A hybrid optimal power flow model for transmission and distribution networks

•Proposing an efficient and low-computational burden model for the OPF problem.•A hybrid method based on the DCOPF concept and branch flow OPF model.•Developing an OPF model for both radial and meshed networks. This paper presents a fast and accurate optimization technique for optimal power flow (OP...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Electric power systems research Ročník 245; s. 111638
Hlavní autori: Esmaeel Nezhad, Ali, Nardelli, Pedro H.J., Javadi, Mohammad Sadegh, Jowkar, Saeid, Tavakkoli Sabour, Toktam, Ghanavati, Farideh
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.08.2025
Predmet:
ISSN:0378-7796
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Proposing an efficient and low-computational burden model for the OPF problem.•A hybrid method based on the DCOPF concept and branch flow OPF model.•Developing an OPF model for both radial and meshed networks. This paper presents a fast and accurate optimization technique for optimal power flow (OPF) that can be conveniently applied to transmission and distribution systems. The method is based on the branch flow and DC optimal power flow (DCOPF) models. As the branch flow model is independent of the bus voltage angle, the model needs further development to enable use in meshed transmission systems. Thus, this paper adds the bus voltage angle constraint as a key constraint to the branch flow model so that the voltage angle can also be used in the power flow model in addition to the voltage magnitude control. The problem is based on second-order programming and modeled as a quadratically-constrained programming (QCP) problem solved using the CPLEX solver in GAMS. The functionality of the proposed model is tested utilizing four standard distribution systems, three transmission systems, a combined transmission-distribution network. The studied distribution systems include the 33-bus, 69-bus, 118-bus distribution (118-D) test systems, and 730-bus distribution system (730-D). Additionally, the studied transmission systems include 9-bus, 30-bus, and 118-bus transmission (118-T) test systems. The combined transmission-distribution system included the 9-bus transmission system with three connected distribution systems. The simulation results obtained from the developed technique are compared to those obtained from a conventional optimal flow model. The power losses and the absolute error of the solution are used as the two metrics to compare the methods’ performance for distribution networks. The absolute error of the solution derived from the proposed hybrid OPF compared to MATPOWER for the 33-bus system is 0.00198 %. For the 69-bus system, the error is 0.00044 %. In addition, for the 118-D and 730-D systems, the absolute errors are 0.0026 %, and 0.05 %, respectively. For the transmission network, the operating costs and the solution absolute error are the two metrics used for comparing the proposed hybrid OPF model and MATPOWER. The results indicate the superior performance of the hybrid OPF model to the Newton-Raphson method in MATPOWER in terms of operating cost. In this regard, cost reductions relative to values given by MATPOWER are 0.0005 %, 0.838 %, and 0.015 %, for the 9-bus, 30-bus, and 118-T systems, respectively. The simulation studies demonstrate the performance of the presented branch flow-based model in solving the OPF problem with accurate results.
AbstractList •Proposing an efficient and low-computational burden model for the OPF problem.•A hybrid method based on the DCOPF concept and branch flow OPF model.•Developing an OPF model for both radial and meshed networks. This paper presents a fast and accurate optimization technique for optimal power flow (OPF) that can be conveniently applied to transmission and distribution systems. The method is based on the branch flow and DC optimal power flow (DCOPF) models. As the branch flow model is independent of the bus voltage angle, the model needs further development to enable use in meshed transmission systems. Thus, this paper adds the bus voltage angle constraint as a key constraint to the branch flow model so that the voltage angle can also be used in the power flow model in addition to the voltage magnitude control. The problem is based on second-order programming and modeled as a quadratically-constrained programming (QCP) problem solved using the CPLEX solver in GAMS. The functionality of the proposed model is tested utilizing four standard distribution systems, three transmission systems, a combined transmission-distribution network. The studied distribution systems include the 33-bus, 69-bus, 118-bus distribution (118-D) test systems, and 730-bus distribution system (730-D). Additionally, the studied transmission systems include 9-bus, 30-bus, and 118-bus transmission (118-T) test systems. The combined transmission-distribution system included the 9-bus transmission system with three connected distribution systems. The simulation results obtained from the developed technique are compared to those obtained from a conventional optimal flow model. The power losses and the absolute error of the solution are used as the two metrics to compare the methods’ performance for distribution networks. The absolute error of the solution derived from the proposed hybrid OPF compared to MATPOWER for the 33-bus system is 0.00198 %. For the 69-bus system, the error is 0.00044 %. In addition, for the 118-D and 730-D systems, the absolute errors are 0.0026 %, and 0.05 %, respectively. For the transmission network, the operating costs and the solution absolute error are the two metrics used for comparing the proposed hybrid OPF model and MATPOWER. The results indicate the superior performance of the hybrid OPF model to the Newton-Raphson method in MATPOWER in terms of operating cost. In this regard, cost reductions relative to values given by MATPOWER are 0.0005 %, 0.838 %, and 0.015 %, for the 9-bus, 30-bus, and 118-T systems, respectively. The simulation studies demonstrate the performance of the presented branch flow-based model in solving the OPF problem with accurate results.
ArticleNumber 111638
Author Tavakkoli Sabour, Toktam
Esmaeel Nezhad, Ali
Ghanavati, Farideh
Javadi, Mohammad Sadegh
Nardelli, Pedro H.J.
Jowkar, Saeid
Author_xml – sequence: 1
  givenname: Ali
  orcidid: 0000-0002-6522-4043
  surname: Esmaeel Nezhad
  fullname: Esmaeel Nezhad, Ali
  email: ali.esmaeelnezhad@lut.fi
  organization: Department of Electrical Engineering, School of Energy Systems, LUT University, 53850 Lappeenranta, Finland
– sequence: 2
  givenname: Pedro H.J.
  orcidid: 0000-0002-7398-1802
  surname: Nardelli
  fullname: Nardelli, Pedro H.J.
  organization: Department of Electrical Engineering, School of Energy Systems, LUT University, 53850 Lappeenranta, Finland
– sequence: 3
  givenname: Mohammad Sadegh
  surname: Javadi
  fullname: Javadi, Mohammad Sadegh
  organization: Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal
– sequence: 4
  givenname: Saeid
  surname: Jowkar
  fullname: Jowkar, Saeid
  organization: Department of Electrical, Electronic, and Information Engineering, University of Bologna, Bologna 40126, Italy
– sequence: 5
  givenname: Toktam
  surname: Tavakkoli Sabour
  fullname: Tavakkoli Sabour, Toktam
  organization: Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA
– sequence: 6
  givenname: Farideh
  surname: Ghanavati
  fullname: Ghanavati, Farideh
  organization: Department of Industrial Engineering and Management, University of Aveiro, 3810-193 Aveiro, Portugal
BookMark eNp9kL1qwzAUhTWk0CTtC3TSC9iVLFtSoEsI_YNAl3YW-rmmSh3LSGpN3r426dQh04UL3-Gcb4UWfegBoTtKSkoovz-UMKRYVqRqSkopZ3KBloQJWQix4ddoldKBEMI3olmi_RZ_nkz0Doch-6Pu8BBGiLjtwoiPwUGH2xBxjrpPR5-SDz3WvcPOpxy9-c7zo4c8hviVbtBVq7sEt393jT6eHt93L8X-7fl1t90XltU8FyCMaRqhHXMOLG10CxtRSyNqarjmWlQGZO2oJrpinLC60SCBM5ATYGrH1qg659oYUorQqiFO3eNJUaJmB-qgZgdqdqDODiZI_oOsz3ruP43z3WX04YzCNOrHQ1TJeugtOB_BZuWCv4T_Ak5KfkQ
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3582189
crossref_primary_10_1016_j_gloei_2025_05_006
Cites_doi 10.1109/TPWRS.2020.3002189
10.1080/0952813X.2013.861876
10.1109/TPWRS.2018.2874173
10.1109/TPWRS.2019.2897835
10.1007/s10107-020-01516-y
10.1016/j.rser.2016.12.102
10.1109/TPWRS.2011.2160974
10.1109/TPWRS.2009.2021235
10.1109/TPWRS.2013.2255317
10.1109/PESGM.2017.8274004
10.1109/TPWRS.2015.2504870
10.1109/TPWRS.2015.2497160
10.1016/j.scs.2024.105697
10.1016/j.epsr.2016.02.008
10.1109/TPWRS.2021.3070540
10.35833/MPCE.2021.000220
10.1016/j.ijepes.2017.05.001
10.1109/TPWRS.2021.3075925
10.1080/15325008.2016.1147104
10.1109/TPWRS.2018.2848965
10.1007/978-3-319-23219-5_4
10.1109/TPWRS.2019.2918363
10.1109/TPWRS.2017.2718551
10.1016/j.ijepes.2020.106455
10.1016/j.rser.2020.110098
10.1109/TAC.2014.2357112
10.1109/TPWRS.2002.800909
10.1109/TAC.2017.2722100
10.1109/PESGM41954.2020.9281986
10.1109/TPWRS.2014.2322051
10.1016/j.ijepes.2023.109630
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.epsr.2025.111638
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_epsr_2025_111638
S0378779625002305
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADHUB
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
E.L
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSH
SSR
SST
SSW
SSZ
T5K
VH1
WUQ
ZMT
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c346t-e7bb557ad3ddec15afe9748b741b6a6a72be84d1a0a2360345ae8e63e83ddb4d3
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001459573100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7796
IngestDate Sat Nov 29 06:52:04 EST 2025
Tue Nov 18 21:07:07 EST 2025
Sat Apr 12 15:21:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Quadratically-constrained programming
Distribution systems
Branch flow
Optimal power flow
Convex optimization
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c346t-e7bb557ad3ddec15afe9748b741b6a6a72be84d1a0a2360345ae8e63e83ddb4d3
ORCID 0000-0002-6522-4043
0000-0002-7398-1802
OpenAccessLink https://dx.doi.org/10.1016/j.epsr.2025.111638
ParticipantIDs crossref_primary_10_1016_j_epsr_2025_111638
crossref_citationtrail_10_1016_j_epsr_2025_111638
elsevier_sciencedirect_doi_10_1016_j_epsr_2025_111638
PublicationCentury 2000
PublicationDate August 2025
2025-08-00
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: August 2025
PublicationDecade 2020
PublicationTitle Electric power systems research
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Huang, Wu, Wang, Zhao (bib0033) 2017; 32
Farivar, Low (bib0022) 2013; 28
Fan, Yang, Xie, Yu (bib0014) 2021; 36
Madani, Sojoudi, Lavaei (bib0019) 2015; 30
Shchetinin, De Rubira, Hug (bib0030) 2019; 34
Zhang, Wu, Wen, Lin, Fang, Chen (bib0006) 2021; 135
Carpentier (bib0005) 1962; 3
Azami, Javadi, Hematipour (bib0010) 2011; 9
Overbye, Cheng, Sun (bib0016) 2004; 37
Nick, Cherkaoui, Le Boudec, Paolone (bib0027) 2018; 63
Javadi, Esmaeel Nezhad, Siano, Shafie-khah, Catalão (bib0044) 2017; 92
Lavaei, Low (bib0026) 2012; 27
Zhang, He (bib0025) 2022
Estahbanati (bib0043) 2014; 26
A. Mohamed, B. Venkatesh, Line-wise optimal power flow using successive linear optimization technique, (2020) 1–1.
Muhlpfordt, Roald, Hagenmeyer, Faulwasser, Misra (bib0035) 2019; 34
Abedi, Hesamzadeh, Romerio (bib0038) 2021; 125
Chen, Atamturk, Oren (bib0028) 2016; 31
Ergun, Dave, Van Hertem, Geth (bib0037) 2019; 34
C. Coffrin, H. Hijazi, P. Van Hentenryck, The QC relaxation: a theoretical and computational study on optimal power flow, (2018) 1–1.
Bose, Low, Teeraratkul, Hassibi (bib0018) 2015; 60
Ou, Xue, Zhang (bib0009) 2016; 44
Esmaeel Nezhad, Jowkar, Tavakkoli Sabour, Rahimi, Ghanavati, Esmaeilnezhad (bib0002) 2024; 8
Stott, Jardim, Alsaç (bib0012) 2009; 24
Vemprala, Khan, Paudyal (bib0041) 2019
Lin, Zhang, Wang, Shi, Bian (bib0021) 2022; 10
Motto, Galiana, Conejo, Arroyo (bib0013) 2002; 17
Javadi, Gouveia, Carvalho, Silva (bib0039) 2021
Tu, Wachter, Wei (bib0034) 2021; 36
Kim, Baker, Kasprzyk (bib0015) 2021; 2020
Capitanescu (bib0008) 2016; 136
.
Javadi (bib0042) 2024; 114
C. Coffrin, H.L. Hijazi, P. Van Hentenryck, Strengthening convex relaxations with bound tightening for power network optimization, Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9255 (2015) 39–57.
Yang, Zhong, Bose, Zheng, Xia, Kang (bib0017) 2018; 33
Abdi, Beigvand, La Scala (bib0001) 2017; 71
Javadi, Javadinasab, Shishebori, Basri, Azami (bib0040) 2011; 4
Lotfi, Joao Catalao, Javadi, Nezhad, Shafie-Khah (bib0004) 2019
Esmaeel Nezhad, Mobtahej, Javadi, Nardelli, Sahoo (bib0003) 2024; 155
Zhang, Lavaei (bib0020) 2021; 188
Bingane, Anjos, Digabel (bib0032) 2018; 33
Mohammadi, Noorollahi, Mohammadi-ivatloo, Yousefi, Jalilinasrabady (bib0007) 2017; 1
Chavez-Lugo, Fuerte-Esquivel, Canizares, Gutierrez-Martinez (bib0011) 2016; 31
Capitanescu (bib0024) 2018
Lee, Turitsyn, Molzahn, Roald (bib0036) 2021; 36
Capitanescu (10.1016/j.epsr.2025.111638_bib0024) 2018
10.1016/j.epsr.2025.111638_bib0031
Ergun (10.1016/j.epsr.2025.111638_bib0037) 2019; 34
Motto (10.1016/j.epsr.2025.111638_bib0013) 2002; 17
Esmaeel Nezhad (10.1016/j.epsr.2025.111638_bib0002) 2024; 8
Zhang (10.1016/j.epsr.2025.111638_bib0020) 2021; 188
Madani (10.1016/j.epsr.2025.111638_bib0019) 2015; 30
Lotfi (10.1016/j.epsr.2025.111638_bib0004) 2019
Overbye (10.1016/j.epsr.2025.111638_bib0016) 2004; 37
Tu (10.1016/j.epsr.2025.111638_bib0034) 2021; 36
Chavez-Lugo (10.1016/j.epsr.2025.111638_bib0011) 2016; 31
Esmaeel Nezhad (10.1016/j.epsr.2025.111638_bib0003) 2024; 155
Muhlpfordt (10.1016/j.epsr.2025.111638_bib0035) 2019; 34
Abedi (10.1016/j.epsr.2025.111638_bib0038) 2021; 125
Farivar (10.1016/j.epsr.2025.111638_bib0022) 2013; 28
Stott (10.1016/j.epsr.2025.111638_bib0012) 2009; 24
Bingane (10.1016/j.epsr.2025.111638_bib0032) 2018; 33
Abdi (10.1016/j.epsr.2025.111638_bib0001) 2017; 71
Chen (10.1016/j.epsr.2025.111638_bib0028) 2016; 31
Nick (10.1016/j.epsr.2025.111638_bib0027) 2018; 63
Javadi (10.1016/j.epsr.2025.111638_bib0039) 2021
Javadi (10.1016/j.epsr.2025.111638_bib0042) 2024; 114
Fan (10.1016/j.epsr.2025.111638_bib0014) 2021; 36
Lavaei (10.1016/j.epsr.2025.111638_bib0026) 2012; 27
Vemprala (10.1016/j.epsr.2025.111638_bib0041) 2019
Carpentier (10.1016/j.epsr.2025.111638_bib0005) 1962; 3
Huang (10.1016/j.epsr.2025.111638_bib0033) 2017; 32
Lin (10.1016/j.epsr.2025.111638_bib0021) 2022; 10
Yang (10.1016/j.epsr.2025.111638_bib0017) 2018; 33
Bose (10.1016/j.epsr.2025.111638_bib0018) 2015; 60
Mohammadi (10.1016/j.epsr.2025.111638_bib0007) 2017; 1
Estahbanati (10.1016/j.epsr.2025.111638_bib0043) 2014; 26
Lee (10.1016/j.epsr.2025.111638_bib0036) 2021; 36
Zhang (10.1016/j.epsr.2025.111638_bib0006) 2021; 135
Capitanescu (10.1016/j.epsr.2025.111638_bib0008) 2016; 136
Ou (10.1016/j.epsr.2025.111638_bib0009) 2016; 44
Javadi (10.1016/j.epsr.2025.111638_bib0044) 2017; 92
10.1016/j.epsr.2025.111638_bib0029
Kim (10.1016/j.epsr.2025.111638_bib0015) 2021; 2020
Shchetinin (10.1016/j.epsr.2025.111638_bib0030) 2019; 34
Azami (10.1016/j.epsr.2025.111638_bib0010) 2011; 9
10.1016/j.epsr.2025.111638_bib0023
Zhang (10.1016/j.epsr.2025.111638_bib0025) 2022
Javadi (10.1016/j.epsr.2025.111638_bib0040) 2011; 4
References_xml – volume: 71
  start-page: 742
  year: 2017
  end-page: 766
  ident: bib0001
  article-title: A review of optimal power flow studies applied to smart grids and microgrids
  publication-title: Renew. Sustain. Energy Rev.
– volume: 3
  start-page: 431
  year: 1962
  end-page: 447
  ident: bib0005
  article-title: Contribution á l’étude du dispatching économique
  publication-title: Bull. de La Société Francaise Des Électriciens
– volume: 31
  start-page: 3358
  year: 2016
  end-page: 3368
  ident: bib0011
  article-title: Practical security boundary-constrained DC optimal power flow for electricity markets
  publication-title: IEEE Trans. Power Syst.
– reference: A. Mohamed, B. Venkatesh, Line-wise optimal power flow using successive linear optimization technique, (2020) 1–1.
– volume: 2020
  year: 2021
  ident: bib0015
  article-title: Operational revenue insufficiency in highly renewable DC and AC-based LMP markets, 2020 52nd North American power symposium
  publication-title: NAPS
– volume: 10
  start-page: 1614
  year: 2022
  end-page: 1624
  ident: bib0021
  article-title: Voltage stability constrained optimal power flow for unbalanced distribution system based on semidefinite programming
  publication-title: J. Mod. Power Syst. Clean Energy
– volume: 92
  year: 2017
  ident: bib0044
  article-title: Shunt capacitor placement in radial distribution networks considering switching transients decision making approach
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 17
  start-page: 646
  year: 2002
  end-page: 653
  ident: bib0013
  article-title: Network-constrained multiperiod auction for a pool-based electricity market
  publication-title: IEEE Trans. Power Syst.
– volume: 32
  start-page: 1359
  year: 2017
  end-page: 1368
  ident: bib0033
  article-title: A sufficient condition on convex relaxation of AC optimal power flow in distribution networks
  publication-title: IEEE Trans. Power Syst.
– volume: 24
  start-page: 1290
  year: 2009
  end-page: 1300
  ident: bib0012
  article-title: DC power flow revisited
  publication-title: IEEE Trans. Power Syst.
– volume: 63
  start-page: 682
  year: 2018
  end-page: 697
  ident: bib0027
  article-title: An exact convex formulation of the optimal power flow in radial distribution networks including transverse components
  publication-title: IEEe Trans. Automat. Contr.
– volume: 33
  start-page: 1734
  year: 2018
  end-page: 1745
  ident: bib0017
  article-title: A linearized OPF model with reactive power and voltage magnitude: a pathway to improve the MW-only DC OPF
  publication-title: IEEE Trans. Power Syst.
– volume: 34
  start-page: 2980
  year: 2019
  end-page: 2990
  ident: bib0037
  article-title: Optimal power flow for AC-DC grids: formulation, convex relaxation, linear approximation, and implementation
  publication-title: IEEE Trans. Power Syst.
– volume: 4
  year: 2011
  ident: bib0040
  article-title: New approach for LMP calculation in large scale power system based on network incident matrix
  publication-title: Int. Rev. Model. Simul.
– volume: 135
  year: 2021
  ident: bib0006
  article-title: Optimal operation of integrated electricity and heat system: a review of modeling and solution methods
  publication-title: Renew. Sustain. Energy Rev.
– volume: 36
  start-page: 4953
  year: 2021
  end-page: 4966
  ident: bib0036
  article-title: Robust AC optimal power flow with robust convex restriction
  publication-title: IEEE Trans. Power Syst.
– volume: 33
  start-page: 7181
  year: 2018
  end-page: 7188
  ident: bib0032
  article-title: Tight-and-cheap conic relaxation for the AC optimal power flow problem
  publication-title: IEEE Trans. Power Syst.
– start-page: 499
  year: 2019
  end-page: 504
  ident: bib0041
  article-title: Open-source poly-phase distribution system power flow analysis tool (DxFlow)
  publication-title: IEEE International Conference on Electro Information Technology 2019-May
– reference: C. Coffrin, H.L. Hijazi, P. Van Hentenryck, Strengthening convex relaxations with bound tightening for power network optimization, Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9255 (2015) 39–57.
– volume: 188
  start-page: 351
  year: 2021
  end-page: 393
  ident: bib0020
  article-title: Sparse semidefinite programs with guaranteed near-linear time complexity via dualized clique tree conversion
  publication-title: Math. Program.
– volume: 36
  start-page: 303
  year: 2021
  end-page: 312
  ident: bib0034
  article-title: A two-stage decomposition approach for AC optimal power flow
  publication-title: IEEE Trans. Power Syst.
– volume: 34
  start-page: 1182
  year: 2019
  end-page: 1192
  ident: bib0030
  article-title: On the construction of linear approximations of line flow constraints for AC optimal power flow
  publication-title: IEEE Trans. Power Syst.
– volume: 60
  start-page: 729
  year: 2015
  end-page: 742
  ident: bib0018
  article-title: Equivalent relaxations of optimal power flow
  publication-title: IEEe Trans. Automat. Contr.
– volume: 125
  year: 2021
  ident: bib0038
  article-title: An ACOPF-based bilevel optimization approach for vulnerability assessment of a power system
  publication-title: Int. J. Electr. Power Energy Syst.
– reference: C. Coffrin, H. Hijazi, P. Van Hentenryck, The QC relaxation: a theoretical and computational study on optimal power flow, (2018) 1–1.
– volume: 27
  start-page: 92
  year: 2012
  end-page: 107
  ident: bib0026
  article-title: Zero duality gap in optimal power flow problem
  publication-title: IEEE Trans. Power Syst.
– year: 2022
  ident: bib0025
  article-title: Fast solving method for two-stage multi-period robust optimization of active and reactive power coordination in active distribution networks
  publication-title: IEEe Access.
– volume: 36
  start-page: 5746
  year: 2021
  end-page: 5755
  ident: bib0014
  article-title: General steady-State modeling and linearization of power electronic devices in AC-DC hybrid grid
  publication-title: IEEE Trans. Power Syst.
– start-page: 2019
  year: 2019
  ident: bib0004
  article-title: Demand response program implementation for day-ahead power system operation
  publication-title: 2019 IEEE Milan PowerTech, PowerTech
– reference: .
– volume: 26
  start-page: 283
  year: 2014
  end-page: 296
  ident: bib0043
  article-title: Hybrid probabilistic-harmony search algorithm methodology in generation scheduling problem
  publication-title: J. Exp. Theor. Artif. Intell.
– volume: 37
  start-page: 725
  year: 2004
  end-page: 734
  ident: bib0016
  article-title: A comparison of the AC and DC power flow models for LMP calculations
  publication-title: Proceedings of the Hawaii International Conference on System Sciences
– volume: 136
  start-page: 57
  year: 2016
  end-page: 68
  ident: bib0008
  article-title: Critical review of recent advances and further developments needed in AC optimal power flow
  publication-title: Electr. Power Syst. Res.
– volume: 34
  start-page: 4806
  year: 2019
  end-page: 4816
  ident: bib0035
  article-title: Chance-constrained AC optimal power flow: a polynomial chaos approach
  publication-title: IEEE Trans. Power Syst.
– volume: 8
  year: 2024
  ident: bib0002
  article-title: A short-term wind-hydrothermal operational framework in the presence of pumped-hydro storage, E-Prime - advances in electrical engineering
  publication-title: Electronics and Energy
– volume: 1
  start-page: 1
  year: 2017
  end-page: 17
  ident: bib0007
  article-title: Optimal scheduling of energy hubs in the presence of uncertainty-a review
  publication-title: J. Energy Manag. Technol.
– start-page: 149
  year: 2018
  end-page: 176
  ident: bib0024
  article-title: Challenges ahead risk-based AC optimal power flow under uncertainty for smart sustainable power systems
  publication-title: Dynamic Vulnerability Assessment and Intelligent Control for Sustainable Power Systems
– volume: 30
  start-page: 199
  year: 2015
  end-page: 211
  ident: bib0019
  article-title: Convex relaxation for optimal power flow problem: mesh networks
  publication-title: IEEE Trans. Power Syst.
– volume: 44
  start-page: 955
  year: 2016
  end-page: 965
  ident: bib0009
  article-title: Iterative DC optimal power flow considering transmission network loss
  publication-title: Electr. Power Compon. Syst.
– volume: 28
  start-page: 2554
  year: 2013
  end-page: 2564
  ident: bib0022
  article-title: Branch flow model: relaxations and convexification-part i
  publication-title: IEEE Trans. Power Syst.
– volume: 31
  start-page: 3729
  year: 2016
  end-page: 3736
  ident: bib0028
  article-title: Bound tightening for the alternating current optimal power flow problem
  publication-title: IEEE Trans. Power Syst.
– start-page: 1
  year: 2021
  end-page: 6
  ident: bib0039
  article-title: Optimal power flow solution for distribution networks using quadratically constrained programming and McCormick relaxation technique
  publication-title: 2021 IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC /I&CPS Europe)
– volume: 114
  year: 2024
  ident: bib0042
  article-title: Unlocking responsive flexibility within local energy communities in the presence of grid-scale batteries
  publication-title: Sustain. Cities. Soc.
– volume: 155
  year: 2024
  ident: bib0003
  article-title: Optimal operation of lithium-ion batteries in microgrids using a semidefinite thermal model
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 9
  start-page: 8
  year: 2011
  end-page: 13
  ident: bib0010
  article-title: Economic load dispatch and DC-optimal power flow problem- PSO versus LR
  publication-title: Int. J. Multidiscip. Sci. Eng.
– volume: 36
  start-page: 303
  year: 2021
  ident: 10.1016/j.epsr.2025.111638_bib0034
  article-title: A two-stage decomposition approach for AC optimal power flow
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2020.3002189
– start-page: 1
  year: 2021
  ident: 10.1016/j.epsr.2025.111638_bib0039
  article-title: Optimal power flow solution for distribution networks using quadratically constrained programming and McCormick relaxation technique
– volume: 26
  start-page: 283
  year: 2014
  ident: 10.1016/j.epsr.2025.111638_bib0043
  article-title: Hybrid probabilistic-harmony search algorithm methodology in generation scheduling problem
  publication-title: J. Exp. Theor. Artif. Intell.
  doi: 10.1080/0952813X.2013.861876
– volume: 34
  start-page: 1182
  year: 2019
  ident: 10.1016/j.epsr.2025.111638_bib0030
  article-title: On the construction of linear approximations of line flow constraints for AC optimal power flow
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2018.2874173
– volume: 34
  start-page: 2980
  year: 2019
  ident: 10.1016/j.epsr.2025.111638_bib0037
  article-title: Optimal power flow for AC-DC grids: formulation, convex relaxation, linear approximation, and implementation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2019.2897835
– volume: 188
  start-page: 351
  year: 2021
  ident: 10.1016/j.epsr.2025.111638_bib0020
  article-title: Sparse semidefinite programs with guaranteed near-linear time complexity via dualized clique tree conversion
  publication-title: Math. Program.
  doi: 10.1007/s10107-020-01516-y
– volume: 71
  start-page: 742
  year: 2017
  ident: 10.1016/j.epsr.2025.111638_bib0001
  article-title: A review of optimal power flow studies applied to smart grids and microgrids
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.12.102
– volume: 9
  start-page: 8
  year: 2011
  ident: 10.1016/j.epsr.2025.111638_bib0010
  article-title: Economic load dispatch and DC-optimal power flow problem- PSO versus LR
  publication-title: Int. J. Multidiscip. Sci. Eng.
– volume: 27
  start-page: 92
  year: 2012
  ident: 10.1016/j.epsr.2025.111638_bib0026
  article-title: Zero duality gap in optimal power flow problem
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2011.2160974
– volume: 24
  start-page: 1290
  year: 2009
  ident: 10.1016/j.epsr.2025.111638_bib0012
  article-title: DC power flow revisited
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2009.2021235
– volume: 28
  start-page: 2554
  year: 2013
  ident: 10.1016/j.epsr.2025.111638_bib0022
  article-title: Branch flow model: relaxations and convexification-part i
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2013.2255317
– volume: 2020
  year: 2021
  ident: 10.1016/j.epsr.2025.111638_bib0015
  article-title: Operational revenue insufficiency in highly renewable DC and AC-based LMP markets, 2020 52nd North American power symposium
  publication-title: NAPS
– ident: 10.1016/j.epsr.2025.111638_bib0023
  doi: 10.1109/PESGM.2017.8274004
– volume: 31
  start-page: 3358
  year: 2016
  ident: 10.1016/j.epsr.2025.111638_bib0011
  article-title: Practical security boundary-constrained DC optimal power flow for electricity markets
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2015.2504870
– start-page: 149
  year: 2018
  ident: 10.1016/j.epsr.2025.111638_bib0024
  article-title: Challenges ahead risk-based AC optimal power flow under uncertainty for smart sustainable power systems
– volume: 31
  start-page: 3729
  year: 2016
  ident: 10.1016/j.epsr.2025.111638_bib0028
  article-title: Bound tightening for the alternating current optimal power flow problem
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2015.2497160
– volume: 32
  start-page: 1359
  year: 2017
  ident: 10.1016/j.epsr.2025.111638_bib0033
  article-title: A sufficient condition on convex relaxation of AC optimal power flow in distribution networks
  publication-title: IEEE Trans. Power Syst.
– volume: 114
  year: 2024
  ident: 10.1016/j.epsr.2025.111638_bib0042
  article-title: Unlocking responsive flexibility within local energy communities in the presence of grid-scale batteries
  publication-title: Sustain. Cities. Soc.
  doi: 10.1016/j.scs.2024.105697
– volume: 136
  start-page: 57
  year: 2016
  ident: 10.1016/j.epsr.2025.111638_bib0008
  article-title: Critical review of recent advances and further developments needed in AC optimal power flow
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2016.02.008
– volume: 36
  start-page: 5746
  year: 2021
  ident: 10.1016/j.epsr.2025.111638_bib0014
  article-title: General steady-State modeling and linearization of power electronic devices in AC-DC hybrid grid
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2021.3070540
– volume: 10
  start-page: 1614
  year: 2022
  ident: 10.1016/j.epsr.2025.111638_bib0021
  article-title: Voltage stability constrained optimal power flow for unbalanced distribution system based on semidefinite programming
  publication-title: J. Mod. Power Syst. Clean Energy
  doi: 10.35833/MPCE.2021.000220
– volume: 92
  year: 2017
  ident: 10.1016/j.epsr.2025.111638_bib0044
  article-title: Shunt capacitor placement in radial distribution networks considering switching transients decision making approach
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2017.05.001
– volume: 3
  start-page: 431
  year: 1962
  ident: 10.1016/j.epsr.2025.111638_bib0005
  article-title: Contribution á l’étude du dispatching économique
  publication-title: Bull. de La Société Francaise Des Électriciens
– volume: 4
  year: 2011
  ident: 10.1016/j.epsr.2025.111638_bib0040
  article-title: New approach for LMP calculation in large scale power system based on network incident matrix
  publication-title: Int. Rev. Model. Simul.
– volume: 36
  start-page: 4953
  year: 2021
  ident: 10.1016/j.epsr.2025.111638_bib0036
  article-title: Robust AC optimal power flow with robust convex restriction
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2021.3075925
– volume: 44
  start-page: 955
  year: 2016
  ident: 10.1016/j.epsr.2025.111638_bib0009
  article-title: Iterative DC optimal power flow considering transmission network loss
  publication-title: Electr. Power Compon. Syst.
  doi: 10.1080/15325008.2016.1147104
– volume: 33
  start-page: 7181
  year: 2018
  ident: 10.1016/j.epsr.2025.111638_bib0032
  article-title: Tight-and-cheap conic relaxation for the AC optimal power flow problem
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2018.2848965
– volume: 8
  year: 2024
  ident: 10.1016/j.epsr.2025.111638_bib0002
  article-title: A short-term wind-hydrothermal operational framework in the presence of pumped-hydro storage, E-Prime - advances in electrical engineering
  publication-title: Electronics and Energy
– volume: 1
  start-page: 1
  year: 2017
  ident: 10.1016/j.epsr.2025.111638_bib0007
  article-title: Optimal scheduling of energy hubs in the presence of uncertainty-a review
  publication-title: J. Energy Manag. Technol.
– ident: 10.1016/j.epsr.2025.111638_bib0029
  doi: 10.1007/978-3-319-23219-5_4
– volume: 34
  start-page: 4806
  year: 2019
  ident: 10.1016/j.epsr.2025.111638_bib0035
  article-title: Chance-constrained AC optimal power flow: a polynomial chaos approach
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2019.2918363
– volume: 33
  start-page: 1734
  year: 2018
  ident: 10.1016/j.epsr.2025.111638_bib0017
  article-title: A linearized OPF model with reactive power and voltage magnitude: a pathway to improve the MW-only DC OPF
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2017.2718551
– volume: 125
  year: 2021
  ident: 10.1016/j.epsr.2025.111638_bib0038
  article-title: An ACOPF-based bilevel optimization approach for vulnerability assessment of a power system
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2020.106455
– start-page: 2019
  year: 2019
  ident: 10.1016/j.epsr.2025.111638_bib0004
  article-title: Demand response program implementation for day-ahead power system operation
  publication-title: 2019 IEEE Milan PowerTech, PowerTech
– volume: 135
  year: 2021
  ident: 10.1016/j.epsr.2025.111638_bib0006
  article-title: Optimal operation of integrated electricity and heat system: a review of modeling and solution methods
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110098
– year: 2022
  ident: 10.1016/j.epsr.2025.111638_bib0025
  article-title: Fast solving method for two-stage multi-period robust optimization of active and reactive power coordination in active distribution networks
  publication-title: IEEe Access.
– volume: 37
  start-page: 725
  year: 2004
  ident: 10.1016/j.epsr.2025.111638_bib0016
  article-title: A comparison of the AC and DC power flow models for LMP calculations
– volume: 60
  start-page: 729
  year: 2015
  ident: 10.1016/j.epsr.2025.111638_bib0018
  article-title: Equivalent relaxations of optimal power flow
  publication-title: IEEe Trans. Automat. Contr.
  doi: 10.1109/TAC.2014.2357112
– volume: 17
  start-page: 646
  year: 2002
  ident: 10.1016/j.epsr.2025.111638_bib0013
  article-title: Network-constrained multiperiod auction for a pool-based electricity market
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2002.800909
– volume: 63
  start-page: 682
  year: 2018
  ident: 10.1016/j.epsr.2025.111638_bib0027
  article-title: An exact convex formulation of the optimal power flow in radial distribution networks including transverse components
  publication-title: IEEe Trans. Automat. Contr.
  doi: 10.1109/TAC.2017.2722100
– ident: 10.1016/j.epsr.2025.111638_bib0031
  doi: 10.1109/PESGM41954.2020.9281986
– volume: 30
  start-page: 199
  year: 2015
  ident: 10.1016/j.epsr.2025.111638_bib0019
  article-title: Convex relaxation for optimal power flow problem: mesh networks
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2014.2322051
– start-page: 499
  year: 2019
  ident: 10.1016/j.epsr.2025.111638_bib0041
  article-title: Open-source poly-phase distribution system power flow analysis tool (DxFlow)
– volume: 155
  year: 2024
  ident: 10.1016/j.epsr.2025.111638_bib0003
  article-title: Optimal operation of lithium-ion batteries in microgrids using a semidefinite thermal model
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2023.109630
SSID ssj0006975
Score 2.4616828
Snippet •Proposing an efficient and low-computational burden model for the OPF problem.•A hybrid method based on the DCOPF concept and branch flow OPF...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111638
SubjectTerms Branch flow
Convex optimization
Distribution systems
Optimal power flow
Quadratically-constrained programming
Title A hybrid optimal power flow model for transmission and distribution networks
URI https://dx.doi.org/10.1016/j.epsr.2025.111638
Volume 245
WOSCitedRecordID wos001459573100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0378-7796
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006975
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQc4IJ6i5SEfuEVZ5WHHyTFCRWUFKySKtLfIjh12y25SbZZtyw_gdzOOHTctUNEDl2iVxJMo82k8M_vNDEJvVJDyREBYEkkSQIBCmC84kT64tgGpmJBU8G7YBJvN0vk8-zQa_exrYXYrVtfp-Xl2-l9VDedA2bp09hbqdkLhBPwGpcMR1A7Hf1J87i0udBmW14A1WOtCKz0IzatWzZmZe2OYhXqPAh23PR1Z6g66dviVVxtyeHslb98NzFmWVp5pAa3_dBjkw7Rr3q65gofM1I-FgU--WrqUM-BRdwA1zGC5abyjyXTiWDx8x2V37WOz4Os1B1-YS_XVyZ42Z98MIfwzV5aKbzMWEXV8OVepBZErY2aSbW-FI0IHdhQscGK6vvxm4k224QR261b3c43o5PLmq_20r-1zjn3YE9tOCi2j0DIKI-MO2osYzdIx2svfH86nbk9Psq5ls3tzW35lmILX3-TPLs7AbTl-iB7YeAPnBieP0EjVj9H9QRfKJ-hDjg1isEUM7jSMNWJwhxgMiMFDxGBADB4iBveIeYq-vDs8fnvk2yEbfhmTZOsrJgSljMsYNroypLxSEGKmAjxNkfCEs0iolMiQBzyKkyAmlKtUJbFKYYEgMn6GxnVTq-cIk7AKS0p4EpUBUZmAq1VJmRK8lCXP0n0U9t-lKG0Hej0IZVX8XSP7yHNrTk3_lRvvpv3nLqwHaTzDAtBzw7qDWz3lBbp3CeuXaLzdfFev0N1yt122m9cWOr8AejCWDw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+optimal+power+flow+model+for+transmission+and+distribution+networks&rft.jtitle=Electric+power+systems+research&rft.au=Esmaeel+Nezhad%2C+Ali&rft.au=Nardelli%2C+Pedro+H.J.&rft.au=Javadi%2C+Mohammad+Sadegh&rft.au=Jowkar%2C+Saeid&rft.date=2025-08-01&rft.issn=0378-7796&rft.volume=245&rft.spage=111638&rft_id=info:doi/10.1016%2Fj.epsr.2025.111638&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_epsr_2025_111638
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon