Kinetics and thermodynamics of densification and grain growth: Insights from lanthanum doped zirconia
The effect of dopants (or additives) on sintering is typically addressed from a mechanistic and diffusivity perspective by focusing on how dopants affect those parameters. However, a comprehensive description of sintering needs to address the role of dopants in the thermodynamics of the system, whic...
Uloženo v:
| Vydáno v: | Acta materialia Ročník 150; s. 394 - 402 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
15.05.2018
|
| Témata: | |
| ISSN: | 1359-6454, 1873-2453 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The effect of dopants (or additives) on sintering is typically addressed from a mechanistic and diffusivity perspective by focusing on how dopants affect those parameters. However, a comprehensive description of sintering needs to address the role of dopants in the thermodynamics of the system, which affects local chemical potentials driving forces and is, therefore, ultimately linked to the mass transport mechanisms themselves by the thermodynamic extremal principle. In this work, Lanthanum doped Yttria-Stabilized-Zirconia (YSZ) sintering was studied from both kinetics and thermodynamic perspectives to demonstrate the need for those complementary analyses to allow proper processing control. La caused inhibition of both grain growth and densification, which was a result of a change of interfacial energies linked to La segregation as well as of the codependence of coarsening and densification on the grain boundary energy. While La caused a modest decrease in the activation energy for densification, surface and grain boundary energies decreased from 0.95 to 0.70 J/m2, respectively, for YSZ, to 0.80 and 0.41 J/m2 for 2 mol% La-YSZ, indicating an increase in sintering stress. The apparent contradiction between the thermodynamic data and the observed densification trend is attributed to the reduced grain growth that trapped the system in a metastable configuration.
[Display omitted] |
|---|---|
| AbstractList | The effect of dopants (or additives) on sintering is typically addressed from a mechanistic and diffusivity perspective by focusing on how dopants affect those parameters. However, a comprehensive description of sintering needs to address the role of dopants in the thermodynamics of the system, which affects local chemical potentials driving forces and is, therefore, ultimately linked to the mass transport mechanisms themselves by the thermodynamic extremal principle. In this work, Lanthanum doped Yttria-Stabilized-Zirconia (YSZ) sintering was studied from both kinetics and thermodynamic perspectives to demonstrate the need for those complementary analyses to allow proper processing control. La caused inhibition of both grain growth and densification, which was a result of a change of interfacial energies linked to La segregation as well as of the codependence of coarsening and densification on the grain boundary energy. While La caused a modest decrease in the activation energy for densification, surface and grain boundary energies decreased from 0.95 to 0.70 J/m2, respectively, for YSZ, to 0.80 and 0.41 J/m2 for 2 mol% La-YSZ, indicating an increase in sintering stress. The apparent contradiction between the thermodynamic data and the observed densification trend is attributed to the reduced grain growth that trapped the system in a metastable configuration.
[Display omitted] |
| Author | Castro, Ricardo H.R. Li, Hui Dey, Sanchita |
| Author_xml | – sequence: 1 givenname: Hui surname: Li fullname: Li, Hui – sequence: 2 givenname: Sanchita surname: Dey fullname: Dey, Sanchita – sequence: 3 givenname: Ricardo H.R. orcidid: 0000-0002-7574-7665 surname: Castro fullname: Castro, Ricardo H.R. email: rhrcastro@ucdavis.edu |
| BookMark | eNqFUE1LAzEQDVLBtvoThP0DW5PNZjerB5HiR7HgRc8hm0y6Kd2kJFGpv95t68lLYZgZZuY93rwJGjnvAKFrgmcEk-pmPZMqyV6mWYEJn2E6BD1DY8Jrmhclo6Ohp6zJq5KVF2gS4xpjUtQlHiN4tQ6SVTGTTmepg9B7vXOy34-8yTS4aI1VMlnvDjerIK0bsv9O3W22GNarLsXMBN9nG-lSJ91nn2m_BZ392KC8s_ISnRu5iXD1V6fo4-nxff6SL9-eF_OHZa5oWaUceAst1tiUDdVF0Zi64IaThkGpa2WooVADZRVtm4JDqyVjXGtMZQ1cq4rTKbo78qrgYwxghLLpID0NqjeCYLF3TKzFn2Ni75jAdAg6oNk_9DbYXobdSdz9EQfDa18WgojKglOgbQCVhPb2BMMvWPWOAw |
| CitedBy_id | crossref_primary_10_1016_j_jmst_2024_05_041 crossref_primary_10_1016_j_mssp_2024_108419 crossref_primary_10_1016_j_ceramint_2025_08_095 crossref_primary_10_1111_jace_19876 crossref_primary_10_1016_j_actamat_2021_117309 crossref_primary_10_1111_jace_16942 crossref_primary_10_1007_s11666_022_01498_7 crossref_primary_10_1016_j_ceramint_2021_09_073 crossref_primary_10_1111_jace_18440 crossref_primary_10_1111_jace_17273 crossref_primary_10_1111_jace_17792 crossref_primary_10_1016_j_ceramint_2024_04_017 crossref_primary_10_1016_j_actamat_2022_118448 crossref_primary_10_1016_j_jpcs_2023_111828 crossref_primary_10_1039_D0RA01541E crossref_primary_10_1016_j_jeurceramsoc_2021_12_072 crossref_primary_10_1002_ces2_10040 crossref_primary_10_1111_jace_18083 crossref_primary_10_1007_s00339_019_2835_y crossref_primary_10_1007_s10853_020_05701_4 crossref_primary_10_1016_j_actamat_2019_03_025 crossref_primary_10_3390_met9010010 crossref_primary_10_1016_j_cossms_2021_100911 crossref_primary_10_1002_jbm_b_34702 crossref_primary_10_1016_j_ceramint_2024_08_162 crossref_primary_10_1016_j_jeurceramsoc_2024_116677 crossref_primary_10_1016_j_microrel_2018_07_048 crossref_primary_10_1016_j_jeurceramsoc_2019_04_017 crossref_primary_10_1111_jace_18176 crossref_primary_10_1111_jace_19960 crossref_primary_10_1002_adem_202100624 crossref_primary_10_1016_j_matdes_2019_108080 crossref_primary_10_1111_jace_19380 |
| Cites_doi | 10.1016/j.ceramint.2008.01.008 10.1039/b904583j 10.1179/1743280415Y.0000000005 10.1021/cm903404u 10.1007/s002690050035 10.1111/j.1151-2916.1996.tb07998.x 10.1002/app.1986.070320406 10.1111/j.1151-2916.1989.tb06209.x 10.1016/j.jeurceramsoc.2007.12.016 10.1021/jp5016356 10.1111/j.1151-2916.1993.tb03943.x 10.1016/j.ceramint.2010.11.031 10.1111/j.1151-2916.1989.tb06208.x 10.1557/JMR.1999.0190 10.1111/j.1151-2916.1997.tb03084.x 10.1557/jmr.2014.88 10.1007/s10853-015-9010-4 10.1111/j.1551-2916.2010.04199.x 10.1111/j.1151-2916.1992.tb07865.x 10.1007/s10853-017-1617-1 10.1021/cm402330u 10.1016/j.jcrysgro.2003.12.021 10.1557/jmr.2015.269 10.1111/j.1151-2916.1964.tb12996.x 10.1016/j.actamat.2017.07.005 10.1016/S0169-4332(03)00539-7 10.1111/j.1151-2916.1997.tb03186.x 10.1016/S0040-6031(96)03053-5 10.1016/j.jeurceramsoc.2012.12.004 10.1111/j.1551-2916.2006.01160.x 10.1038/35004548 10.1007/BF02642850 10.1111/j.1151-2916.1994.tb04596.x 10.1111/j.1551-2916.2007.02029.x 10.1111/j.1151-2916.1996.tb08097.x 10.1111/j.1151-2916.1996.tb07997.x 10.1179/174367605X20162 10.1111/jace.14176 10.1021/nl0259380 10.1021/ac60131a045 10.1063/1.4761992 10.1016/j.jeurceramsoc.2017.05.035 10.1021/cm100255u 10.1016/0955-2219(95)00071-2 10.1016/S0955-2219(97)00127-1 10.1007/BF00307526 10.1016/j.matlet.2013.01.007 10.1016/j.jmst.2017.01.023 |
| ContentType | Journal Article |
| Copyright | 2018 Acta Materialia Inc. |
| Copyright_xml | – notice: 2018 Acta Materialia Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.actamat.2018.03.033 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-2453 |
| EndPage | 402 |
| ExternalDocumentID | 10_1016_j_actamat_2018_03_033 S1359645418302271 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNEU ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K TN5 XPP ZMT ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FGOYB R2- SEW T9H ZY4 ~HD |
| ID | FETCH-LOGICAL-c346t-e8beb0d0f493d229f728f8195e4d7cf3f3e7e3563b928ebda558dd03a7e8dc683 |
| ISICitedReferencesCount | 39 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000433272400036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1359-6454 |
| IngestDate | Tue Nov 18 22:18:30 EST 2025 Sat Nov 29 07:06:04 EST 2025 Fri Feb 23 02:29:07 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Calorimetry Oxides Ceramics Grain growth Sintering |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c346t-e8beb0d0f493d229f728f8195e4d7cf3f3e7e3563b928ebda558dd03a7e8dc683 |
| ORCID | 0000-0002-7574-7665 |
| PageCount | 9 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_actamat_2018_03_033 crossref_primary_10_1016_j_actamat_2018_03_033 elsevier_sciencedirect_doi_10_1016_j_actamat_2018_03_033 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-05-15 |
| PublicationDateYYYYMMDD | 2018-05-15 |
| PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Acta materialia |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Lange (bib13) 1989; 72 Hotza, García, Castro (bib23) 2015; 60 Chen, Chen (bib5) 1996; 79 Costa, Ushakov, Castro, Navrotsky, Muccillo (bib44) 2010; 22 García, Seidel, Janssen, Claussen (bib22) 1995; 15 Chang, Rufner, van Benthem, Castro (bib19) 2013; 25 Castro, Gouvêa (bib16) 2016; 99 Maglia, Tredici, Anselmi-Tamburini (bib1) 2013; 33 Castro (bib26) 2013; 96 Slamovich, Lange (bib45) 1993; 76 Gouvea, Smith, Bonnet, Varela (bib53) 1998; 18 Castro, van Benthem (bib3) 2012 Petrović, Zavargo (bib35) 1986; 32 Perkins, West, Lewis (bib20) 2005; 104 Kim, Kim (bib21) 1992; 75 Drazin, Castro (bib43) 2014; 118 Liu, Kirchheim (bib2) 2004; 264 Castro, Torres, Pereira, Gouvea (bib24) 2010; 22 Jorgensen, Westbrook (bib32) 1964; 47 Rahaman (bib41) 2017 Gong, Castro, Liu (bib47) 2015; 50 Mazaheri, Zahedi, Sadrnezhaad (bib17) 2008; 91 Li, Souza, Castro (bib40) 2017 Gong, Dey, Wu, Chang, Li, Castro, Liu (bib48) 2017; 33 Kang (bib18) 2005 Chang, Castro (bib42) 2014; 29 Castro, Torres, Pereira, Gouvea (bib28) 2010; 22 Starink (bib34) 1996; 288 Batista, Muccillo (bib38) 2011; 37 Chang, Castro (bib52) 2014; 29 Dey, Chang, Gong, Liu, Castro (bib4) 2015; 30 Shi (bib15) 1999; 14 Fang, Thompson, Harmer, Chan (bib55) 1997; 80 Gouvea, Smith, Smith, Bonnet, Varela (bib54) 1997; 80 Kissinger (bib31) 1957; 29 Chen, Wang (bib11) 2000; 404 Pereira, Bolis, Muche, Gouvêa, Castro (bib25) 2017; 37 Mazaheri, Simchi, Dourandish, Golestani-Fard (bib37) 2009; 35 Shukla, Seal, Vij, Bandyopadhyay (bib39) 2003; 3 Song, Lu, Zhang, Ma (bib33) 2011; 94 Navrotsky (bib30) 1997; 24 Su, Johnson (bib36) 1996; 79 Chen, Chen (bib6) 1996; 79 Nafsin, Aguiar, Aoki, Thron, van Benthem, Castro (bib8) 2017; 136 Chang, Castro (bib50) 2014; 29 Lange (bib12) 2008; 28 Chen, Chen (bib7) 1994; 77 Jo, Kim, Hwang (bib10) 2006; 89 Gong, Castro, Liu (bib56) 2018; 53 Navrotsky (bib29) 1977; 2 Hondros, Seah (bib9) 1977; 8 Quach, Castro (bib27) 2012; 112 Avila-Paredes, Choi, Chen, Kim (bib49) 2009; 19 Kellett, Lange (bib14) 1989; 72 Gouvêa, Castro (bib46) 2003; 217 Tebcherani, Varela, Perazolli, Camargo, Longo (bib51) 1999 Castro (10.1016/j.actamat.2018.03.033_bib16) 2016; 99 Hotza (10.1016/j.actamat.2018.03.033_bib23) 2015; 60 Rahaman (10.1016/j.actamat.2018.03.033_bib41) 2017 Dey (10.1016/j.actamat.2018.03.033_bib4) 2015; 30 Navrotsky (10.1016/j.actamat.2018.03.033_bib30) 1997; 24 Jorgensen (10.1016/j.actamat.2018.03.033_bib32) 1964; 47 Nafsin (10.1016/j.actamat.2018.03.033_bib8) 2017; 136 Jo (10.1016/j.actamat.2018.03.033_bib10) 2006; 89 Su (10.1016/j.actamat.2018.03.033_bib36) 1996; 79 Kang (10.1016/j.actamat.2018.03.033_bib18) 2005 Kellett (10.1016/j.actamat.2018.03.033_bib14) 1989; 72 Castro (10.1016/j.actamat.2018.03.033_bib3) 2012 Petrović (10.1016/j.actamat.2018.03.033_bib35) 1986; 32 Tebcherani (10.1016/j.actamat.2018.03.033_bib51) 1999 Chen (10.1016/j.actamat.2018.03.033_bib7) 1994; 77 Kissinger (10.1016/j.actamat.2018.03.033_bib31) 1957; 29 Liu (10.1016/j.actamat.2018.03.033_bib2) 2004; 264 Castro (10.1016/j.actamat.2018.03.033_bib24) 2010; 22 Gouvêa (10.1016/j.actamat.2018.03.033_bib46) 2003; 217 Chang (10.1016/j.actamat.2018.03.033_bib19) 2013; 25 Gong (10.1016/j.actamat.2018.03.033_bib47) 2015; 50 Batista (10.1016/j.actamat.2018.03.033_bib38) 2011; 37 Shi (10.1016/j.actamat.2018.03.033_bib15) 1999; 14 Castro (10.1016/j.actamat.2018.03.033_bib28) 2010; 22 Gong (10.1016/j.actamat.2018.03.033_bib48) 2017; 33 Chang (10.1016/j.actamat.2018.03.033_bib50) 2014; 29 Li (10.1016/j.actamat.2018.03.033_bib40) 2017 Starink (10.1016/j.actamat.2018.03.033_bib34) 1996; 288 Mazaheri (10.1016/j.actamat.2018.03.033_bib17) 2008; 91 Gong (10.1016/j.actamat.2018.03.033_bib56) 2018; 53 Lange (10.1016/j.actamat.2018.03.033_bib13) 1989; 72 Pereira (10.1016/j.actamat.2018.03.033_bib25) 2017; 37 Gouvea (10.1016/j.actamat.2018.03.033_bib53) 1998; 18 García (10.1016/j.actamat.2018.03.033_bib22) 1995; 15 Chen (10.1016/j.actamat.2018.03.033_bib6) 1996; 79 Quach (10.1016/j.actamat.2018.03.033_bib27) 2012; 112 Mazaheri (10.1016/j.actamat.2018.03.033_bib37) 2009; 35 Song (10.1016/j.actamat.2018.03.033_bib33) 2011; 94 Lange (10.1016/j.actamat.2018.03.033_bib12) 2008; 28 Perkins (10.1016/j.actamat.2018.03.033_bib20) 2005; 104 Hondros (10.1016/j.actamat.2018.03.033_bib9) 1977; 8 Drazin (10.1016/j.actamat.2018.03.033_bib43) 2014; 118 Slamovich (10.1016/j.actamat.2018.03.033_bib45) 1993; 76 Costa (10.1016/j.actamat.2018.03.033_bib44) 2010; 22 Shukla (10.1016/j.actamat.2018.03.033_bib39) 2003; 3 Chang (10.1016/j.actamat.2018.03.033_bib52) 2014; 29 Gouvea (10.1016/j.actamat.2018.03.033_bib54) 1997; 80 Maglia (10.1016/j.actamat.2018.03.033_bib1) 2013; 33 Navrotsky (10.1016/j.actamat.2018.03.033_bib29) 1977; 2 Fang (10.1016/j.actamat.2018.03.033_bib55) 1997; 80 Chen (10.1016/j.actamat.2018.03.033_bib11) 2000; 404 Castro (10.1016/j.actamat.2018.03.033_bib26) 2013; 96 Chen (10.1016/j.actamat.2018.03.033_bib5) 1996; 79 Kim (10.1016/j.actamat.2018.03.033_bib21) 1992; 75 Chang (10.1016/j.actamat.2018.03.033_bib42) 2014; 29 Avila-Paredes (10.1016/j.actamat.2018.03.033_bib49) 2009; 19 |
| References_xml | – volume: 76 start-page: 1584 year: 1993 end-page: 1590 ident: bib45 article-title: Densification of large pores: II, driving potentials and kinetics publication-title: J. Am. Ceram. Soc. – volume: 29 start-page: 1702 year: 1957 end-page: 1706 ident: bib31 article-title: Reaction kinetics in differential thermal analysis publication-title: Anal. Chem. – volume: 2 start-page: 89 year: 1977 end-page: 104 ident: bib29 article-title: Progress and new directions in high temperature calorimetry publication-title: Phys. Chem. Miner. – volume: 80 start-page: 2005 year: 1997 end-page: 2012 ident: bib55 article-title: Effect of yttrium and lanthanum on the final-stage sintering behavior of ultrahigh-purity alumina publication-title: J. Am. Ceram. Soc. – volume: 28 start-page: 1509 year: 2008 end-page: 1516 ident: bib12 article-title: Densification of powder compacts: an unfinished story publication-title: J. Eur. Ceram. Soc. – volume: 288 start-page: 97 year: 1996 end-page: 104 ident: bib34 article-title: A new method for the derivation of activation energies from experiments performed at constant heating rate publication-title: Thermochim. Acta – volume: 22 start-page: 2502 year: 2010 end-page: 2509 ident: bib28 article-title: Interface energy measurement of MgO and ZnO: understanding the thermodynamic stability of nanoparticles publication-title: Chem. Mater. – volume: 33 start-page: 251 year: 2017 end-page: 260 ident: bib48 article-title: Effects of concurrent grain boundary and surface segregation on the final stage of sintering: the case of Lanthanum doped yttria-stabilized zirconia publication-title: J. Mater. Sci. Technol. – volume: 75 start-page: 716 year: 1992 end-page: 718 ident: bib21 article-title: Entrapped gas effect in the fast firing of yttria-doped zirconia publication-title: J. Am. Ceram. Soc. – volume: 33 start-page: 1045 year: 2013 end-page: 1066 ident: bib1 article-title: Densification and properties of bulk nanocrystalline functional ceramics with grain size below 50nm publication-title: J. Eur. Ceram. Soc. – volume: 29 start-page: 1034 year: 2014 end-page: 1046 ident: bib52 article-title: Surface and grain boundary energies of tin dioxide at low and high temperatures and effects on densification behavior publication-title: J. Mater. Res. – volume: 37 start-page: 4051 year: 2017 end-page: 4058 ident: bib25 article-title: Direct measurement of interface energies of magnesium aluminate spinel and a brief sintering analysis publication-title: J. Eur. Ceram. Soc. – volume: 37 start-page: 1047 year: 2011 end-page: 1053 ident: bib38 article-title: Densification and grain growth of 8YSZ containing NiO publication-title: Ceram. Int. – volume: 50 start-page: 4610 year: 2015 end-page: 4621 ident: bib47 article-title: Modeling grain growth kinetics of binary substitutional alloys by the thermodynamic extremal principle publication-title: J. Mater. Sci. – volume: 72 start-page: 735 year: 1989 end-page: 741 ident: bib13 article-title: Thermodynamics of densification: II, grain growth in porous compacts and relation to densification publication-title: J. Am. Ceram. Soc. – volume: 19 start-page: 4837 year: 2009 end-page: 4842 ident: bib49 article-title: Dopant-concentration dependence of grain-boundary conductivity in ceria: a space-charge analysis publication-title: J. Mater. Chem. – volume: 14 start-page: 1398 year: 1999 end-page: 1408 ident: bib15 article-title: Thermodynamics and densification kinetics in solid-state sintering of ceramics publication-title: J. Mater. Res. – volume: 91 start-page: 56 year: 2008 end-page: 63 ident: bib17 article-title: Two-step sintering of nanocrystalline ZnO compacts: effect of temperature on densification and grain growth publication-title: J. Am. Ceram. Soc. – volume: 8 start-page: 1363 year: 1977 end-page: 1371 ident: bib9 article-title: The theory of grain boundary segregation in terms of surface adsorption analogues publication-title: Metall. Mater. Trans. – volume: 104 start-page: 131 year: 2005 end-page: 134 ident: bib20 article-title: Analysis and spectroscopy of rare earth doped magnesium aluminate spinel publication-title: Adv. Appl. Ceram – volume: 79 start-page: 3211 year: 1996 end-page: 3217 ident: bib36 article-title: Master sintering curve: a practical approach to sintering publication-title: J. Am. Ceram. Soc. – volume: 89 start-page: 2369 year: 2006 end-page: 2380 ident: bib10 article-title: Effect of interface structure on the microstructural evolution of ceramics publication-title: J. Am. Ceram. Soc. – volume: 32 start-page: 4353 year: 1986 end-page: 4367 ident: bib35 article-title: Reliability of methods for determination of kinetic parameters from thermogravimetry and DSC measurements publication-title: J. Appl. Polym. Sci. – year: 2005 ident: bib18 article-title: Sintering: Densification, Grain Growth & Microstructure – volume: 60 start-page: 353 year: 2015 end-page: 375 ident: bib23 article-title: Obtaining highly dense YSZ nanoceramics by pressureless, unassisted sintering publication-title: Int. Mater. Rev. – volume: 77 start-page: 2289 year: 1994 end-page: 2297 ident: bib7 article-title: Role of defect interaction in boundary mobility and cation diffusivity of CeO publication-title: J. Am. Ceram. Soc. – volume: 136 start-page: 224 year: 2017 end-page: 234 ident: bib8 article-title: Thermodynamics versus kinetics of grain growth control in nanocrystalline zirconia publication-title: Acta Mater. – volume: 80 start-page: 2735 year: 1997 end-page: 2736 ident: bib54 article-title: Translucent tin dioxide ceramics obtained by natural sintering publication-title: J. Am. Ceram. Soc. – volume: 72 start-page: 725 year: 1989 end-page: 734 ident: bib14 article-title: Thermodynamics of densification: I, sintering of simple particle arrays, equilibrium configurations, pore stability, and shrinkage publication-title: J. Am. Ceram. Soc. – volume: 35 start-page: 547 year: 2009 end-page: 554 ident: bib37 article-title: Master sintering curves of a nanoscale 3Y-TZP powder compacts publication-title: Ceram. Int. – volume: 404 start-page: 168 year: 2000 end-page: 171 ident: bib11 article-title: Sintering dense nanocrystalline ceramics without final-stage grain growth publication-title: Nature – volume: 94 start-page: 1053 year: 2011 end-page: 1059 ident: bib33 article-title: Two-stage master sintering curve approach to sintering kinetics of undoped and Al publication-title: J. Am. Ceram. Soc. – year: 2017 ident: bib41 article-title: Ceramic Processing – volume: 22 start-page: 2937 year: 2010 end-page: 2945 ident: bib44 article-title: Calorimetric measurement of surface and interface enthalpies of yttria-stabilized zirconia (YSZ) publication-title: Chem. Mater. – volume: 29 start-page: 1034 year: 2014 end-page: 1046 ident: bib50 article-title: Surface and grain boundary energies of tin dioxide at low and high temperatures and effects on densification behavior publication-title: J. Mater. Res. – volume: 79 start-page: 1801 year: 1996 end-page: 1809 ident: bib5 article-title: Grain boundary mobility in Y publication-title: J. Am. Ceram. Soc. – volume: 217 start-page: 194 year: 2003 end-page: 201 ident: bib46 article-title: Sintering: the role of interface energies publication-title: Appl. Surf. Sci. – volume: 25 start-page: 4262 year: 2013 end-page: 4268 ident: bib19 article-title: Design of desintering in tin dioxide nanoparticles publication-title: Chem. Mater. – volume: 99 start-page: 1105 year: 2016 end-page: 1121 ident: bib16 article-title: Sintering and nanostability: the thermodynamic perspective publication-title: J. Am. Ceram. Soc. – volume: 15 start-page: 935 year: 1995 end-page: 938 ident: bib22 article-title: Fast firing of alumina publication-title: J. Eur. Ceram. Soc. – volume: 264 start-page: 385 year: 2004 end-page: 391 ident: bib2 article-title: Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation publication-title: J. Cryst. Growth – volume: 24 start-page: 222 year: 1997 end-page: 241 ident: bib30 article-title: Progress and new directions in high temperature calorimetry revisited publication-title: Phys. Chem. Miner. – volume: 79 start-page: 1793 year: 1996 end-page: 1800 ident: bib6 article-title: Grain growth in CeO publication-title: J. Am. Ceram. Soc. – volume: 53 start-page: 1680 year: 2018 end-page: 1698 ident: bib56 article-title: Modeling the final sintering stage of doped ceramics: mutual interaction between grain growth and densification publication-title: J. Mater. Sci. – volume: 22 start-page: 2502 year: 2010 end-page: 2509 ident: bib24 article-title: Interface energy measurement of MgO and ZnO: understanding the thermodynamic stability of nanoparticles publication-title: Chem. Mater. – volume: 47 start-page: 332 year: 1964 end-page: 338 ident: bib32 article-title: Role of solute segregation at grain boundaries during final–stage sintering of alumina publication-title: J. Am. Ceram. Soc. – volume: 30 start-page: 2991 year: 2015 end-page: 3002 ident: bib4 article-title: Grain growth resistant nanocrystalline zirconia by targeting zero grain boundary energies publication-title: J. Mater. Res. – start-page: 437 year: 1999 end-page: 444 ident: bib51 article-title: Synthesis and sintering of manganese doped SnO publication-title: Advanced Science and Technology of Sintering – volume: 18 start-page: 345 year: 1998 end-page: 351 ident: bib53 article-title: Densification and coarsening of SnO publication-title: J. Eur. Ceram. Soc. – volume: 3 start-page: 397 year: 2003 end-page: 401 ident: bib39 article-title: Reduced activation energy for grain growth in nanocrystalline yttria-stabilized zirconia publication-title: Nano Lett. – volume: 118 start-page: 10131 year: 2014 end-page: 10142 ident: bib43 article-title: Water adsorption microcalorimetry model: deciphering surface energies and water chemical potentials of nanocrystalline oxides publication-title: J. Phys. Chem. C – volume: 112 year: 2012 ident: bib27 article-title: Direct measurement of grain boundary enthalpy of cubic yttria-stabilized zirconia by differential scanning calorimetry publication-title: J. Appl. Phys. – volume: 29 start-page: 1034 year: 2014 end-page: 1046 ident: bib42 article-title: Surface and grain boundary energies of tin dioxide at low and high temperatures and effects on densification behavior publication-title: J. Mater. Res. – volume: 96 start-page: 45 year: 2013 end-page: 56 ident: bib26 article-title: On the thermodynamic stability of nanocrystalline ceramics publication-title: Mater. Lett. – year: 2012 ident: bib3 article-title: Sintering: Mechanisms of Convention Nanodensification and Field Assisted Processes – year: 2017 ident: bib40 article-title: Kinetic and thermodynamic effects of manganese as a densification aid in yttria-stabilized zirconia publication-title: J. Eur. Ceram. Soc. – volume: 35 start-page: 547 year: 2009 ident: 10.1016/j.actamat.2018.03.033_bib37 article-title: Master sintering curves of a nanoscale 3Y-TZP powder compacts publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2008.01.008 – volume: 19 start-page: 4837 year: 2009 ident: 10.1016/j.actamat.2018.03.033_bib49 article-title: Dopant-concentration dependence of grain-boundary conductivity in ceria: a space-charge analysis publication-title: J. Mater. Chem. doi: 10.1039/b904583j – volume: 60 start-page: 353 year: 2015 ident: 10.1016/j.actamat.2018.03.033_bib23 article-title: Obtaining highly dense YSZ nanoceramics by pressureless, unassisted sintering publication-title: Int. Mater. Rev. doi: 10.1179/1743280415Y.0000000005 – volume: 22 start-page: 2502 year: 2010 ident: 10.1016/j.actamat.2018.03.033_bib24 article-title: Interface energy measurement of MgO and ZnO: understanding the thermodynamic stability of nanoparticles publication-title: Chem. Mater. doi: 10.1021/cm903404u – volume: 24 start-page: 222 year: 1997 ident: 10.1016/j.actamat.2018.03.033_bib30 article-title: Progress and new directions in high temperature calorimetry revisited publication-title: Phys. Chem. Miner. doi: 10.1007/s002690050035 – volume: 79 start-page: 1801 year: 1996 ident: 10.1016/j.actamat.2018.03.033_bib5 article-title: Grain boundary mobility in Y2O3: defect mechanism and dopant effects publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1996.tb07998.x – volume: 32 start-page: 4353 year: 1986 ident: 10.1016/j.actamat.2018.03.033_bib35 article-title: Reliability of methods for determination of kinetic parameters from thermogravimetry and DSC measurements publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.1986.070320406 – year: 2017 ident: 10.1016/j.actamat.2018.03.033_bib41 – volume: 72 start-page: 735 year: 1989 ident: 10.1016/j.actamat.2018.03.033_bib13 article-title: Thermodynamics of densification: II, grain growth in porous compacts and relation to densification publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1989.tb06209.x – volume: 28 start-page: 1509 year: 2008 ident: 10.1016/j.actamat.2018.03.033_bib12 article-title: Densification of powder compacts: an unfinished story publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2007.12.016 – volume: 118 start-page: 10131 year: 2014 ident: 10.1016/j.actamat.2018.03.033_bib43 article-title: Water adsorption microcalorimetry model: deciphering surface energies and water chemical potentials of nanocrystalline oxides publication-title: J. Phys. Chem. C doi: 10.1021/jp5016356 – volume: 76 start-page: 1584 year: 1993 ident: 10.1016/j.actamat.2018.03.033_bib45 article-title: Densification of large pores: II, driving potentials and kinetics publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1993.tb03943.x – volume: 37 start-page: 1047 year: 2011 ident: 10.1016/j.actamat.2018.03.033_bib38 article-title: Densification and grain growth of 8YSZ containing NiO publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2010.11.031 – volume: 72 start-page: 725 year: 1989 ident: 10.1016/j.actamat.2018.03.033_bib14 article-title: Thermodynamics of densification: I, sintering of simple particle arrays, equilibrium configurations, pore stability, and shrinkage publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1989.tb06208.x – volume: 14 start-page: 1398 year: 1999 ident: 10.1016/j.actamat.2018.03.033_bib15 article-title: Thermodynamics and densification kinetics in solid-state sintering of ceramics publication-title: J. Mater. Res. doi: 10.1557/JMR.1999.0190 – volume: 80 start-page: 2005 year: 1997 ident: 10.1016/j.actamat.2018.03.033_bib55 article-title: Effect of yttrium and lanthanum on the final-stage sintering behavior of ultrahigh-purity alumina publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1997.tb03084.x – volume: 29 start-page: 1034 year: 2014 ident: 10.1016/j.actamat.2018.03.033_bib42 article-title: Surface and grain boundary energies of tin dioxide at low and high temperatures and effects on densification behavior publication-title: J. Mater. Res. doi: 10.1557/jmr.2014.88 – volume: 50 start-page: 4610 year: 2015 ident: 10.1016/j.actamat.2018.03.033_bib47 article-title: Modeling grain growth kinetics of binary substitutional alloys by the thermodynamic extremal principle publication-title: J. Mater. Sci. doi: 10.1007/s10853-015-9010-4 – volume: 94 start-page: 1053 year: 2011 ident: 10.1016/j.actamat.2018.03.033_bib33 article-title: Two-stage master sintering curve approach to sintering kinetics of undoped and Al2O3-Doped 8 mol% yttria-stabilized cubic zirconia publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2010.04199.x – volume: 75 start-page: 716 year: 1992 ident: 10.1016/j.actamat.2018.03.033_bib21 article-title: Entrapped gas effect in the fast firing of yttria-doped zirconia publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1992.tb07865.x – year: 2017 ident: 10.1016/j.actamat.2018.03.033_bib40 article-title: Kinetic and thermodynamic effects of manganese as a densification aid in yttria-stabilized zirconia publication-title: J. Eur. Ceram. Soc. – volume: 53 start-page: 1680 year: 2018 ident: 10.1016/j.actamat.2018.03.033_bib56 article-title: Modeling the final sintering stage of doped ceramics: mutual interaction between grain growth and densification publication-title: J. Mater. Sci. doi: 10.1007/s10853-017-1617-1 – volume: 25 start-page: 4262 year: 2013 ident: 10.1016/j.actamat.2018.03.033_bib19 article-title: Design of desintering in tin dioxide nanoparticles publication-title: Chem. Mater. doi: 10.1021/cm402330u – volume: 264 start-page: 385 year: 2004 ident: 10.1016/j.actamat.2018.03.033_bib2 article-title: Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2003.12.021 – year: 2005 ident: 10.1016/j.actamat.2018.03.033_bib18 – volume: 30 start-page: 2991 year: 2015 ident: 10.1016/j.actamat.2018.03.033_bib4 article-title: Grain growth resistant nanocrystalline zirconia by targeting zero grain boundary energies publication-title: J. Mater. Res. doi: 10.1557/jmr.2015.269 – volume: 47 start-page: 332 year: 1964 ident: 10.1016/j.actamat.2018.03.033_bib32 article-title: Role of solute segregation at grain boundaries during final–stage sintering of alumina publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1964.tb12996.x – volume: 136 start-page: 224 year: 2017 ident: 10.1016/j.actamat.2018.03.033_bib8 article-title: Thermodynamics versus kinetics of grain growth control in nanocrystalline zirconia publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.07.005 – volume: 217 start-page: 194 year: 2003 ident: 10.1016/j.actamat.2018.03.033_bib46 article-title: Sintering: the role of interface energies publication-title: Appl. Surf. Sci. doi: 10.1016/S0169-4332(03)00539-7 – volume: 22 start-page: 2502 year: 2010 ident: 10.1016/j.actamat.2018.03.033_bib28 article-title: Interface energy measurement of MgO and ZnO: understanding the thermodynamic stability of nanoparticles publication-title: Chem. Mater. doi: 10.1021/cm903404u – start-page: 437 year: 1999 ident: 10.1016/j.actamat.2018.03.033_bib51 article-title: Synthesis and sintering of manganese doped SnO2 in several atmospheres – volume: 80 start-page: 2735 year: 1997 ident: 10.1016/j.actamat.2018.03.033_bib54 article-title: Translucent tin dioxide ceramics obtained by natural sintering publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1997.tb03186.x – volume: 288 start-page: 97 year: 1996 ident: 10.1016/j.actamat.2018.03.033_bib34 article-title: A new method for the derivation of activation energies from experiments performed at constant heating rate publication-title: Thermochim. Acta doi: 10.1016/S0040-6031(96)03053-5 – volume: 33 start-page: 1045 year: 2013 ident: 10.1016/j.actamat.2018.03.033_bib1 article-title: Densification and properties of bulk nanocrystalline functional ceramics with grain size below 50nm publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2012.12.004 – volume: 89 start-page: 2369 year: 2006 ident: 10.1016/j.actamat.2018.03.033_bib10 article-title: Effect of interface structure on the microstructural evolution of ceramics publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2006.01160.x – volume: 404 start-page: 168 year: 2000 ident: 10.1016/j.actamat.2018.03.033_bib11 article-title: Sintering dense nanocrystalline ceramics without final-stage grain growth publication-title: Nature doi: 10.1038/35004548 – volume: 8 start-page: 1363 year: 1977 ident: 10.1016/j.actamat.2018.03.033_bib9 article-title: The theory of grain boundary segregation in terms of surface adsorption analogues publication-title: Metall. Mater. Trans. doi: 10.1007/BF02642850 – volume: 77 start-page: 2289 year: 1994 ident: 10.1016/j.actamat.2018.03.033_bib7 article-title: Role of defect interaction in boundary mobility and cation diffusivity of CeO2 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1994.tb04596.x – volume: 91 start-page: 56 year: 2008 ident: 10.1016/j.actamat.2018.03.033_bib17 article-title: Two-step sintering of nanocrystalline ZnO compacts: effect of temperature on densification and grain growth publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2007.02029.x – volume: 79 start-page: 3211 year: 1996 ident: 10.1016/j.actamat.2018.03.033_bib36 article-title: Master sintering curve: a practical approach to sintering publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1996.tb08097.x – volume: 29 start-page: 1034 year: 2014 ident: 10.1016/j.actamat.2018.03.033_bib50 article-title: Surface and grain boundary energies of tin dioxide at low and high temperatures and effects on densification behavior publication-title: J. Mater. Res. doi: 10.1557/jmr.2014.88 – volume: 79 start-page: 1793 year: 1996 ident: 10.1016/j.actamat.2018.03.033_bib6 article-title: Grain growth in CeO2: dopant effects, defect mechanism, and solute drag publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1996.tb07997.x – volume: 104 start-page: 131 year: 2005 ident: 10.1016/j.actamat.2018.03.033_bib20 article-title: Analysis and spectroscopy of rare earth doped magnesium aluminate spinel publication-title: Adv. Appl. Ceram doi: 10.1179/174367605X20162 – volume: 99 start-page: 1105 year: 2016 ident: 10.1016/j.actamat.2018.03.033_bib16 article-title: Sintering and nanostability: the thermodynamic perspective publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.14176 – volume: 3 start-page: 397 year: 2003 ident: 10.1016/j.actamat.2018.03.033_bib39 article-title: Reduced activation energy for grain growth in nanocrystalline yttria-stabilized zirconia publication-title: Nano Lett. doi: 10.1021/nl0259380 – volume: 29 start-page: 1702 year: 1957 ident: 10.1016/j.actamat.2018.03.033_bib31 article-title: Reaction kinetics in differential thermal analysis publication-title: Anal. Chem. doi: 10.1021/ac60131a045 – volume: 112 year: 2012 ident: 10.1016/j.actamat.2018.03.033_bib27 article-title: Direct measurement of grain boundary enthalpy of cubic yttria-stabilized zirconia by differential scanning calorimetry publication-title: J. Appl. Phys. doi: 10.1063/1.4761992 – year: 2012 ident: 10.1016/j.actamat.2018.03.033_bib3 – volume: 37 start-page: 4051 year: 2017 ident: 10.1016/j.actamat.2018.03.033_bib25 article-title: Direct measurement of interface energies of magnesium aluminate spinel and a brief sintering analysis publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2017.05.035 – volume: 22 start-page: 2937 year: 2010 ident: 10.1016/j.actamat.2018.03.033_bib44 article-title: Calorimetric measurement of surface and interface enthalpies of yttria-stabilized zirconia (YSZ) publication-title: Chem. Mater. doi: 10.1021/cm100255u – volume: 15 start-page: 935 year: 1995 ident: 10.1016/j.actamat.2018.03.033_bib22 article-title: Fast firing of alumina publication-title: J. Eur. Ceram. Soc. doi: 10.1016/0955-2219(95)00071-2 – volume: 29 start-page: 1034 year: 2014 ident: 10.1016/j.actamat.2018.03.033_bib52 article-title: Surface and grain boundary energies of tin dioxide at low and high temperatures and effects on densification behavior publication-title: J. Mater. Res. doi: 10.1557/jmr.2014.88 – volume: 18 start-page: 345 year: 1998 ident: 10.1016/j.actamat.2018.03.033_bib53 article-title: Densification and coarsening of SnO2-based materials containing manganese oxide publication-title: J. Eur. Ceram. Soc. doi: 10.1016/S0955-2219(97)00127-1 – volume: 2 start-page: 89 year: 1977 ident: 10.1016/j.actamat.2018.03.033_bib29 article-title: Progress and new directions in high temperature calorimetry publication-title: Phys. Chem. Miner. doi: 10.1007/BF00307526 – volume: 96 start-page: 45 year: 2013 ident: 10.1016/j.actamat.2018.03.033_bib26 article-title: On the thermodynamic stability of nanocrystalline ceramics publication-title: Mater. Lett. doi: 10.1016/j.matlet.2013.01.007 – volume: 33 start-page: 251 year: 2017 ident: 10.1016/j.actamat.2018.03.033_bib48 article-title: Effects of concurrent grain boundary and surface segregation on the final stage of sintering: the case of Lanthanum doped yttria-stabilized zirconia publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2017.01.023 |
| SSID | ssj0012740 |
| Score | 2.4508693 |
| Snippet | The effect of dopants (or additives) on sintering is typically addressed from a mechanistic and diffusivity perspective by focusing on how dopants affect those... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 394 |
| SubjectTerms | Calorimetry Ceramics Grain growth Oxides Sintering |
| Title | Kinetics and thermodynamics of densification and grain growth: Insights from lanthanum doped zirconia |
| URI | https://dx.doi.org/10.1016/j.actamat.2018.03.033 |
| Volume | 150 |
| WOSCitedRecordID | wos000433272400036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2453 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012740 issn: 1359-6454 databaseCode: AIEXJ dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKxgM8IK5i3OQH3qaUNM7F5q1CQxtME5qG1LfIV5qpJFWbbtN-PceXpC1Mgz0gVVYV2U6c8-X4s30uCL0HwibSUZpEPJc8gvWGiYSRcRSLXPA4j2HKdI7Cx8XJCZ1M2LfBYNX5wlzMirqmV1ds_l9FDddA2NZ19g7i7juFC_AfhA4liB3KfxL8V-CNfexlS-9-NsqnnXdWG8parJuwU-fq_LBZIqBsLtup3SA4ggqwYl9615MZvPopt_byqpkDO72uFrCErvgmqx3Llu8D9XXDq3pFf-wzYq-qni0HyzJA2rRq1zZCfNl6d5tTeK6FavYPh6fDzf2IEbVH6d4jM6hQkrHIxgnb0rE-umzQksTnNQ4Tbupcrv_U5X5b4Rxw1XIYgjXDoy4grY-csR07-7c5rbc07IzYzsvQTWm7KWMCP3IP7SZFxkAZ7o6PDiZf-uMnWKp79_IwlLXr14cbn-dmUrNBVM4eo0dhhYHHHhlP0EDXT9HDjbiTz5DuMIJB_ngbI7gxeAsjro7DCPYY-Yg7hGCLENwjBDuE4A4hz9H3zwdnnw6jkG8jkiTN20hToUWsYpMyopKEmSKhxp6z6lQV0hBDdKFJlhPBEqqF4llGlYoJLzRVMqfkBdqpm1q_RFgyzbUcUT3SwqY5EzwXysD0kilmTG72UNq9sFKGYPQ2J8qsvFVge2jYN5v7aCx_a0A7aZSBUnqqWALKbm_66q73eo0erL-HN2inXaz0W3RfXrTVcvEuQOwX5heetw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetics+and+thermodynamics+of+densification+and+grain+growth%3A+Insights+from+lanthanum+doped+zirconia&rft.jtitle=Acta+materialia&rft.au=Li%2C+Hui&rft.au=Dey%2C+Sanchita&rft.au=Castro%2C+Ricardo+H.R.&rft.date=2018-05-15&rft.issn=1359-6454&rft.volume=150&rft.spage=394&rft.epage=402&rft_id=info:doi/10.1016%2Fj.actamat.2018.03.033&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_actamat_2018_03_033 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon |