m-vDRnG3A49MJEfoj1hVuIjG6_DgEeLqQPbllD3Q1-UEbKe7AlvBd59976-HVyMV0_IoQJBpEulVPmgfvAPcv4wbD299PoFmLeBardSTPZ_q9_3IFHPcAkR9EjHsMG1k9gexjeQPpYfgpXRzWxq2VsSyaBAbyqsCJtZKv9STyYJfhjHmiB_IZIYkSQ8IZNbHXVLK6X828taWrSzkMNO_Hi81Ba03iPxGbVksgR3T6Di8nJ-fEp7acuUJcIJSlanWvmcpYkhfQmFuMi1aHR2liTW6bKvLAcpeLIeVF4_JOnzkiGKi8wdaJMdmGzbmp8DsSniiVTzgrhtHBC2jxBI1WCpfK58RhH8H7QfuZ6SvIwGaPKIpkyz7z-sqC_EbxZS95EGo4_yOwNBsz6QGwz7vNL7VNMo0bwrjPVX9dnx2cn4fviXwVfw4PT8y_TbPpp9vklPOQe7tCu0m8PNpeLFb6C--778rpd7Pee-QswkumT
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_OPRFfPL8OV0-NIPoUL5smTYJPx90tisuyiAf3VtJ0entQ22W7K_rfmzTtnoKC4FNfJhDmI_lNM_MbgNcegZY6xZJqN7FUqMLQnElGdapNyVBqm3SNwjM1n-vLS7PYg_dDL0zkh9j9cAuR0Z3XIcBxVZTHN6yhboXvlJHyFuyLMENmBPtnn6cXs90jQphgEOlSOWUeuA_cs4wfD2t_v41uIOavQLW7aaYH_7XH-3CvB5jkJHrEA9jD-iEcDMMbSB_Lj-DqpCZ2u4ltySQwgFcVVqSNbLU_iAezBL8vAy2QPxBJjAgS3rCJra6a9fVm-bUlTU3aZahhJ158GUprGu-R2GxbEjmi28dwMT3_cvqB9lMXqEuEkhStzjVzOUuSQnoTi0mR6tBobazJLVNlXliOUnHkvCg8_slTZyRDlReYOlEmhzCqmxqfAPGpYsmUs0I4LZyQNk_QSJVgqXxuPMExvB20n7mekjxMxqiySKbMM6-_LOhvDK92kqtIw_EHmaPBgFkfiG3GfX6pfYpp1BjedKb66_rsdHEevk__VfAl3FmcTbPZx_mnZ3CXe7RDu0K_Ixht1lt8Drfdt811u37RO-ZP3g_pDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+autonomic+parallel+strategy+for+exhaustive+search+tree+algorithms+on+shared+or+heterogeneous+systems&rft.jtitle=Concurrency+and+computation&rft.au=Passos%2C+Fernanda+G.+O.&rft.au=Rebello%2C+Vinod+E.+F.&rft.date=2024-03-10&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=36&rft.issue=6&rft_id=info:doi/10.1002%2Fcpe.7955&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_7955
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon