SlabLU: a two-level sparse direct solver for elliptic PDEs

The paper describes a sparse direct solver for the linear systems that arise from the discretization of an elliptic PDE on a two-dimensional domain. The scheme decomposes the domain into thin subdomains, or “slabs” and uses a two-level approach that is designed with parallelization in mind. The sche...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in computational mathematics Ročník 50; číslo 4; s. 90
Hlavní autoři: Yesypenko, Anna, Martinsson, Per-Gunnar
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.08.2024
Springer Nature B.V
Springer
Témata:
ISSN:1019-7168, 1572-9044
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The paper describes a sparse direct solver for the linear systems that arise from the discretization of an elliptic PDE on a two-dimensional domain. The scheme decomposes the domain into thin subdomains, or “slabs” and uses a two-level approach that is designed with parallelization in mind. The scheme takes advantage of H 2 -matrix structure emerging during factorization and utilizes randomized algorithms to efficiently recover this structure. As opposed to multi-level nested dissection schemes that incorporate the use of H or H 2 matrices for a hierarchy of front sizes, SlabLU is a two-level scheme which only uses H 2 -matrix algebra for fronts of roughly the same size. The simplicity allows the scheme to be easily tuned for performance on modern architectures and GPUs. The solver described is compatible with a range of different local discretizations, and numerical experiments demonstrate its performance for regular discretizations of rectangular and curved geometries. The technique becomes particularly efficient when combined with very high-order accurate multidomain spectral collocation schemes. With this discretization, a Helmholtz problem on a domain of size 1000 λ × 1000 λ (for which N = 100 M ) is solved in 15 min to 6 correct digits on a high-powered desktop with GPU acceleration.
AbstractList The paper describes a sparse direct solver for the linear systems that arise from the discretization of an elliptic PDE on a two-dimensional domain. The scheme decomposes the domain into thin subdomains, or “slabs” and uses a two-level approach that is designed with parallelization in mind. The scheme takes advantage of H 2 -matrix structure emerging during factorization and utilizes randomized algorithms to efficiently recover this structure. As opposed to multi-level nested dissection schemes that incorporate the use of H or H 2 matrices for a hierarchy of front sizes, SlabLU is a two-level scheme which only uses H 2 -matrix algebra for fronts of roughly the same size. The simplicity allows the scheme to be easily tuned for performance on modern architectures and GPUs. The solver described is compatible with a range of different local discretizations, and numerical experiments demonstrate its performance for regular discretizations of rectangular and curved geometries. The technique becomes particularly efficient when combined with very high-order accurate multidomain spectral collocation schemes. With this discretization, a Helmholtz problem on a domain of size 1000 λ × 1000 λ (for which N = 100 M ) is solved in 15 min to 6 correct digits on a high-powered desktop with GPU acceleration.
Not provided.
The paper describes a sparse direct solver for the linear systems that arise from the discretization of an elliptic PDE on a two-dimensional domain. The scheme decomposes the domain into thin subdomains, or “slabs” and uses a two-level approach that is designed with parallelization in mind. The scheme takes advantage of H2-matrix structure emerging during factorization and utilizes randomized algorithms to efficiently recover this structure. As opposed to multi-level nested dissection schemes that incorporate the use of H or H2 matrices for a hierarchy of front sizes, SlabLU is a two-level scheme which only uses H2-matrix algebra for fronts of roughly the same size. The simplicity allows the scheme to be easily tuned for performance on modern architectures and GPUs. The solver described is compatible with a range of different local discretizations, and numerical experiments demonstrate its performance for regular discretizations of rectangular and curved geometries. The technique becomes particularly efficient when combined with very high-order accurate multidomain spectral collocation schemes. With this discretization, a Helmholtz problem on a domain of size 1000λ×1000λ (for which N=100M) is solved in 15 min to 6 correct digits on a high-powered desktop with GPU acceleration.
ArticleNumber 90
Author Yesypenko, Anna
Martinsson, Per-Gunnar
Author_xml – sequence: 1
  givenname: Anna
  orcidid: 0009-0008-1409-4075
  surname: Yesypenko
  fullname: Yesypenko, Anna
  email: annayesy@utexas.edu
  organization: Oden Institute, University of Texas at Austin
– sequence: 2
  givenname: Per-Gunnar
  orcidid: 0000-0002-1048-5270
  surname: Martinsson
  fullname: Martinsson, Per-Gunnar
  organization: Oden Institute, University of Texas at Austin
BackLink https://www.osti.gov/biblio/2576229$$D View this record in Osti.gov
BookMark eNp9kF1LwzAUhoNMcJv-Aa-KXkfz1bTdncz5AQMF3XVI0kQ7alOTbM5_b7SC4MWuciDPc87LOwGjznUGgFOMLjBCxWXAiDEGEWEQI1xwuDsAY5wXBFbpY5RmhCtYYF4egUkIa4RQxYt8DGZPrVTL1SyTWfxwsDVb02ahlz6YrG680TELrt0an1nnM9O2TR8bnT1eL8IxOLSyDebk952C1c3ieX4Hlw-39_OrJdSU8QitJhRLVRmmrCIFLxWusbSWKkOsNbpkVEtFKlUnjBZWIq2UJrzivEaS13QKzoa9LsRGBN1Eo1-167oUTpC84IRUCTofoN67940JUazdxncpl6AkZ4TkOckTRQZKexeCN1b0vnmT_lNgJL6LFEORIhUpfooUuySV_6QUQcbGddHLpt2v0kEN6U73Yvxfqj3WF7Yvid4
CitedBy_id crossref_primary_10_1016_j_jcp_2025_114231
crossref_primary_10_3934_fods_2024051
Cites_doi 10.1007/s10543-018-0714-0
10.1016/j.parco.2022.102897
10.1049/ip-map:19960400
10.1007/978-3-031-50769-4_62
10.1111/j.1365-2478.2011.00982.x
10.1017/S0962492920000021
10.1007/978-3-319-93873-8_30
10.1016/j.jcp.2013.02.019
10.1002/(SICI)1097-0207(19991010)46:4<471::AID-NME684>3.0.CO;2-6
10.1145/3431921
10.1002/cpa.21755
10.1137/1.9781611976045
10.1137/1.9781611971057.ch4
10.1137/15M1010117
10.1007/s10543-014-0499-8
10.1137/09074543X
10.1016/j.jcp.2011.02.033
10.1137/100804644
10.1137/130918988
10.1007/978-3-642-22061-6_10
10.1137/S0895479894278952
10.1137/110848062
10.1109/SC41404.2022.00031
10.1002/nme.5172
10.1137/1.9780898718881
10.1007/978-3-319-28832-1_9
10.1093/imanum/drz034
10.1016/j.cam.2016.05.013
10.1137/17M1156320
10.1145/779359.779361
10.1007/978-3-662-47324-5
10.1145/992200.992206
10.1137/120865458
10.1017/S0962492917000083
10.1016/S0955-7997(02)00152-2
10.1137/16M1077192
10.1137/1.9780898719505
10.1137/15M1016679
10.1137/16M109781X
10.1137/100786617
10.1016/j.jcp.2006.06.037
10.1109/IPDPSW.2013.26
10.1145/1916461.1916467
10.1007/978-3-030-43736-7_1
10.1016/j.jcp.2020.109383
10.1002/fld.1433
10.1007/3-540-70734-4_16
10.1002/cpa.20358
10.1016/j.apnum.2004.01.009
10.1093/imanum/drm001
10.1016/j.camwa.2019.08.019
10.1002/nla.691
10.1109/IPDPSW.2017.86
10.1016/j.apnum.2005.04.039
10.1137/0710032
10.1017/S0962492916000076
10.5281/zenodo.11238664
10.1137/22M1528574
10.1016/j.jcp.2020.110087
10.1016/j.parco.2017.12.001
10.1007/s11464-012-0188-3
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
CorporateAuthor Univ. of Texas, Austin, TX (United States)
CorporateAuthor_xml – name: Univ. of Texas, Austin, TX (United States)
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
OTOTI
DOI 10.1007/s10444-024-10176-x
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
OSTI.GOV
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1572-9044
ExternalDocumentID 2576229
10_1007_s10444_024_10176_x
GrantInformation_xml – fundername: Division of Mathematical Sciences
  grantid: DMS-1952735; DMS-2313434
  funderid: http://dx.doi.org/10.13039/100000121
– fundername: Advanced Scientific Computing Research
  grantid: DE-SC0022251
  funderid: http://dx.doi.org/10.13039/100006192
– fundername: Office of Naval Research
  grantid: N00014-18-1-2354
  funderid: http://dx.doi.org/10.13039/100000006
GroupedDBID -52
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z83
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
OTOTI
ID FETCH-LOGICAL-c346t-fc231ab9e4bfb2768b1d1aff3be2ffec843cab29bd31a37fa0cbbc26966d0a6d3
IEDL.DBID K7-
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001288261200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1019-7168
IngestDate Mon Aug 25 02:21:11 EDT 2025
Wed Oct 08 04:48:11 EDT 2025
Tue Nov 18 21:40:21 EST 2025
Sat Nov 29 04:13:23 EST 2025
Fri Feb 21 02:39:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 65N35
Direct solver
Sparse direct solver
Randomized linear algebra
Helmholtz equation
High-order discretization
GPU
65N22
65F05
Multifrontal solver
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c346t-fc231ab9e4bfb2768b1d1aff3be2ffec843cab29bd31a37fa0cbbc26966d0a6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
SC0022251
None
USDOE Office of Science (SC)
ORCID 0009-0008-1409-4075
0000-0002-1048-5270
0009000814094075
0000000210485270
PQID 3254225525
PQPubID 2043875
ParticipantIDs osti_scitechconnect_2576229
proquest_journals_3254225525
crossref_primary_10_1007_s10444_024_10176_x
crossref_citationtrail_10_1007_s10444_024_10176_x
springer_journals_10_1007_s10444_024_10176_x
PublicationCentury 2000
PublicationDate 20240800
2024-08-00
20240801
2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 8
  year: 2024
  text: 20240800
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Advances in computational mathematics
PublicationTitleAbbrev Adv Comput Math
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Springer
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer
References FortunatoDTownsendAFast Poisson solvers for spectral methodsIMA J. Numer. Anal.202040319942018412249710.1093/imanum/drz034
Abdelfattah, A., Ghysels, P., Boukaram, W., Tomov, S., Li, X.S., Dongarra, J.: Addressing irregular patterns of matrix computations on GPUs and their impact on applications powered by sparse direct solvers. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, pp. 1–14 (2022)
DeraemaekerABabuškaIBouillardPDispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensionsInt. J. Numer. Meth. Eng.199946447149910.1002/(SICI)1097-0207(19991010)46:4<471::AID-NME684>3.0.CO;2-6
AurentzJLSlevinskyRMOn symmetrizing the ultraspherical spectral method for self-adjoint problemsJ. Comput. Phys.2020410109383407936610.1016/j.jcp.2020.109383
Ernst, O.G., Gander, M.J.: Why it is difficult to solve Helmholtz problems with classical iterative methods. Numer. Anal. Multiscale Prob., 325–363 (2012)
GillmanABarnettAMartinssonP-GA spectrally accurate direct solution technique for frequency-domain scattering problems with variable mediaBIT Numer. Math.2015551141170331360510.1007/s10543-014-0499-8
GeorgeANested dissection of a regular finite element meshSIAM J Numer. Anal.19731034536338875610.1137/0710032
AmestoyPRDavisTADuffISAn approximate minimum degree ordering algorithmSIAM J. Matrix Anal. Appl.1996174886905141070710.1137/S0895479894278952
WangSLiXSXiaJSituYDe HoopMVEfficient scalable algorithms for solving dense linear systems with hierarchically semiseparable structuresSIAM J. Sci. Comput.2013356519544314175810.1137/110848062
XuJZikatanovLAlgebraic multigrid methodsActa Numer.201726591721365385510.1017/S0962492917000083
MartinssonP-GFast direct solvers for elliptic PDEs2019Philadelphia PASIAM10.1137/1.9781611976045
EngquistBYingLSweeping preconditioner for the Helmholtz equation: hierarchical matrix representationCommun. Pure Appl. Math.2011645697735278949210.1002/cpa.20358
DavisTADirect methods for sparse linear systems2006Philadelphia PASIAM10.1137/1.9780898718881
EngquistBYingLSweeping preconditioner for the Helmholtz equation: moving perfectly matched layersMultiscale Model. Simul.201192686710281841610.1137/100804644
Bollhöfer, M., Schenk, O., Janalik, R., Hamm, S., Gullapalli, K.: State-of-the-art sparse direct solvers. In: Parallel Algorithms in Computational Science and Engineering, pp. 3–33. Springer, New York NY (2020)
MichielssenEBoagAChewWCScattering from elongated objects: direct solution in O(Nlog2N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${O}({N}\log ^{2}{N})$$\end{document} operationsIEE Proc. Microw. Antennas Propag.1996143427728310.1049/ip-map:19960400
Betcke, T., Wout, E., Gélat, P.: Computationally efficient boundary element methods for high-frequency Helmholtz problems in unbounded domains. Modern Solvers for Helmholtz Problems, 215–243 (2017)
LiXSShaoMA supernodal approach to incomplete LU factorization with partial pivotingACM Transactions on Mathematical Software (TOMS)2011374120277483510.1145/1916461.1916467
HaoSMartinssonP-GA direct solver for elliptic PDEs in three dimensions based on hierarchical merging of Poincaré-Steklov operatorsJ. Comput. Appl. Math.2016308419434352301510.1016/j.cam.2016.05.013
XiaJChandrasekaranSGuMLiXSSuperfast multifrontal method for large structured linear systems of equationsSIAM J. Matrix Anal. Appl.201031313821411258778310.1137/09074543X
DuffISErismanAMReidJKDirect methods for sparse matrices1989OxfordOxford United Kingdom
MartinssonP-GCompressing rank-structured matrices via randomized samplingSIAM J. Sci. Comput.201638419591986351913910.1137/15M1016679
MartinssonPGRokhlinVA fast direct solver for scattering problems involving elongated structuresJ. Comput. Phys.2007221288302229057510.1016/j.jcp.2006.06.037
BeamsNNGillmanAHewettRJA parallel shared-memory implementation of a high-order accurate solution technique for variable coefficient Helmholtz problemsComput. Math. Appl.20207949961011405421510.1016/j.camwa.2019.08.019
GanderMJZhangHA class of iterative solvers for the Helmholtz equation: factorizations, sweeping preconditioners, source transfer, single layer potentials, polarized traces, and optimized schwarz methodsSIAM Rev.2019611376390831410.1137/16M109781X
XiaJChandrasekaranSGuMLiXSFast algorithms for hierarchically semiseparable matricesNumer. Linear Algebra Appl.2010176953976275960310.1002/nla.691
Ghysels, P., Chávez, G., Guo, L., Gorman, C., Li, X.S., Liu, Y., Rebrova, L., Rouet, F.-H., Mary, T., Actor, J.: STRUMPACK
Yesypenko, A., Martinsson, P.-G.: Randomized strong recursive skeletonization: simultaneous compression and factorization of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}$$\end{document}-matrices in the Black-Box Setting. arXiv:2311.01451 (2023)
OlverSTownsendAA fast and well-conditioned spectral methodSIAM Rev.2013553462489308941010.1137/120865458
GillmanAYoungPMartinssonP-GA direct solver O(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(N)$$\end{document} complexity for integral equations on one-dimensional domainsFront. Math. China20127217247289770310.1007/s11464-012-0188-3
GhyselsPSynkRHigh performance sparse multifrontal solvers on modern GPUsParallel Comput.2022110102897437935910.1016/j.parco.2022.102897
MartinssonP-GA direct solver for variable coefficient elliptic PDEs discretized via a composite spectral collocation methodJ. Comput. Phys.2013242460479306204310.1016/j.jcp.2013.02.019
Vion, A., Bélanger-Rioux, R., Demanet, L., Geuzaine, C.: A DDM double sweep preconditioner for the Helmholtz equation with matrix probing of the DtN map. Mathematical and Numerical Aspects of Wave Propagation WAVES 2013 (2013)
DavisTA Algorithm 832: UMFPACK V4. 3—an unsymmetric-pattern multifrontal methodACM Transactions on Mathematical Software (TOMS)2004302196199207598110.1145/992200.992206
BabbTGillmanAHaoSMartinssonP-GAn accelerated Poisson solver based on multidomain spectral discretizationBIT Numer. Math.201858851879388297410.1007/s10543-018-0714-0
FortunatoDHaleNTownsendAThe ultraspherical spectral element methodJ. Comput. Phys.2021436110087425213110.1016/j.jcp.2020.110087
Briggs, W.L., Henson, V.E., McCormick, S.F.: A multigrid tutorial, 2nd edn., p. 193. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2000)
LinLLuJYingLFast construction of hierarchical matrix representation from matrix-vector multiplicationJ. Comput. Phys.20112301040714087278383310.1016/j.jcp.2011.02.033
DavisTA RajamanickamSSid-LakhdarWMA survey of direct methods for sparse linear systemsActa Numerica201625383566350921110.1017/S0962492916000076
Pichon, G., Darve, E., Faverge, M., Ramet, P., Roman, J.: Sparse supernodal solver using block low-rank compression. In: 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 1138–1147 (2017). IEEE
MartinssonP-GTroppJARandomized numerical linear algebra: foundations and algorithmsActa Numer202029403572418929410.1017/S0962492920000021
Yesypenko, A.: SlabLU: a two-level sparse direct solver for elliptic PDEs in Python. https://doi.org/10.5281/zenodo.11238664
GhyselsPLiXRouetFWilliamsSNapovAAn efficient multicore implementation of a novel HSS-structured multifrontal solver using randomized samplingSIAM J. Sci. Comput.2016385358384356556710.1137/15M1010117
Gander, M.J., Zhang, H.: Restrictions on the use of sweeping type preconditioners for Helmholtz problems. In: International Conference on Domain Decomposition Methods, pp. 321–332 (2017). Springer
Yesypenko, A., Martinsson, P.-G.: GPU optimizations for the hierarchical Poincaré-Steklov scheme. In: International Conference on Domain Decomposition Methods, pp. 519–528 (2022). Springer
Kim, K., Eijkhout, V.: Scheduling a parallel sparse direct solver to multiple GPUs. In: 2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum, pp. 1401–1408 (2013). IEEE
GillmanAMartinssonP-GA direct solver with O(N) complexity for variable coefficient elliptic PDEs discretized via a high-order composite spectral collocation methodSIAM J. Sci. Comput.201436420232046325369210.1137/130918988
ErlanggaYAVuikCOosterleeCWComparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equationAppl. Numer. Math.2006565648666221149910.1016/j.apnum.2005.04.039
WangSHoopMVXiaJOn 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solverGeophys. Prospect.201159585787310.1111/j.1365-2478.2011.00982.x
BörmSGrasedyckLHackbuschWIntroduction to hierarchical matrices with applicationsEng. Anal. Boundary Elem.200327540542210.1016/S0955-7997(02)00152-2
ChávezGTurkiyyahGZampiniSLtaiefHKeyesDAccelerated cyclic reduction: a distributed-memory fast solver for structured linear systemsParallel Comput.2018746583377132410.1016/j.parco.2017.12.001
GanderMJHalpernLMagoulesFAn optimized Schwarz method with two-sided Robin transmission conditions for the Helmholtz equationInt. J. Numer. Meth. Fluids2007552163175234470610.1002/fld.1433
Bebendorf, M.: Hierarchical matrices. Lecture Notes in Computational Science and Engineering, vol. 63, p. 290. Springer, Berlin (2008). A means to efficiently solve elliptic boundary value problems
GeldermansPGillmanAAn adaptive high order direct solution technique for elliptic boundary value problemsSIAM J. Sci. Comput.2019411292315389916910.1137/17M1156320
Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y., Kos
A Gillman (10176_CR5) 2012; 7
S Börm (10176_CR25) 2003; 27
A Gillman (10176_CR44) 2015; 55
S Hao (10176_CR45) 2016; 308
MJ Gander (10176_CR14) 2019; 61
TA Davis (10176_CR22) 2006
10176_CR53
P Geldermans (10176_CR47) 2019; 41
P Amestoy (10176_CR27) 2017; 39
10176_CR13
A Deraemaeker (10176_CR68) 1999; 46
10176_CR11
10176_CR55
10176_CR10
10176_CR48
A Gillman (10176_CR31) 2014; 36
PR Amestoy (10176_CR20) 1996; 17
J Xia (10176_CR7) 2010; 17
MJ Gander (10176_CR15) 2007; 55
B Engquist (10176_CR18) 2011; 9
TA Davis (10176_CR19) 2016; 25
J Xu (10176_CR12) 2017; 26
YA Erlangga (10176_CR17) 2006; 56
XS Li (10176_CR63) 2011; 37
P-G Martinsson (10176_CR1) 2019
10176_CR41
S Wang (10176_CR6) 2013; 35
B Engquist (10176_CR39) 2018; 71
P Ghysels (10176_CR29) 2016; 38
TA Davis (10176_CR65) 2004; 30
E Michielssen (10176_CR37) 1996; 143
NN Beams (10176_CR46) 2020; 79
G Chávez (10176_CR28) 2018; 74
T Babb (10176_CR43) 2018; 58
10176_CR70
L Lin (10176_CR34) 2011; 230
10176_CR33
10176_CR32
P-G Martinsson (10176_CR36) 2011; 32
PG Martinsson (10176_CR38) 2007; 221
P-G Martinsson (10176_CR54) 2020; 29
10176_CR3
10176_CR4
IS Duff (10176_CR23) 1989
J Xia (10176_CR30) 2010; 31
P-G Martinsson (10176_CR69) 2013; 242
JL Aurentz (10176_CR52) 2020; 410
P Ghysels (10176_CR57) 2022; 110
S Olver (10176_CR49) 2013; 55
D Fortunato (10176_CR50) 2020; 40
10176_CR60
J Levitt (10176_CR8) 2024; 46
XS Li (10176_CR64) 2003; 29
P-G Martinsson (10176_CR9) 2013; 242
D Fortunato (10176_CR51) 2021; 436
YA Erlangga (10176_CR16) 2004; 50
10176_CR62
10176_CR61
A George (10176_CR21) 1973; 10
10176_CR24
S Wang (10176_CR42) 2011; 59
A Abdelfattah (10176_CR56) 2021; 47
H Bériot (10176_CR67) 2016; 106
10176_CR66
10176_CR59
10176_CR58
W Hackbusch (10176_CR26) 2015
P-G Martinsson (10176_CR35) 2016; 38
B Engquist (10176_CR2) 2011; 64
L Banjai (10176_CR40) 2008; 28
References_xml – reference: EngquistBZhaoHApproximate separability of the Green’s function of the Helmholtz equation in the high frequency limitCommun. Pure Appl. Math.2018711122202274386209010.1002/cpa.21755
– reference: Fortunato, D.: A high-order fast direct solver for surface PDEs. arXiv preprint arXiv:2210.00022 (2022)
– reference: Bollhöfer, M., Schenk, O., Janalik, R., Hamm, S., Gullapalli, K.: State-of-the-art sparse direct solvers. In: Parallel Algorithms in Computational Science and Engineering, pp. 3–33. Springer, New York NY (2020)
– reference: ErlanggaYAVuikCOosterleeCWComparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equationAppl. Numer. Math.2006565648666221149910.1016/j.apnum.2005.04.039
– reference: Levitt, J., Martinsson, P.-G.: Linear-complexity black-box randomized compression of rank-structured matrices (2022)
– reference: BanjaiLHackbuschWHierarchical matrix techniques for low- and high-frequency Helmholtz problemsIMA J. Numer. Anal.20082814679238790510.1093/imanum/drm001
– reference: DavisTADirect methods for sparse linear systems2006Philadelphia PASIAM10.1137/1.9780898718881
– reference: EngquistBYingLSweeping preconditioner for the Helmholtz equation: moving perfectly matched layersMultiscale Model. Simul.201192686710281841610.1137/100804644
– reference: AmestoyPRDavisTADuffISAn approximate minimum degree ordering algorithmSIAM J. Matrix Anal. Appl.1996174886905141070710.1137/S0895479894278952
– reference: ErlanggaYAVuikCOosterleeCWOn a class of preconditioners for solving the Helmholtz equationAppl. Numer. Math.2004503–4409425207401210.1016/j.apnum.2004.01.009
– reference: LiXSDemmelJWSuperLU\_DIST: a scalable distributed-memory sparse direct solver for unsymmetric linear systemsACM Transactions on Mathematical Software (TOMS)200329211014010.1145/779359.779361
– reference: BeamsNNGillmanAHewettRJA parallel shared-memory implementation of a high-order accurate solution technique for variable coefficient Helmholtz problemsComput. Math. Appl.20207949961011405421510.1016/j.camwa.2019.08.019
– reference: BériotHPrinnAGabardGEfficient implementation of high-order finite elements for Helmholtz problemsInt. J. Numer. Meth. Eng.20161063213240348128210.1002/nme.5172
– reference: OlverSTownsendAA fast and well-conditioned spectral methodSIAM Rev.2013553462489308941010.1137/120865458
– reference: Vuduc, R., Chandramowlishwaran, A., Choi, J., Guney, M., Shringarpure, A.: On the limits of GPU acceleration. In: Proceedings of the 2nd USENIX Conference on Hot Topics in Parallelism, vol. 13 (2010)
– reference: Yesypenko, A., Martinsson, P.-G.: Randomized strong recursive skeletonization: simultaneous compression and factorization of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}$$\end{document}-matrices in the Black-Box Setting. arXiv:2311.01451 (2023)
– reference: FortunatoDHaleNTownsendAThe ultraspherical spectral element methodJ. Comput. Phys.2021436110087425213110.1016/j.jcp.2020.110087
– reference: AbdelfattahACostaTDongarraJGatesMHaidarAHammarlingSHighamNJKurzakJLuszczekPTomovSA set of batched basic linear algebra subprograms and lapack routinesACM Transactions on Mathematical Software (TOMS)2021473123428253610.1145/3431921
– reference: MartinssonP-GFast direct solvers for elliptic PDEs2019Philadelphia PASIAM10.1137/1.9781611976045
– reference: Ruge, J.W., Stüben, K.: Algebraic multigrid. In: Multigrid Methods, pp. 73–130. SIAM, Philadelphia PA (1987)
– reference: XiaJChandrasekaranSGuMLiXSSuperfast multifrontal method for large structured linear systems of equationsSIAM J. Matrix Anal. Appl.201031313821411258778310.1137/09074543X
– reference: LinLLuJYingLFast construction of hierarchical matrix representation from matrix-vector multiplicationJ. Comput. Phys.20112301040714087278383310.1016/j.jcp.2011.02.033
– reference: Ghysels, P., Chávez, G., Guo, L., Gorman, C., Li, X.S., Liu, Y., Rebrova, L., Rouet, F.-H., Mary, T., Actor, J.: STRUMPACK
– reference: Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y., Koster, J.: MUMPS: a general purpose distributed memory sparse solver. In: International Workshop on Applied Parallel Computing, pp. 121–130 (2000). Springer
– reference: GillmanABarnettAMartinssonP-GA spectrally accurate direct solution technique for frequency-domain scattering problems with variable mediaBIT Numer. Math.2015551141170331360510.1007/s10543-014-0499-8
– reference: GanderMJHalpernLMagoulesFAn optimized Schwarz method with two-sided Robin transmission conditions for the Helmholtz equationInt. J. Numer. Meth. Fluids2007552163175234470610.1002/fld.1433
– reference: DeraemaekerABabuškaIBouillardPDispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensionsInt. J. Numer. Meth. Eng.199946447149910.1002/(SICI)1097-0207(19991010)46:4<471::AID-NME684>3.0.CO;2-6
– reference: BörmSGrasedyckLHackbuschWIntroduction to hierarchical matrices with applicationsEng. Anal. Boundary Elem.200327540542210.1016/S0955-7997(02)00152-2
– reference: Ernst, O.G., Gander, M.J.: Why it is difficult to solve Helmholtz problems with classical iterative methods. Numer. Anal. Multiscale Prob., 325–363 (2012)
– reference: DavisTA RajamanickamSSid-LakhdarWMA survey of direct methods for sparse linear systemsActa Numerica201625383566350921110.1017/S0962492916000076
– reference: MartinssonP-GA direct solver for variable coefficient elliptic PDEs discretized via a composite spectral collocation methodJ. Comput. Phys.2013242460479306204310.1016/j.jcp.2013.02.019
– reference: GillmanAMartinssonP-GA direct solver with O(N) complexity for variable coefficient elliptic PDEs discretized via a high-order composite spectral collocation methodSIAM J. Sci. Comput.201436420232046325369210.1137/130918988
– reference: Betcke, T., Wout, E., Gélat, P.: Computationally efficient boundary element methods for high-frequency Helmholtz problems in unbounded domains. Modern Solvers for Helmholtz Problems, 215–243 (2017)
– reference: LevittJMartinssonP-GLinear-complexity black-box randomized compression of rank-structured matricesSIAM J. Sci. Comput.202446317471763474704110.1137/22M1528574
– reference: GhyselsPLiXRouetFWilliamsSNapovAAn efficient multicore implementation of a novel HSS-structured multifrontal solver using randomized samplingSIAM J. Sci. Comput.2016385358384356556710.1137/15M1010117
– reference: Yesypenko, A.: SlabLU: a two-level sparse direct solver for elliptic PDEs in Python. https://doi.org/10.5281/zenodo.11238664
– reference: HaoSMartinssonP-GA direct solver for elliptic PDEs in three dimensions based on hierarchical merging of Poincaré-Steklov operatorsJ. Comput. Appl. Math.2016308419434352301510.1016/j.cam.2016.05.013
– reference: MartinssonP-GA fast randomized algorithm for computing a hierarchically semiseparable representation of a matrixSIAM J. Matrix Anal. Appl.201132412511274285461210.1137/100786617
– reference: GanderMJZhangHA class of iterative solvers for the Helmholtz equation: factorizations, sweeping preconditioners, source transfer, single layer potentials, polarized traces, and optimized schwarz methodsSIAM Rev.2019611376390831410.1137/16M109781X
– reference: FortunatoDTownsendAFast Poisson solvers for spectral methodsIMA J. Numer. Anal.202040319942018412249710.1093/imanum/drz034
– reference: XuJZikatanovLAlgebraic multigrid methodsActa Numer.201726591721365385510.1017/S0962492917000083
– reference: DavisTA Algorithm 832: UMFPACK V4. 3—an unsymmetric-pattern multifrontal methodACM Transactions on Mathematical Software (TOMS)2004302196199207598110.1145/992200.992206
– reference: Pichon, G., Darve, E., Faverge, M., Ramet, P., Roman, J.: Sparse supernodal solver using block low-rank compression. In: 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 1138–1147 (2017). IEEE
– reference: Vion, A., Bélanger-Rioux, R., Demanet, L., Geuzaine, C.: A DDM double sweep preconditioner for the Helmholtz equation with matrix probing of the DtN map. Mathematical and Numerical Aspects of Wave Propagation WAVES 2013 (2013)
– reference: DuffISErismanAMReidJKDirect methods for sparse matrices1989OxfordOxford United Kingdom
– reference: AmestoyPButtariAl’ExcellentJ-YMaryTOn the complexity of the block low-rank multifrontal factorizationSIAM J. Sci. Comput.201739417101740369121910.1137/16M1077192
– reference: Yesypenko, A., Martinsson, P.-G.: GPU optimizations for the hierarchical Poincaré-Steklov scheme. In: International Conference on Domain Decomposition Methods, pp. 519–528 (2022). Springer
– reference: AurentzJLSlevinskyRMOn symmetrizing the ultraspherical spectral method for self-adjoint problemsJ. Comput. Phys.2020410109383407936610.1016/j.jcp.2020.109383
– reference: Bebendorf, M.: Hierarchical matrices. Lecture Notes in Computational Science and Engineering, vol. 63, p. 290. Springer, Berlin (2008). A means to efficiently solve elliptic boundary value problems
– reference: Kim, K., Eijkhout, V.: Scheduling a parallel sparse direct solver to multiple GPUs. In: 2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum, pp. 1401–1408 (2013). IEEE
– reference: BabbTGillmanAHaoSMartinssonP-GAn accelerated Poisson solver based on multidomain spectral discretizationBIT Numer. Math.201858851879388297410.1007/s10543-018-0714-0
– reference: Briggs, W.L., Henson, V.E., McCormick, S.F.: A multigrid tutorial, 2nd edn., p. 193. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2000)
– reference: WangSLiXSXiaJSituYDe HoopMVEfficient scalable algorithms for solving dense linear systems with hierarchically semiseparable structuresSIAM J. Sci. Comput.2013356519544314175810.1137/110848062
– reference: MartinssonP-GTroppJARandomized numerical linear algebra: foundations and algorithmsActa Numer202029403572418929410.1017/S0962492920000021
– reference: GeldermansPGillmanAAn adaptive high order direct solution technique for elliptic boundary value problemsSIAM J. Sci. Comput.2019411292315389916910.1137/17M1156320
– reference: HackbuschWHierarchical matrices: algorithms and analysis2015New York NYSpringer10.1007/978-3-662-47324-5
– reference: Abdelfattah, A., Ghysels, P., Boukaram, W., Tomov, S., Li, X.S., Dongarra, J.: Addressing irregular patterns of matrix computations on GPUs and their impact on applications powered by sparse direct solvers. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, pp. 1–14 (2022)
– reference: Gander, M.J., Zhang, H.: Restrictions on the use of sweeping type preconditioners for Helmholtz problems. In: International Conference on Domain Decomposition Methods, pp. 321–332 (2017). Springer
– reference: GhyselsPSynkRHigh performance sparse multifrontal solvers on modern GPUsParallel Comput.2022110102897437935910.1016/j.parco.2022.102897
– reference: MichielssenEBoagAChewWCScattering from elongated objects: direct solution in O(Nlog2N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${O}({N}\log ^{2}{N})$$\end{document} operationsIEE Proc. Microw. Antennas Propag.1996143427728310.1049/ip-map:19960400
– reference: XiaJChandrasekaranSGuMLiXSFast algorithms for hierarchically semiseparable matricesNumer. Linear Algebra Appl.2010176953976275960310.1002/nla.691
– reference: ChávezGTurkiyyahGZampiniSLtaiefHKeyesDAccelerated cyclic reduction: a distributed-memory fast solver for structured linear systemsParallel Comput.2018746583377132410.1016/j.parco.2017.12.001
– reference: GeorgeANested dissection of a regular finite element meshSIAM J Numer. Anal.19731034536338875610.1137/0710032
– reference: EngquistBYingLSweeping preconditioner for the Helmholtz equation: hierarchical matrix representationCommun. Pure Appl. Math.2011645697735278949210.1002/cpa.20358
– reference: MartinssonPGRokhlinVA fast direct solver for scattering problems involving elongated structuresJ. Comput. Phys.2007221288302229057510.1016/j.jcp.2006.06.037
– reference: WangSHoopMVXiaJOn 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solverGeophys. Prospect.201159585787310.1111/j.1365-2478.2011.00982.x
– reference: GillmanAYoungPMartinssonP-GA direct solver O(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(N)$$\end{document} complexity for integral equations on one-dimensional domainsFront. Math. China20127217247289770310.1007/s11464-012-0188-3
– reference: MartinssonP-GCompressing rank-structured matrices via randomized samplingSIAM J. Sci. Comput.201638419591986351913910.1137/15M1016679
– reference: LiXSShaoMA supernodal approach to incomplete LU factorization with partial pivotingACM Transactions on Mathematical Software (TOMS)2011374120277483510.1145/1916461.1916467
– volume: 58
  start-page: 851
  year: 2018
  ident: 10176_CR43
  publication-title: BIT Numer. Math.
  doi: 10.1007/s10543-018-0714-0
– volume: 110
  start-page: 102897
  year: 2022
  ident: 10176_CR57
  publication-title: Parallel Comput.
  doi: 10.1016/j.parco.2022.102897
– volume: 143
  start-page: 277
  issue: 4
  year: 1996
  ident: 10176_CR37
  publication-title: IEE Proc. Microw. Antennas Propag.
  doi: 10.1049/ip-map:19960400
– ident: 10176_CR48
  doi: 10.1007/978-3-031-50769-4_62
– volume: 59
  start-page: 857
  issue: 5
  year: 2011
  ident: 10176_CR42
  publication-title: Geophys. Prospect.
  doi: 10.1111/j.1365-2478.2011.00982.x
– volume: 29
  start-page: 403
  year: 2020
  ident: 10176_CR54
  publication-title: Acta Numer
  doi: 10.1017/S0962492920000021
– ident: 10176_CR3
  doi: 10.1007/978-3-319-93873-8_30
– volume: 242
  start-page: 460
  year: 2013
  ident: 10176_CR9
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.02.019
– volume: 46
  start-page: 471
  issue: 4
  year: 1999
  ident: 10176_CR68
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/(SICI)1097-0207(19991010)46:4<471::AID-NME684>3.0.CO;2-6
– volume: 47
  start-page: 1
  issue: 3
  year: 2021
  ident: 10176_CR56
  publication-title: ACM Transactions on Mathematical Software (TOMS)
  doi: 10.1145/3431921
– volume: 71
  start-page: 2220
  issue: 11
  year: 2018
  ident: 10176_CR39
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.21755
– volume-title: Fast direct solvers for elliptic PDEs
  year: 2019
  ident: 10176_CR1
  doi: 10.1137/1.9781611976045
– ident: 10176_CR11
  doi: 10.1137/1.9781611971057.ch4
– volume: 38
  start-page: 358
  issue: 5
  year: 2016
  ident: 10176_CR29
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/15M1010117
– volume: 55
  start-page: 141
  issue: 1
  year: 2015
  ident: 10176_CR44
  publication-title: BIT Numer. Math.
  doi: 10.1007/s10543-014-0499-8
– volume: 31
  start-page: 1382
  issue: 3
  year: 2010
  ident: 10176_CR30
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/09074543X
– volume: 230
  start-page: 4071
  issue: 10
  year: 2011
  ident: 10176_CR34
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.02.033
– volume: 9
  start-page: 686
  issue: 2
  year: 2011
  ident: 10176_CR18
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/100804644
– volume: 36
  start-page: 2023
  issue: 4
  year: 2014
  ident: 10176_CR31
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/130918988
– ident: 10176_CR13
  doi: 10.1007/978-3-642-22061-6_10
– volume: 17
  start-page: 886
  issue: 4
  year: 1996
  ident: 10176_CR20
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479894278952
– volume: 35
  start-page: 519
  issue: 6
  year: 2013
  ident: 10176_CR6
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/110848062
– ident: 10176_CR58
  doi: 10.1109/SC41404.2022.00031
– volume: 106
  start-page: 213
  issue: 3
  year: 2016
  ident: 10176_CR67
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.5172
– volume-title: Direct methods for sparse linear systems
  year: 2006
  ident: 10176_CR22
  doi: 10.1137/1.9780898718881
– ident: 10176_CR41
  doi: 10.1007/978-3-319-28832-1_9
– volume: 40
  start-page: 1994
  issue: 3
  year: 2020
  ident: 10176_CR50
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drz034
– volume: 308
  start-page: 419
  year: 2016
  ident: 10176_CR45
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2016.05.013
– volume: 41
  start-page: 292
  issue: 1
  year: 2019
  ident: 10176_CR47
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/17M1156320
– volume: 29
  start-page: 110
  issue: 2
  year: 2003
  ident: 10176_CR64
  publication-title: ACM Transactions on Mathematical Software (TOMS)
  doi: 10.1145/779359.779361
– volume-title: Direct methods for sparse matrices
  year: 1989
  ident: 10176_CR23
– ident: 10176_CR24
– volume-title: Hierarchical matrices: algorithms and analysis
  year: 2015
  ident: 10176_CR26
  doi: 10.1007/978-3-662-47324-5
– volume: 30
  start-page: 196
  issue: 2
  year: 2004
  ident: 10176_CR65
  publication-title: ACM Transactions on Mathematical Software (TOMS)
  doi: 10.1145/992200.992206
– volume: 55
  start-page: 462
  issue: 3
  year: 2013
  ident: 10176_CR49
  publication-title: SIAM Rev.
  doi: 10.1137/120865458
– volume: 26
  start-page: 591
  year: 2017
  ident: 10176_CR12
  publication-title: Acta Numer.
  doi: 10.1017/S0962492917000083
– volume: 27
  start-page: 405
  issue: 5
  year: 2003
  ident: 10176_CR25
  publication-title: Eng. Anal. Boundary Elem.
  doi: 10.1016/S0955-7997(02)00152-2
– volume: 39
  start-page: 1710
  issue: 4
  year: 2017
  ident: 10176_CR27
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/16M1077192
– ident: 10176_CR10
  doi: 10.1137/1.9780898719505
– ident: 10176_CR59
– volume: 38
  start-page: 1959
  issue: 4
  year: 2016
  ident: 10176_CR35
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/15M1016679
– volume: 61
  start-page: 3
  issue: 1
  year: 2019
  ident: 10176_CR14
  publication-title: SIAM Rev.
  doi: 10.1137/16M109781X
– volume: 32
  start-page: 1251
  issue: 4
  year: 2011
  ident: 10176_CR36
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/100786617
– volume: 221
  start-page: 288
  year: 2007
  ident: 10176_CR38
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.06.037
– ident: 10176_CR61
  doi: 10.1109/IPDPSW.2013.26
– volume: 37
  start-page: 1
  issue: 4
  year: 2011
  ident: 10176_CR63
  publication-title: ACM Transactions on Mathematical Software (TOMS)
  doi: 10.1145/1916461.1916467
– ident: 10176_CR4
– ident: 10176_CR62
  doi: 10.1007/978-3-030-43736-7_1
– volume: 410
  start-page: 109383
  year: 2020
  ident: 10176_CR52
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109383
– volume: 55
  start-page: 163
  issue: 2
  year: 2007
  ident: 10176_CR15
  publication-title: Int. J. Numer. Meth. Fluids
  doi: 10.1002/fld.1433
– ident: 10176_CR66
  doi: 10.1007/3-540-70734-4_16
– volume: 242
  start-page: 460
  year: 2013
  ident: 10176_CR69
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.02.019
– volume: 64
  start-page: 697
  issue: 5
  year: 2011
  ident: 10176_CR2
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20358
– volume: 50
  start-page: 409
  issue: 3–4
  year: 2004
  ident: 10176_CR16
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2004.01.009
– volume: 28
  start-page: 46
  issue: 1
  year: 2008
  ident: 10176_CR40
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drm001
– volume: 79
  start-page: 996
  issue: 4
  year: 2020
  ident: 10176_CR46
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2019.08.019
– volume: 17
  start-page: 953
  issue: 6
  year: 2010
  ident: 10176_CR7
  publication-title: Numer. Linear Algebra Appl.
  doi: 10.1002/nla.691
– ident: 10176_CR32
  doi: 10.1109/IPDPSW.2017.86
– ident: 10176_CR53
– ident: 10176_CR70
– ident: 10176_CR33
– volume: 56
  start-page: 648
  issue: 5
  year: 2006
  ident: 10176_CR17
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2005.04.039
– volume: 10
  start-page: 345
  year: 1973
  ident: 10176_CR21
  publication-title: SIAM J Numer. Anal.
  doi: 10.1137/0710032
– volume: 25
  start-page: 383
  year: 2016
  ident: 10176_CR19
  publication-title: Acta Numerica
  doi: 10.1017/S0962492916000076
– ident: 10176_CR55
  doi: 10.5281/zenodo.11238664
– volume: 46
  start-page: 1747
  issue: 3
  year: 2024
  ident: 10176_CR8
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/22M1528574
– volume: 436
  start-page: 110087
  year: 2021
  ident: 10176_CR51
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.110087
– volume: 74
  start-page: 65
  year: 2018
  ident: 10176_CR28
  publication-title: Parallel Comput.
  doi: 10.1016/j.parco.2017.12.001
– ident: 10176_CR60
– volume: 7
  start-page: 217
  year: 2012
  ident: 10176_CR5
  publication-title: Front. Math. China
  doi: 10.1007/s11464-012-0188-3
SSID ssj0009675
Score 2.3853204
Snippet The paper describes a sparse direct solver for the linear systems that arise from the discretization of an elliptic PDE on a two-dimensional domain. The scheme...
Not provided.
SourceID osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 90
SubjectTerms Computational mathematics
Computational Mathematics and Numerical Analysis
Computational Science and Engineering
Discretization
Domains
Elliptic differential equations
Graphics processing units
Linear algebra
Linear systems
Mathematical and Computational Biology
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Matrix algebra
Parabolic differential equations
Partial differential equations
Solvers
Sparsity
Visualization
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6ketCD1aoYq7IHb7rQbDav3kRbPGgp1kpvy-5mA0JppYmPn-9smrRWVNBzJg9mv5n5hsx-C3Dmp6EXB0bSRGpGecANjZLApyZG_hwiw_dSVRw2EfZ60WgU98tNYVk17V79kiwy9afNbpxzijWFWhgFFJnjOpa7yIbj_eBxKbUbFPK6aBRT7AaicqvM989YKUe1KYbVCtX88ne0KDrd-v8-dwe2S5JJLueo2IU1M2lAvSScpAznrAFbdwvR1mwP2gNExO2wTSTJ36Z0bMeJCCacWWbIvPIRBCpCnyDRJVbIE9ONJv3rTrYPw27n4eqGlkcrUO3xIKepRl4nVWy4ShXDlkO5iSvT1FOG2TmSiHtaKharBM28MJUtrZRmATZHSUsGiXcAtcl0Yg6BmFiayDVIi6TmPIlk6HK0dTFZaOVL7oBbeVjoUnfcHn8xFkvFZOsqga4ShavEuwPni3ue56obv1o37cIJ5AxW-FbbCSGdC9tKMRY7cFytpyjjMxMe9sWYyXzmO3BRrd_y8s_vOvqbeRM2mYVAMTF4DLV89mJOYEO_5k_Z7LTA7QfdLObA
  priority: 102
  providerName: Springer Nature
Title SlabLU: a two-level sparse direct solver for elliptic PDEs
URI https://link.springer.com/article/10.1007/s10444-024-10176-x
https://www.proquest.com/docview/3254225525
https://www.osti.gov/biblio/2576229
Volume 50
WOSCitedRecordID wos001288261200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1572-9044
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009675
  issn: 1019-7168
  databaseCode: P5Z
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1572-9044
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009675
  issn: 1019-7168
  databaseCode: K7-
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1572-9044
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009675
  issn: 1019-7168
  databaseCode: M7S
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1572-9044
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009675
  issn: 1019-7168
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9044
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009675
  issn: 1019-7168
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB609eDFt1gfJQdvGuxms69exEdFUEppVYqXkGSzIJS2dtfHz3eyTS0K9uIll80-2Plm5ptkMgNwHGSRn4RG0lRqRnnIDY3TMKAmQf4cIcP3M1U2m4ja7bjfTzpuwS13aZUzm1ga6nSk7Rr5mY-RDGIvYMH5-JXarlF2d9W10FiGqseYZ3F-F9F50d2wLLSLqEsoxgWxOzTjjs5xzil6KGpBGdLPH46pMkIF-0E6f-2Tlu7nZv2_H74Ba454kospUjZhyQy3YN2RUOJUPN-GZg9xcf_YJJIUHyM6sElFBM3OJDdk6v8IwhUVgCDdJbacJxodTTrXrXwHHm9aD1e31DVYoNrnYUEzjexOqsRwlSmGgYfyUk9mma8Ms9kkMfe1VCxRKU7zo0w2tFKahRgipQ0Zpv4uVIajodkDYhJpYs8gOZKa8zSWkcdxrocmQ6tA8hp4s78rtKs-bptgDMS8brKViECJiFIi4rMGJ9_3jKe1NxbOPrBCE8gcbPlbbfOEdCFsQMVYUoPDmXSE09JczEVTg9OZfOeX_37X_uKnHcAqs8gq8wQPoVJM3swRrOj34iWf1KF62Wp3uvUSq3WbbNrDsRM849jtPX0BEfzvyQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB60CnqxPrFadQ960sVms3kJIuIDxVoEFbytu5sNCKWtTbT1T_kbnU0Ti4LePHjOZkOy33zzTXZ2BmDbSwI38o2ksdSMcp8bGsa-R02E-jlAhe8mKm82EbRa4cNDdDMB7-VZGJtWWXJiTtRxV9t_5PsuRjKIPY95R71nartG2d3VsoXGCBZX5m2AIVt6eHmK67vD2PnZ3ckFLboKUO1yP6OJRkkjVWS4ShRDta2c2JFJ4irDbApFyF0tFYtUjMPcIJENrZRmPsYFcUP6sYvzTsIUt-yfpwrejov8-nlhX0R5RDEOCYtDOsVRPc45RY9IrRH4dPjFEVa6aNBfRO63fdnc3Z1X_9uHmoe5QliT45ElLMCE6SxCtRDZpKCwdAkObhH3zfsDIkk26NK2TZoiSKv91JCRfydojmjgBOU8seVKkVQ1uTk9S5fh_k_eYAUqnW7HrAIxkTShY1D8Sc15HMrA4TjWQUrUypO8Bk65mkIX1dVtk4-2GNeFtggQiACRI0AMa7D7eU9vVFvk19HrFiQClZEt76ttHpTOhA0YGYtqUC_RIAoWSsUYCjXYK_E0vvzzs9Z-n20LZi7urpuiedm6WodZZlGd50TWoZL1X8wGTOvX7Cntb-b2QeDxr3H2AZ7yTW4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB6kiuiD1apYW3UffNOlzWZz9U2sRVFLwQPflt3NBoTSliYeP9_ZND0UFcTnTA5m5_iGzHwDcOwlgRv5RtJYaka5zw0NY9-jJkL8HCDCdxOVL5sIut3w6SnqLUzx593u01-Sk5kGy9I0yBqjOGksDL5xzinmF2pNyqeIIpe5XRpk6_W7xzntrp9T7aJQRLEyCIuxme-f8Sk1lYboYp9g55c_pXkC6pT__-mbsFGAT3I2sZYtWDKDCpQLIEoKN08rsH47I3NNt6F1h5Zy89AikmRvQ9q3bUYEA9E4NWSSEQkaMLoEQQBMLMEnhiFNeu2LdAceOhf355e0WLlAtcv9jCYa8Z5UkeEqUQxLEeXEjkwSVxlm-0tC7mqpWKRiFHODRDa1Upr5WDTFTenH7i6UBsOB2QNiImlCxyBckprzOJSBw1HWwSCilSd5FZyptoUu-MjtWoy-mDMpW1UJVJXIVSXeq3Ayu2c0YeP4VbpmD1EglrCEuNp2DulM2BKLsagK9enZisJvU-FivYwRzmNeFU6nZzm__PO79v8mfgSrvXZH3Fx1r2uwxqw15E2FdShl4xdzACv6NXtOx4e5OX8AHPvyiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SlabLU%3A+a+two-level+sparse+direct+solver+for+elliptic+PDEs&rft.jtitle=Advances+in+computational+mathematics&rft.au=Yesypenko%2C+Anna&rft.au=Martinsson%2C+Per-Gunnar&rft.date=2024-08-01&rft.pub=Springer&rft.issn=1019-7168&rft.volume=50&rft.issue=4&rft_id=info:doi/10.1007%2Fs10444-024-10176-x&rft.externalDocID=2576229
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon