A hybrid optimal power flow model for transmission and distribution networks
•Proposing an efficient and low-computational burden model for the OPF problem.•A hybrid method based on the DCOPF concept and branch flow OPF model.•Developing an OPF model for both radial and meshed networks. This paper presents a fast and accurate optimization technique for optimal power flow (OP...
Uložené v:
| Vydané v: | Electric power systems research Ročník 245; s. 111638 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.08.2025
|
| Predmet: | |
| ISSN: | 0378-7796 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Proposing an efficient and low-computational burden model for the OPF problem.•A hybrid method based on the DCOPF concept and branch flow OPF model.•Developing an OPF model for both radial and meshed networks.
This paper presents a fast and accurate optimization technique for optimal power flow (OPF) that can be conveniently applied to transmission and distribution systems. The method is based on the branch flow and DC optimal power flow (DCOPF) models. As the branch flow model is independent of the bus voltage angle, the model needs further development to enable use in meshed transmission systems. Thus, this paper adds the bus voltage angle constraint as a key constraint to the branch flow model so that the voltage angle can also be used in the power flow model in addition to the voltage magnitude control. The problem is based on second-order programming and modeled as a quadratically-constrained programming (QCP) problem solved using the CPLEX solver in GAMS. The functionality of the proposed model is tested utilizing four standard distribution systems, three transmission systems, a combined transmission-distribution network. The studied distribution systems include the 33-bus, 69-bus, 118-bus distribution (118-D) test systems, and 730-bus distribution system (730-D). Additionally, the studied transmission systems include 9-bus, 30-bus, and 118-bus transmission (118-T) test systems. The combined transmission-distribution system included the 9-bus transmission system with three connected distribution systems. The simulation results obtained from the developed technique are compared to those obtained from a conventional optimal flow model. The power losses and the absolute error of the solution are used as the two metrics to compare the methods’ performance for distribution networks. The absolute error of the solution derived from the proposed hybrid OPF compared to MATPOWER for the 33-bus system is 0.00198 %. For the 69-bus system, the error is 0.00044 %. In addition, for the 118-D and 730-D systems, the absolute errors are 0.0026 %, and 0.05 %, respectively. For the transmission network, the operating costs and the solution absolute error are the two metrics used for comparing the proposed hybrid OPF model and MATPOWER. The results indicate the superior performance of the hybrid OPF model to the Newton-Raphson method in MATPOWER in terms of operating cost. In this regard, cost reductions relative to values given by MATPOWER are 0.0005 %, 0.838 %, and 0.015 %, for the 9-bus, 30-bus, and 118-T systems, respectively. The simulation studies demonstrate the performance of the presented branch flow-based model in solving the OPF problem with accurate results. |
|---|---|
| AbstractList | •Proposing an efficient and low-computational burden model for the OPF problem.•A hybrid method based on the DCOPF concept and branch flow OPF model.•Developing an OPF model for both radial and meshed networks.
This paper presents a fast and accurate optimization technique for optimal power flow (OPF) that can be conveniently applied to transmission and distribution systems. The method is based on the branch flow and DC optimal power flow (DCOPF) models. As the branch flow model is independent of the bus voltage angle, the model needs further development to enable use in meshed transmission systems. Thus, this paper adds the bus voltage angle constraint as a key constraint to the branch flow model so that the voltage angle can also be used in the power flow model in addition to the voltage magnitude control. The problem is based on second-order programming and modeled as a quadratically-constrained programming (QCP) problem solved using the CPLEX solver in GAMS. The functionality of the proposed model is tested utilizing four standard distribution systems, three transmission systems, a combined transmission-distribution network. The studied distribution systems include the 33-bus, 69-bus, 118-bus distribution (118-D) test systems, and 730-bus distribution system (730-D). Additionally, the studied transmission systems include 9-bus, 30-bus, and 118-bus transmission (118-T) test systems. The combined transmission-distribution system included the 9-bus transmission system with three connected distribution systems. The simulation results obtained from the developed technique are compared to those obtained from a conventional optimal flow model. The power losses and the absolute error of the solution are used as the two metrics to compare the methods’ performance for distribution networks. The absolute error of the solution derived from the proposed hybrid OPF compared to MATPOWER for the 33-bus system is 0.00198 %. For the 69-bus system, the error is 0.00044 %. In addition, for the 118-D and 730-D systems, the absolute errors are 0.0026 %, and 0.05 %, respectively. For the transmission network, the operating costs and the solution absolute error are the two metrics used for comparing the proposed hybrid OPF model and MATPOWER. The results indicate the superior performance of the hybrid OPF model to the Newton-Raphson method in MATPOWER in terms of operating cost. In this regard, cost reductions relative to values given by MATPOWER are 0.0005 %, 0.838 %, and 0.015 %, for the 9-bus, 30-bus, and 118-T systems, respectively. The simulation studies demonstrate the performance of the presented branch flow-based model in solving the OPF problem with accurate results. |
| ArticleNumber | 111638 |
| Author | Tavakkoli Sabour, Toktam Esmaeel Nezhad, Ali Ghanavati, Farideh Javadi, Mohammad Sadegh Nardelli, Pedro H.J. Jowkar, Saeid |
| Author_xml | – sequence: 1 givenname: Ali orcidid: 0000-0002-6522-4043 surname: Esmaeel Nezhad fullname: Esmaeel Nezhad, Ali email: ali.esmaeelnezhad@lut.fi organization: Department of Electrical Engineering, School of Energy Systems, LUT University, 53850 Lappeenranta, Finland – sequence: 2 givenname: Pedro H.J. orcidid: 0000-0002-7398-1802 surname: Nardelli fullname: Nardelli, Pedro H.J. organization: Department of Electrical Engineering, School of Energy Systems, LUT University, 53850 Lappeenranta, Finland – sequence: 3 givenname: Mohammad Sadegh surname: Javadi fullname: Javadi, Mohammad Sadegh organization: Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal – sequence: 4 givenname: Saeid surname: Jowkar fullname: Jowkar, Saeid organization: Department of Electrical, Electronic, and Information Engineering, University of Bologna, Bologna 40126, Italy – sequence: 5 givenname: Toktam surname: Tavakkoli Sabour fullname: Tavakkoli Sabour, Toktam organization: Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA – sequence: 6 givenname: Farideh surname: Ghanavati fullname: Ghanavati, Farideh organization: Department of Industrial Engineering and Management, University of Aveiro, 3810-193 Aveiro, Portugal |
| BookMark | eNp9kL1qwzAUhTWk0CTtC3TSC9iVLFtSoEsI_YNAl3YW-rmmSh3LSGpN3r426dQh04UL3-Gcb4UWfegBoTtKSkoovz-UMKRYVqRqSkopZ3KBloQJWQix4ddoldKBEMI3olmi_RZ_nkz0Doch-6Pu8BBGiLjtwoiPwUGH2xBxjrpPR5-SDz3WvcPOpxy9-c7zo4c8hviVbtBVq7sEt393jT6eHt93L8X-7fl1t90XltU8FyCMaRqhHXMOLG10CxtRSyNqarjmWlQGZO2oJrpinLC60SCBM5ATYGrH1qg659oYUorQqiFO3eNJUaJmB-qgZgdqdqDODiZI_oOsz3ruP43z3WX04YzCNOrHQ1TJeugtOB_BZuWCv4T_Ak5KfkQ |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3582189 crossref_primary_10_1016_j_gloei_2025_05_006 |
| Cites_doi | 10.1109/TPWRS.2020.3002189 10.1080/0952813X.2013.861876 10.1109/TPWRS.2018.2874173 10.1109/TPWRS.2019.2897835 10.1007/s10107-020-01516-y 10.1016/j.rser.2016.12.102 10.1109/TPWRS.2011.2160974 10.1109/TPWRS.2009.2021235 10.1109/TPWRS.2013.2255317 10.1109/PESGM.2017.8274004 10.1109/TPWRS.2015.2504870 10.1109/TPWRS.2015.2497160 10.1016/j.scs.2024.105697 10.1016/j.epsr.2016.02.008 10.1109/TPWRS.2021.3070540 10.35833/MPCE.2021.000220 10.1016/j.ijepes.2017.05.001 10.1109/TPWRS.2021.3075925 10.1080/15325008.2016.1147104 10.1109/TPWRS.2018.2848965 10.1007/978-3-319-23219-5_4 10.1109/TPWRS.2019.2918363 10.1109/TPWRS.2017.2718551 10.1016/j.ijepes.2020.106455 10.1016/j.rser.2020.110098 10.1109/TAC.2014.2357112 10.1109/TPWRS.2002.800909 10.1109/TAC.2017.2722100 10.1109/PESGM41954.2020.9281986 10.1109/TPWRS.2014.2322051 10.1016/j.ijepes.2023.109630 |
| ContentType | Journal Article |
| Copyright | 2025 |
| Copyright_xml | – notice: 2025 |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.epsr.2025.111638 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_epsr_2025_111638 S0378779625002305 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ACRPL ADBBV ADEZE ADHUB ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHIDL AHJVU AI. AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC BNPGV CS3 DU5 E.L EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SES SET SEW SPC SPCBC SSH SSR SST SSW SSZ T5K VH1 WUQ ZMT ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c346t-e7bb557ad3ddec15afe9748b741b6a6a72be84d1a0a2360345ae8e63e83ddb4d3 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001459573100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0378-7796 |
| IngestDate | Sat Nov 29 06:52:04 EST 2025 Tue Nov 18 21:07:07 EST 2025 Sat Apr 12 15:21:10 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Quadratically-constrained programming Distribution systems Branch flow Optimal power flow Convex optimization |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c346t-e7bb557ad3ddec15afe9748b741b6a6a72be84d1a0a2360345ae8e63e83ddb4d3 |
| ORCID | 0000-0002-6522-4043 0000-0002-7398-1802 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.epsr.2025.111638 |
| ParticipantIDs | crossref_primary_10_1016_j_epsr_2025_111638 crossref_citationtrail_10_1016_j_epsr_2025_111638 elsevier_sciencedirect_doi_10_1016_j_epsr_2025_111638 |
| PublicationCentury | 2000 |
| PublicationDate | August 2025 2025-08-00 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: August 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Electric power systems research |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Huang, Wu, Wang, Zhao (bib0033) 2017; 32 Farivar, Low (bib0022) 2013; 28 Fan, Yang, Xie, Yu (bib0014) 2021; 36 Madani, Sojoudi, Lavaei (bib0019) 2015; 30 Shchetinin, De Rubira, Hug (bib0030) 2019; 34 Zhang, Wu, Wen, Lin, Fang, Chen (bib0006) 2021; 135 Carpentier (bib0005) 1962; 3 Azami, Javadi, Hematipour (bib0010) 2011; 9 Overbye, Cheng, Sun (bib0016) 2004; 37 Nick, Cherkaoui, Le Boudec, Paolone (bib0027) 2018; 63 Javadi, Esmaeel Nezhad, Siano, Shafie-khah, Catalão (bib0044) 2017; 92 Lavaei, Low (bib0026) 2012; 27 Zhang, He (bib0025) 2022 Estahbanati (bib0043) 2014; 26 A. Mohamed, B. Venkatesh, Line-wise optimal power flow using successive linear optimization technique, (2020) 1–1. Muhlpfordt, Roald, Hagenmeyer, Faulwasser, Misra (bib0035) 2019; 34 Abedi, Hesamzadeh, Romerio (bib0038) 2021; 125 Chen, Atamturk, Oren (bib0028) 2016; 31 Ergun, Dave, Van Hertem, Geth (bib0037) 2019; 34 C. Coffrin, H. Hijazi, P. Van Hentenryck, The QC relaxation: a theoretical and computational study on optimal power flow, (2018) 1–1. Bose, Low, Teeraratkul, Hassibi (bib0018) 2015; 60 Ou, Xue, Zhang (bib0009) 2016; 44 Esmaeel Nezhad, Jowkar, Tavakkoli Sabour, Rahimi, Ghanavati, Esmaeilnezhad (bib0002) 2024; 8 Stott, Jardim, Alsaç (bib0012) 2009; 24 Vemprala, Khan, Paudyal (bib0041) 2019 Lin, Zhang, Wang, Shi, Bian (bib0021) 2022; 10 Motto, Galiana, Conejo, Arroyo (bib0013) 2002; 17 Javadi, Gouveia, Carvalho, Silva (bib0039) 2021 Tu, Wachter, Wei (bib0034) 2021; 36 Kim, Baker, Kasprzyk (bib0015) 2021; 2020 Capitanescu (bib0008) 2016; 136 . Javadi (bib0042) 2024; 114 C. Coffrin, H.L. Hijazi, P. Van Hentenryck, Strengthening convex relaxations with bound tightening for power network optimization, Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9255 (2015) 39–57. Yang, Zhong, Bose, Zheng, Xia, Kang (bib0017) 2018; 33 Abdi, Beigvand, La Scala (bib0001) 2017; 71 Javadi, Javadinasab, Shishebori, Basri, Azami (bib0040) 2011; 4 Lotfi, Joao Catalao, Javadi, Nezhad, Shafie-Khah (bib0004) 2019 Esmaeel Nezhad, Mobtahej, Javadi, Nardelli, Sahoo (bib0003) 2024; 155 Zhang, Lavaei (bib0020) 2021; 188 Bingane, Anjos, Digabel (bib0032) 2018; 33 Mohammadi, Noorollahi, Mohammadi-ivatloo, Yousefi, Jalilinasrabady (bib0007) 2017; 1 Chavez-Lugo, Fuerte-Esquivel, Canizares, Gutierrez-Martinez (bib0011) 2016; 31 Capitanescu (bib0024) 2018 Lee, Turitsyn, Molzahn, Roald (bib0036) 2021; 36 Capitanescu (10.1016/j.epsr.2025.111638_bib0024) 2018 10.1016/j.epsr.2025.111638_bib0031 Ergun (10.1016/j.epsr.2025.111638_bib0037) 2019; 34 Motto (10.1016/j.epsr.2025.111638_bib0013) 2002; 17 Esmaeel Nezhad (10.1016/j.epsr.2025.111638_bib0002) 2024; 8 Zhang (10.1016/j.epsr.2025.111638_bib0020) 2021; 188 Madani (10.1016/j.epsr.2025.111638_bib0019) 2015; 30 Lotfi (10.1016/j.epsr.2025.111638_bib0004) 2019 Overbye (10.1016/j.epsr.2025.111638_bib0016) 2004; 37 Tu (10.1016/j.epsr.2025.111638_bib0034) 2021; 36 Chavez-Lugo (10.1016/j.epsr.2025.111638_bib0011) 2016; 31 Esmaeel Nezhad (10.1016/j.epsr.2025.111638_bib0003) 2024; 155 Muhlpfordt (10.1016/j.epsr.2025.111638_bib0035) 2019; 34 Abedi (10.1016/j.epsr.2025.111638_bib0038) 2021; 125 Farivar (10.1016/j.epsr.2025.111638_bib0022) 2013; 28 Stott (10.1016/j.epsr.2025.111638_bib0012) 2009; 24 Bingane (10.1016/j.epsr.2025.111638_bib0032) 2018; 33 Abdi (10.1016/j.epsr.2025.111638_bib0001) 2017; 71 Chen (10.1016/j.epsr.2025.111638_bib0028) 2016; 31 Nick (10.1016/j.epsr.2025.111638_bib0027) 2018; 63 Javadi (10.1016/j.epsr.2025.111638_bib0039) 2021 Javadi (10.1016/j.epsr.2025.111638_bib0042) 2024; 114 Fan (10.1016/j.epsr.2025.111638_bib0014) 2021; 36 Lavaei (10.1016/j.epsr.2025.111638_bib0026) 2012; 27 Vemprala (10.1016/j.epsr.2025.111638_bib0041) 2019 Carpentier (10.1016/j.epsr.2025.111638_bib0005) 1962; 3 Huang (10.1016/j.epsr.2025.111638_bib0033) 2017; 32 Lin (10.1016/j.epsr.2025.111638_bib0021) 2022; 10 Yang (10.1016/j.epsr.2025.111638_bib0017) 2018; 33 Bose (10.1016/j.epsr.2025.111638_bib0018) 2015; 60 Mohammadi (10.1016/j.epsr.2025.111638_bib0007) 2017; 1 Estahbanati (10.1016/j.epsr.2025.111638_bib0043) 2014; 26 Lee (10.1016/j.epsr.2025.111638_bib0036) 2021; 36 Zhang (10.1016/j.epsr.2025.111638_bib0006) 2021; 135 Capitanescu (10.1016/j.epsr.2025.111638_bib0008) 2016; 136 Ou (10.1016/j.epsr.2025.111638_bib0009) 2016; 44 Javadi (10.1016/j.epsr.2025.111638_bib0044) 2017; 92 10.1016/j.epsr.2025.111638_bib0029 Kim (10.1016/j.epsr.2025.111638_bib0015) 2021; 2020 Shchetinin (10.1016/j.epsr.2025.111638_bib0030) 2019; 34 Azami (10.1016/j.epsr.2025.111638_bib0010) 2011; 9 10.1016/j.epsr.2025.111638_bib0023 Zhang (10.1016/j.epsr.2025.111638_bib0025) 2022 Javadi (10.1016/j.epsr.2025.111638_bib0040) 2011; 4 |
| References_xml | – volume: 71 start-page: 742 year: 2017 end-page: 766 ident: bib0001 article-title: A review of optimal power flow studies applied to smart grids and microgrids publication-title: Renew. Sustain. Energy Rev. – volume: 3 start-page: 431 year: 1962 end-page: 447 ident: bib0005 article-title: Contribution á l’étude du dispatching économique publication-title: Bull. de La Société Francaise Des Électriciens – volume: 31 start-page: 3358 year: 2016 end-page: 3368 ident: bib0011 article-title: Practical security boundary-constrained DC optimal power flow for electricity markets publication-title: IEEE Trans. Power Syst. – reference: A. Mohamed, B. Venkatesh, Line-wise optimal power flow using successive linear optimization technique, (2020) 1–1. – volume: 2020 year: 2021 ident: bib0015 article-title: Operational revenue insufficiency in highly renewable DC and AC-based LMP markets, 2020 52nd North American power symposium publication-title: NAPS – volume: 10 start-page: 1614 year: 2022 end-page: 1624 ident: bib0021 article-title: Voltage stability constrained optimal power flow for unbalanced distribution system based on semidefinite programming publication-title: J. Mod. Power Syst. Clean Energy – volume: 92 year: 2017 ident: bib0044 article-title: Shunt capacitor placement in radial distribution networks considering switching transients decision making approach publication-title: Int. J. Electr. Power Energy Syst. – volume: 17 start-page: 646 year: 2002 end-page: 653 ident: bib0013 article-title: Network-constrained multiperiod auction for a pool-based electricity market publication-title: IEEE Trans. Power Syst. – volume: 32 start-page: 1359 year: 2017 end-page: 1368 ident: bib0033 article-title: A sufficient condition on convex relaxation of AC optimal power flow in distribution networks publication-title: IEEE Trans. Power Syst. – volume: 24 start-page: 1290 year: 2009 end-page: 1300 ident: bib0012 article-title: DC power flow revisited publication-title: IEEE Trans. Power Syst. – volume: 63 start-page: 682 year: 2018 end-page: 697 ident: bib0027 article-title: An exact convex formulation of the optimal power flow in radial distribution networks including transverse components publication-title: IEEe Trans. Automat. Contr. – volume: 33 start-page: 1734 year: 2018 end-page: 1745 ident: bib0017 article-title: A linearized OPF model with reactive power and voltage magnitude: a pathway to improve the MW-only DC OPF publication-title: IEEE Trans. Power Syst. – volume: 34 start-page: 2980 year: 2019 end-page: 2990 ident: bib0037 article-title: Optimal power flow for AC-DC grids: formulation, convex relaxation, linear approximation, and implementation publication-title: IEEE Trans. Power Syst. – volume: 4 year: 2011 ident: bib0040 article-title: New approach for LMP calculation in large scale power system based on network incident matrix publication-title: Int. Rev. Model. Simul. – volume: 135 year: 2021 ident: bib0006 article-title: Optimal operation of integrated electricity and heat system: a review of modeling and solution methods publication-title: Renew. Sustain. Energy Rev. – volume: 36 start-page: 4953 year: 2021 end-page: 4966 ident: bib0036 article-title: Robust AC optimal power flow with robust convex restriction publication-title: IEEE Trans. Power Syst. – volume: 33 start-page: 7181 year: 2018 end-page: 7188 ident: bib0032 article-title: Tight-and-cheap conic relaxation for the AC optimal power flow problem publication-title: IEEE Trans. Power Syst. – start-page: 499 year: 2019 end-page: 504 ident: bib0041 article-title: Open-source poly-phase distribution system power flow analysis tool (DxFlow) publication-title: IEEE International Conference on Electro Information Technology 2019-May – reference: C. Coffrin, H.L. Hijazi, P. Van Hentenryck, Strengthening convex relaxations with bound tightening for power network optimization, Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9255 (2015) 39–57. – volume: 188 start-page: 351 year: 2021 end-page: 393 ident: bib0020 article-title: Sparse semidefinite programs with guaranteed near-linear time complexity via dualized clique tree conversion publication-title: Math. Program. – volume: 36 start-page: 303 year: 2021 end-page: 312 ident: bib0034 article-title: A two-stage decomposition approach for AC optimal power flow publication-title: IEEE Trans. Power Syst. – volume: 34 start-page: 1182 year: 2019 end-page: 1192 ident: bib0030 article-title: On the construction of linear approximations of line flow constraints for AC optimal power flow publication-title: IEEE Trans. Power Syst. – volume: 60 start-page: 729 year: 2015 end-page: 742 ident: bib0018 article-title: Equivalent relaxations of optimal power flow publication-title: IEEe Trans. Automat. Contr. – volume: 125 year: 2021 ident: bib0038 article-title: An ACOPF-based bilevel optimization approach for vulnerability assessment of a power system publication-title: Int. J. Electr. Power Energy Syst. – reference: C. Coffrin, H. Hijazi, P. Van Hentenryck, The QC relaxation: a theoretical and computational study on optimal power flow, (2018) 1–1. – volume: 27 start-page: 92 year: 2012 end-page: 107 ident: bib0026 article-title: Zero duality gap in optimal power flow problem publication-title: IEEE Trans. Power Syst. – year: 2022 ident: bib0025 article-title: Fast solving method for two-stage multi-period robust optimization of active and reactive power coordination in active distribution networks publication-title: IEEe Access. – volume: 36 start-page: 5746 year: 2021 end-page: 5755 ident: bib0014 article-title: General steady-State modeling and linearization of power electronic devices in AC-DC hybrid grid publication-title: IEEE Trans. Power Syst. – start-page: 2019 year: 2019 ident: bib0004 article-title: Demand response program implementation for day-ahead power system operation publication-title: 2019 IEEE Milan PowerTech, PowerTech – reference: . – volume: 26 start-page: 283 year: 2014 end-page: 296 ident: bib0043 article-title: Hybrid probabilistic-harmony search algorithm methodology in generation scheduling problem publication-title: J. Exp. Theor. Artif. Intell. – volume: 37 start-page: 725 year: 2004 end-page: 734 ident: bib0016 article-title: A comparison of the AC and DC power flow models for LMP calculations publication-title: Proceedings of the Hawaii International Conference on System Sciences – volume: 136 start-page: 57 year: 2016 end-page: 68 ident: bib0008 article-title: Critical review of recent advances and further developments needed in AC optimal power flow publication-title: Electr. Power Syst. Res. – volume: 34 start-page: 4806 year: 2019 end-page: 4816 ident: bib0035 article-title: Chance-constrained AC optimal power flow: a polynomial chaos approach publication-title: IEEE Trans. Power Syst. – volume: 8 year: 2024 ident: bib0002 article-title: A short-term wind-hydrothermal operational framework in the presence of pumped-hydro storage, E-Prime - advances in electrical engineering publication-title: Electronics and Energy – volume: 1 start-page: 1 year: 2017 end-page: 17 ident: bib0007 article-title: Optimal scheduling of energy hubs in the presence of uncertainty-a review publication-title: J. Energy Manag. Technol. – start-page: 149 year: 2018 end-page: 176 ident: bib0024 article-title: Challenges ahead risk-based AC optimal power flow under uncertainty for smart sustainable power systems publication-title: Dynamic Vulnerability Assessment and Intelligent Control for Sustainable Power Systems – volume: 30 start-page: 199 year: 2015 end-page: 211 ident: bib0019 article-title: Convex relaxation for optimal power flow problem: mesh networks publication-title: IEEE Trans. Power Syst. – volume: 44 start-page: 955 year: 2016 end-page: 965 ident: bib0009 article-title: Iterative DC optimal power flow considering transmission network loss publication-title: Electr. Power Compon. Syst. – volume: 28 start-page: 2554 year: 2013 end-page: 2564 ident: bib0022 article-title: Branch flow model: relaxations and convexification-part i publication-title: IEEE Trans. Power Syst. – volume: 31 start-page: 3729 year: 2016 end-page: 3736 ident: bib0028 article-title: Bound tightening for the alternating current optimal power flow problem publication-title: IEEE Trans. Power Syst. – start-page: 1 year: 2021 end-page: 6 ident: bib0039 article-title: Optimal power flow solution for distribution networks using quadratically constrained programming and McCormick relaxation technique publication-title: 2021 IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC /I&CPS Europe) – volume: 114 year: 2024 ident: bib0042 article-title: Unlocking responsive flexibility within local energy communities in the presence of grid-scale batteries publication-title: Sustain. Cities. Soc. – volume: 155 year: 2024 ident: bib0003 article-title: Optimal operation of lithium-ion batteries in microgrids using a semidefinite thermal model publication-title: Int. J. Electr. Power Energy Syst. – volume: 9 start-page: 8 year: 2011 end-page: 13 ident: bib0010 article-title: Economic load dispatch and DC-optimal power flow problem- PSO versus LR publication-title: Int. J. Multidiscip. Sci. Eng. – volume: 36 start-page: 303 year: 2021 ident: 10.1016/j.epsr.2025.111638_bib0034 article-title: A two-stage decomposition approach for AC optimal power flow publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2020.3002189 – start-page: 1 year: 2021 ident: 10.1016/j.epsr.2025.111638_bib0039 article-title: Optimal power flow solution for distribution networks using quadratically constrained programming and McCormick relaxation technique – volume: 26 start-page: 283 year: 2014 ident: 10.1016/j.epsr.2025.111638_bib0043 article-title: Hybrid probabilistic-harmony search algorithm methodology in generation scheduling problem publication-title: J. Exp. Theor. Artif. Intell. doi: 10.1080/0952813X.2013.861876 – volume: 34 start-page: 1182 year: 2019 ident: 10.1016/j.epsr.2025.111638_bib0030 article-title: On the construction of linear approximations of line flow constraints for AC optimal power flow publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2018.2874173 – volume: 34 start-page: 2980 year: 2019 ident: 10.1016/j.epsr.2025.111638_bib0037 article-title: Optimal power flow for AC-DC grids: formulation, convex relaxation, linear approximation, and implementation publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2019.2897835 – volume: 188 start-page: 351 year: 2021 ident: 10.1016/j.epsr.2025.111638_bib0020 article-title: Sparse semidefinite programs with guaranteed near-linear time complexity via dualized clique tree conversion publication-title: Math. Program. doi: 10.1007/s10107-020-01516-y – volume: 71 start-page: 742 year: 2017 ident: 10.1016/j.epsr.2025.111638_bib0001 article-title: A review of optimal power flow studies applied to smart grids and microgrids publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.12.102 – volume: 9 start-page: 8 year: 2011 ident: 10.1016/j.epsr.2025.111638_bib0010 article-title: Economic load dispatch and DC-optimal power flow problem- PSO versus LR publication-title: Int. J. Multidiscip. Sci. Eng. – volume: 27 start-page: 92 year: 2012 ident: 10.1016/j.epsr.2025.111638_bib0026 article-title: Zero duality gap in optimal power flow problem publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2011.2160974 – volume: 24 start-page: 1290 year: 2009 ident: 10.1016/j.epsr.2025.111638_bib0012 article-title: DC power flow revisited publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2009.2021235 – volume: 28 start-page: 2554 year: 2013 ident: 10.1016/j.epsr.2025.111638_bib0022 article-title: Branch flow model: relaxations and convexification-part i publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2013.2255317 – volume: 2020 year: 2021 ident: 10.1016/j.epsr.2025.111638_bib0015 article-title: Operational revenue insufficiency in highly renewable DC and AC-based LMP markets, 2020 52nd North American power symposium publication-title: NAPS – ident: 10.1016/j.epsr.2025.111638_bib0023 doi: 10.1109/PESGM.2017.8274004 – volume: 31 start-page: 3358 year: 2016 ident: 10.1016/j.epsr.2025.111638_bib0011 article-title: Practical security boundary-constrained DC optimal power flow for electricity markets publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2015.2504870 – start-page: 149 year: 2018 ident: 10.1016/j.epsr.2025.111638_bib0024 article-title: Challenges ahead risk-based AC optimal power flow under uncertainty for smart sustainable power systems – volume: 31 start-page: 3729 year: 2016 ident: 10.1016/j.epsr.2025.111638_bib0028 article-title: Bound tightening for the alternating current optimal power flow problem publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2015.2497160 – volume: 32 start-page: 1359 year: 2017 ident: 10.1016/j.epsr.2025.111638_bib0033 article-title: A sufficient condition on convex relaxation of AC optimal power flow in distribution networks publication-title: IEEE Trans. Power Syst. – volume: 114 year: 2024 ident: 10.1016/j.epsr.2025.111638_bib0042 article-title: Unlocking responsive flexibility within local energy communities in the presence of grid-scale batteries publication-title: Sustain. Cities. Soc. doi: 10.1016/j.scs.2024.105697 – volume: 136 start-page: 57 year: 2016 ident: 10.1016/j.epsr.2025.111638_bib0008 article-title: Critical review of recent advances and further developments needed in AC optimal power flow publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2016.02.008 – volume: 36 start-page: 5746 year: 2021 ident: 10.1016/j.epsr.2025.111638_bib0014 article-title: General steady-State modeling and linearization of power electronic devices in AC-DC hybrid grid publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2021.3070540 – volume: 10 start-page: 1614 year: 2022 ident: 10.1016/j.epsr.2025.111638_bib0021 article-title: Voltage stability constrained optimal power flow for unbalanced distribution system based on semidefinite programming publication-title: J. Mod. Power Syst. Clean Energy doi: 10.35833/MPCE.2021.000220 – volume: 92 year: 2017 ident: 10.1016/j.epsr.2025.111638_bib0044 article-title: Shunt capacitor placement in radial distribution networks considering switching transients decision making approach publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2017.05.001 – volume: 3 start-page: 431 year: 1962 ident: 10.1016/j.epsr.2025.111638_bib0005 article-title: Contribution á l’étude du dispatching économique publication-title: Bull. de La Société Francaise Des Électriciens – volume: 4 year: 2011 ident: 10.1016/j.epsr.2025.111638_bib0040 article-title: New approach for LMP calculation in large scale power system based on network incident matrix publication-title: Int. Rev. Model. Simul. – volume: 36 start-page: 4953 year: 2021 ident: 10.1016/j.epsr.2025.111638_bib0036 article-title: Robust AC optimal power flow with robust convex restriction publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2021.3075925 – volume: 44 start-page: 955 year: 2016 ident: 10.1016/j.epsr.2025.111638_bib0009 article-title: Iterative DC optimal power flow considering transmission network loss publication-title: Electr. Power Compon. Syst. doi: 10.1080/15325008.2016.1147104 – volume: 33 start-page: 7181 year: 2018 ident: 10.1016/j.epsr.2025.111638_bib0032 article-title: Tight-and-cheap conic relaxation for the AC optimal power flow problem publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2018.2848965 – volume: 8 year: 2024 ident: 10.1016/j.epsr.2025.111638_bib0002 article-title: A short-term wind-hydrothermal operational framework in the presence of pumped-hydro storage, E-Prime - advances in electrical engineering publication-title: Electronics and Energy – volume: 1 start-page: 1 year: 2017 ident: 10.1016/j.epsr.2025.111638_bib0007 article-title: Optimal scheduling of energy hubs in the presence of uncertainty-a review publication-title: J. Energy Manag. Technol. – ident: 10.1016/j.epsr.2025.111638_bib0029 doi: 10.1007/978-3-319-23219-5_4 – volume: 34 start-page: 4806 year: 2019 ident: 10.1016/j.epsr.2025.111638_bib0035 article-title: Chance-constrained AC optimal power flow: a polynomial chaos approach publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2019.2918363 – volume: 33 start-page: 1734 year: 2018 ident: 10.1016/j.epsr.2025.111638_bib0017 article-title: A linearized OPF model with reactive power and voltage magnitude: a pathway to improve the MW-only DC OPF publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2017.2718551 – volume: 125 year: 2021 ident: 10.1016/j.epsr.2025.111638_bib0038 article-title: An ACOPF-based bilevel optimization approach for vulnerability assessment of a power system publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2020.106455 – start-page: 2019 year: 2019 ident: 10.1016/j.epsr.2025.111638_bib0004 article-title: Demand response program implementation for day-ahead power system operation publication-title: 2019 IEEE Milan PowerTech, PowerTech – volume: 135 year: 2021 ident: 10.1016/j.epsr.2025.111638_bib0006 article-title: Optimal operation of integrated electricity and heat system: a review of modeling and solution methods publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110098 – year: 2022 ident: 10.1016/j.epsr.2025.111638_bib0025 article-title: Fast solving method for two-stage multi-period robust optimization of active and reactive power coordination in active distribution networks publication-title: IEEe Access. – volume: 37 start-page: 725 year: 2004 ident: 10.1016/j.epsr.2025.111638_bib0016 article-title: A comparison of the AC and DC power flow models for LMP calculations – volume: 60 start-page: 729 year: 2015 ident: 10.1016/j.epsr.2025.111638_bib0018 article-title: Equivalent relaxations of optimal power flow publication-title: IEEe Trans. Automat. Contr. doi: 10.1109/TAC.2014.2357112 – volume: 17 start-page: 646 year: 2002 ident: 10.1016/j.epsr.2025.111638_bib0013 article-title: Network-constrained multiperiod auction for a pool-based electricity market publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2002.800909 – volume: 63 start-page: 682 year: 2018 ident: 10.1016/j.epsr.2025.111638_bib0027 article-title: An exact convex formulation of the optimal power flow in radial distribution networks including transverse components publication-title: IEEe Trans. Automat. Contr. doi: 10.1109/TAC.2017.2722100 – ident: 10.1016/j.epsr.2025.111638_bib0031 doi: 10.1109/PESGM41954.2020.9281986 – volume: 30 start-page: 199 year: 2015 ident: 10.1016/j.epsr.2025.111638_bib0019 article-title: Convex relaxation for optimal power flow problem: mesh networks publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2014.2322051 – start-page: 499 year: 2019 ident: 10.1016/j.epsr.2025.111638_bib0041 article-title: Open-source poly-phase distribution system power flow analysis tool (DxFlow) – volume: 155 year: 2024 ident: 10.1016/j.epsr.2025.111638_bib0003 article-title: Optimal operation of lithium-ion batteries in microgrids using a semidefinite thermal model publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2023.109630 |
| SSID | ssj0006975 |
| Score | 2.4616828 |
| Snippet | •Proposing an efficient and low-computational burden model for the OPF problem.•A hybrid method based on the DCOPF concept and branch flow OPF... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 111638 |
| SubjectTerms | Branch flow Convex optimization Distribution systems Optimal power flow Quadratically-constrained programming |
| Title | A hybrid optimal power flow model for transmission and distribution networks |
| URI | https://dx.doi.org/10.1016/j.epsr.2025.111638 |
| Volume | 245 |
| WOSCitedRecordID | wos001459573100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0378-7796 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0006975 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQc4IJ6i5SEfuEVZ5WHHyTFCRWUFKySKtLfIjh12y25SbZZtyw_gdzOOHTctUNEDl2iVxJMo82k8M_vNDEJvVJDyREBYEkkSQIBCmC84kT64tgGpmJBU8G7YBJvN0vk8-zQa_exrYXYrVtfp-Xl2-l9VDedA2bp09hbqdkLhBPwGpcMR1A7Hf1J87i0udBmW14A1WOtCKz0IzatWzZmZe2OYhXqPAh23PR1Z6g66dviVVxtyeHslb98NzFmWVp5pAa3_dBjkw7Rr3q65gofM1I-FgU--WrqUM-BRdwA1zGC5abyjyXTiWDx8x2V37WOz4Os1B1-YS_XVyZ42Z98MIfwzV5aKbzMWEXV8OVepBZErY2aSbW-FI0IHdhQscGK6vvxm4k224QR261b3c43o5PLmq_20r-1zjn3YE9tOCi2j0DIKI-MO2osYzdIx2svfH86nbk9Psq5ls3tzW35lmILX3-TPLs7AbTl-iB7YeAPnBieP0EjVj9H9QRfKJ-hDjg1isEUM7jSMNWJwhxgMiMFDxGBADB4iBveIeYq-vDs8fnvk2yEbfhmTZOsrJgSljMsYNroypLxSEGKmAjxNkfCEs0iolMiQBzyKkyAmlKtUJbFKYYEgMn6GxnVTq-cIk7AKS0p4EpUBUZmAq1VJmRK8lCXP0n0U9t-lKG0Hej0IZVX8XSP7yHNrTk3_lRvvpv3nLqwHaTzDAtBzw7qDWz3lBbp3CeuXaLzdfFev0N1yt122m9cWOr8AejCWDw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+optimal+power+flow+model+for+transmission+and+distribution+networks&rft.jtitle=Electric+power+systems+research&rft.au=Esmaeel+Nezhad%2C+Ali&rft.au=Nardelli%2C+Pedro+H.J.&rft.au=Javadi%2C+Mohammad+Sadegh&rft.au=Jowkar%2C+Saeid&rft.date=2025-08-01&rft.issn=0378-7796&rft.volume=245&rft.spage=111638&rft_id=info:doi/10.1016%2Fj.epsr.2025.111638&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_epsr_2025_111638 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon |