Community‐wide correlations between species richness, abundance and population genomic diversity in a freshwater biodiversity hotspot
Understanding patterns of diversity across macro (e.g. species‐level) and micro (e.g. molecular‐level) scales can shed light on community function and stability by elucidating the abiotic and biotic drivers of diversity within ecological communities. We examined the relationships among taxonomic and...
Saved in:
| Published in: | Molecular ecology Vol. 32; no. 22; pp. 5894 - 5912 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Blackwell Publishing Ltd
01.11.2023
|
| Subjects: | |
| ISSN: | 0962-1083, 1365-294X, 1365-294X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Understanding patterns of diversity across macro (e.g. species‐level) and micro (e.g. molecular‐level) scales can shed light on community function and stability by elucidating the abiotic and biotic drivers of diversity within ecological communities. We examined the relationships among taxonomic and genetic metrics of diversity in freshwater mussels (Bivalvia: Unionidae), an ecologically important and species‐rich group in the southeastern United States. Using quantitative community surveys and reduced‐representation genome sequencing across 22 sites in seven rivers and two river basins, we surveyed 68 mussel species and sequenced 23 of these species to characterize intrapopulation genetic variation. We tested for the presence of species diversity–abundance correlations (i.e. the more‐individuals hypothesis, MIH), species‐genetic diversity correlations (SGDCs) and abundance‐genetic diversity correlations (AGDCs) across all sites to evaluate relationships between different metrics of diversity. Sites with greater cumulative multispecies density (a standardized metric of abundance) had a greater number of species, consistent with the MIH hypothesis. Intrapopulation genetic diversity was strongly associated with the density of most species, indicating the presence of AGDCs. However, there was no consistent evidence for SGDCs. Although sites with greater overall densities of mussels had greater species richness, sites with higher genetic diversity did not always exhibit positive correlations with species richness, suggesting that there are spatial and evolutionary scales at which the processes influencing community‐level diversity and intraspecific diversity differ. Our work reveals the importance of local abundance as indicator (and possibly a driver) of intrapopulation genetic diversity.
see also the Perspective by
see also the Perspective by K. N. Petersen and J. P. Wares |
|---|---|
| AbstractList | Understanding patterns of diversity across macro (e.g. species‐level) and micro (e.g. molecular‐level) scales can shed light on community function and stability by elucidating the abiotic and biotic drivers of diversity within ecological communities. We examined the relationships among taxonomic and genetic metrics of diversity in freshwater mussels (Bivalvia: Unionidae), an ecologically important and species‐rich group in the southeastern United States. Using quantitative community surveys and reduced‐representation genome sequencing across 22 sites in seven rivers and two river basins, we surveyed 68 mussel species and sequenced 23 of these species to characterize intrapopulation genetic variation. We tested for the presence of species diversity–abundance correlations (i.e. the more‐individuals hypothesis, MIH), species‐genetic diversity correlations (SGDCs) and abundance‐genetic diversity correlations (AGDCs) across all sites to evaluate relationships between different metrics of diversity. Sites with greater cumulative multispecies density (a standardized metric of abundance) had a greater number of species, consistent with the MIH hypothesis. Intrapopulation genetic diversity was strongly associated with the density of most species, indicating the presence of AGDCs. However, there was no consistent evidence for SGDCs. Although sites with greater overall densities of mussels had greater species richness, sites with higher genetic diversity did not always exhibit positive correlations with species richness, suggesting that there are spatial and evolutionary scales at which the processes influencing community‐level diversity and intraspecific diversity differ. Our work reveals the importance of local abundance as indicator (and possibly a driver) of intrapopulation genetic diversity. Understanding patterns of diversity across macro (e.g. species-level) and micro (e.g. molecular-level) scales can shed light on community function and stability by elucidating the abiotic and biotic drivers of diversity within ecological communities. We examined the relationships among taxonomic and genetic metrics of diversity in freshwater mussels (Bivalvia: Unionidae), an ecologically important and species-rich group in the southeastern United States. Using quantitative community surveys and reduced-representation genome sequencing across 22 sites in seven rivers and two river basins, we surveyed 68 mussel species and sequenced 23 of these species to characterize intrapopulation genetic variation. We tested for the presence of species diversity-abundance correlations (i.e. the more-individuals hypothesis, MIH), species-genetic diversity correlations (SGDCs) and abundance-genetic diversity correlations (AGDCs) across all sites to evaluate relationships between different metrics of diversity. Sites with greater cumulative multispecies density (a standardized metric of abundance) had a greater number of species, consistent with the MIH hypothesis. Intrapopulation genetic diversity was strongly associated with the density of most species, indicating the presence of AGDCs. However, there was no consistent evidence for SGDCs. Although sites with greater overall densities of mussels had greater species richness, sites with higher genetic diversity did not always exhibit positive correlations with species richness, suggesting that there are spatial and evolutionary scales at which the processes influencing community-level diversity and intraspecific diversity differ. Our work reveals the importance of local abundance as indicator (and possibly a driver) of intrapopulation genetic diversity.Understanding patterns of diversity across macro (e.g. species-level) and micro (e.g. molecular-level) scales can shed light on community function and stability by elucidating the abiotic and biotic drivers of diversity within ecological communities. We examined the relationships among taxonomic and genetic metrics of diversity in freshwater mussels (Bivalvia: Unionidae), an ecologically important and species-rich group in the southeastern United States. Using quantitative community surveys and reduced-representation genome sequencing across 22 sites in seven rivers and two river basins, we surveyed 68 mussel species and sequenced 23 of these species to characterize intrapopulation genetic variation. We tested for the presence of species diversity-abundance correlations (i.e. the more-individuals hypothesis, MIH), species-genetic diversity correlations (SGDCs) and abundance-genetic diversity correlations (AGDCs) across all sites to evaluate relationships between different metrics of diversity. Sites with greater cumulative multispecies density (a standardized metric of abundance) had a greater number of species, consistent with the MIH hypothesis. Intrapopulation genetic diversity was strongly associated with the density of most species, indicating the presence of AGDCs. However, there was no consistent evidence for SGDCs. Although sites with greater overall densities of mussels had greater species richness, sites with higher genetic diversity did not always exhibit positive correlations with species richness, suggesting that there are spatial and evolutionary scales at which the processes influencing community-level diversity and intraspecific diversity differ. Our work reveals the importance of local abundance as indicator (and possibly a driver) of intrapopulation genetic diversity. Understanding patterns of diversity across macro (e.g. species‐level) and micro (e.g. molecular‐level) scales can shed light on community function and stability by elucidating the abiotic and biotic drivers of diversity within ecological communities. We examined the relationships among taxonomic and genetic metrics of diversity in freshwater mussels (Bivalvia: Unionidae), an ecologically important and species‐rich group in the southeastern United States. Using quantitative community surveys and reduced‐representation genome sequencing across 22 sites in seven rivers and two river basins, we surveyed 68 mussel species and sequenced 23 of these species to characterize intrapopulation genetic variation. We tested for the presence of species diversity–abundance correlations (i.e. the more‐individuals hypothesis, MIH), species‐genetic diversity correlations (SGDCs) and abundance‐genetic diversity correlations (AGDCs) across all sites to evaluate relationships between different metrics of diversity. Sites with greater cumulative multispecies density (a standardized metric of abundance) had a greater number of species, consistent with the MIH hypothesis. Intrapopulation genetic diversity was strongly associated with the density of most species, indicating the presence of AGDCs. However, there was no consistent evidence for SGDCs. Although sites with greater overall densities of mussels had greater species richness, sites with higher genetic diversity did not always exhibit positive correlations with species richness, suggesting that there are spatial and evolutionary scales at which the processes influencing community‐level diversity and intraspecific diversity differ. Our work reveals the importance of local abundance as indicator (and possibly a driver) of intrapopulation genetic diversity. see also the Perspective by see also the Perspective by K. N. Petersen and J. P. Wares |
| Author | González, Irene Sánchez Hopper, Garrett W. Jackson, Colin R. Kelley, Taylor E. Bucholz, Jamie R. Garrick, Ryan C. Lozier, Jeffrey D. Atkinson, Carla L. |
| Author_xml | – sequence: 1 givenname: Jamie R. orcidid: 0000-0002-7595-4197 surname: Bucholz fullname: Bucholz, Jamie R. organization: Department of Biological Sciences University of Alabama Tuscaloosa Alabama USA – sequence: 2 givenname: Garrett W. orcidid: 0000-0001-6990-1681 surname: Hopper fullname: Hopper, Garrett W. organization: Department of Biological Sciences University of Alabama Tuscaloosa Alabama USA – sequence: 3 givenname: Irene Sánchez orcidid: 0000-0002-1317-331X surname: González fullname: González, Irene Sánchez organization: Department of Biological Sciences University of Alabama Tuscaloosa Alabama USA – sequence: 4 givenname: Taylor E. orcidid: 0000-0003-4409-2210 surname: Kelley fullname: Kelley, Taylor E. organization: Department of Biological Sciences University of Alabama Tuscaloosa Alabama USA – sequence: 5 givenname: Colin R. orcidid: 0000-0002-5568-7132 surname: Jackson fullname: Jackson, Colin R. organization: Department of Biology University of Mississippi Mississippi Mississippi USA – sequence: 6 givenname: Ryan C. orcidid: 0000-0002-4057-7061 surname: Garrick fullname: Garrick, Ryan C. organization: Department of Biology University of Mississippi Mississippi Mississippi USA – sequence: 7 givenname: Carla L. orcidid: 0000-0002-6430-7613 surname: Atkinson fullname: Atkinson, Carla L. organization: Department of Biological Sciences University of Alabama Tuscaloosa Alabama USA – sequence: 8 givenname: Jeffrey D. orcidid: 0000-0003-3725-5640 surname: Lozier fullname: Lozier, Jeffrey D. organization: Department of Biological Sciences University of Alabama Tuscaloosa Alabama USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37203688$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc9qFTEUxoNU7G114QtIwI2C0yaTmcxkKRf_QcGNgruQnDnjTZlJxiTTS3fu3PqMPomxt0WoC8_mcDi_74NzvhNy5INHQp5ydsZLnc8IZ1wqxR-QDReyrWrVfDkiG6ZkXXHWi2NyktIlY1zUbfuIHIuuZkL2_Yb82IZ5Xr3L17--_9y7ASmEGHEy2QWfqMW8R_Q0LQgOE40Odh5TekWNXf1gPCA1fqBLWNaDhn5FH2YHdHBXGFMxps5TQ8eIabc3GSO1Lvxd7kJOS8iPycPRTAmf3PZT8vntm0_b99XFx3cftq8vKhCNzNVgRiUEcmhHO7YWeJk6hQJUJwxTtutAIbNS2QFgRNP0AsayZC2CbToUp-TFwXeJ4duKKevZJcBpMh7DmrRgDRNt09byv2jdc9lJphpV0Of30MuwRl8OKVQvayGFYIV6dkutdsZBL9HNJl7ruzQKcH4AIIaUIo4aXL75ao7GTZoz_SdvXfLWN3kXxct7ijvTf9nfaf6vlQ |
| CitedBy_id | crossref_primary_10_1111_mec_17181 crossref_primary_10_1080_02705060_2025_2506589 crossref_primary_10_1002_ecs2_4934 crossref_primary_10_1111_ddi_70008 crossref_primary_10_1111_jbi_15185 crossref_primary_10_1016_j_biocon_2025_111084 crossref_primary_10_1111_brv_70040 crossref_primary_10_7717_peerj_18006 crossref_primary_10_1111_fwb_14373 crossref_primary_10_1111_jbi_15084 crossref_primary_10_1111_mec_17239 |
| Cites_doi | 10.1890/0012‐9658 10.1111/cla.12423 10.2307/3545369 10.1098/rspb.2000.1026 10.1046/j.1461‐0248.2000.00127.x 10.1111/jbi.13541 10.1111/mec.12094 10.1111/2041‐210X.12775 10.1046/J.1523‐1739.1996.10061500.X 10.1016/j.tree.2017.02.013 10.1111/j.1461‐0248.2004.00630.x 10.1007/BF02704961 10.1111/jbi.13559 10.1111/j.1365‐2745.2008.01433.x 10.1525/california/9780520255265.001.0001 10.1111/j.1365‐2656.2007.01297.x 10.1111/J.1472‐4642.2011.00753.X 10.3354/meps12520 10.18637/jss.v067.i01 10.1046/j.1365‐2699.2001.00603.x 10.1146/annurev.ecolsys.30.1.257 10.2307/1936581 10.1007/978-3-030-61286-3 10.1111/cobi.13217 10.1899/07‐093.1 10.1046/j.1523‐1739.1999.97343.x 10.1111/mec.12399 10.1007/s10592‐017‐1015‐x 10.1126/science.1160854 10.1016/j.gecco.2014.10.013 10.1017/CBO9781139048217 10.1016/j.scitotenv.2016.09.097 10.1007/s10750‐016‐3059‐1 10.1371/journal.pone.0189737 10.1111/j.1365-2486.2005.1005.x 10.1111/mec.12557 10.1111/mec.13923 10.1111/mec.14902 10.1111/ele.12941 10.1086/431318 10.1098/rspb.2021.1574 10.1890/0012‐9658(2000)081 10.1111/fwb.12826 10.1111/jbi.13432 10.1007/s10750‐017‐3139‐x 10.1111/j.1600‐0587.1997.tb00352.x 10.1146/annurev.ecolsys.31.1.343 10.1111/gcb.15549 10.1002/ecy.3035 10.1126/science.abn5642 10.1017/9781108551120.002 10.1002/AQC.3618 10.1002/ece3.8737 10.1007/BF00175500 10.31931/fmbc.v22i2.2019.43‐60 10.1002/ecs2.4495 10.1002/BIES.201000023 10.1111/j.1461‐0248.2008.01179.x 10.1111/fwb.12001 10.3389/fmicb.2022.800061 10.1111/j.1461‐0248.2005.00811.x 10.1073/pnas.0402642101 10.1007/s10592‐015‐0752‐y 10.1111/j.1365‐2427.2007.01812.x 10.1111/oik.03997 10.1086/652373 10.2307/3544109 10.1890/ES11‐00071.1 10.2307/1468247 10.1093/gbe/evac096 10.1038/s41467‐021‐20958‐2 10.1111/j.1472‐4642.2012.00940.x 10.1016/j.cageo.2016.07.003 10.1111/j.1365‐294X.2009.04102.x 10.1111/mec.15253 10.2307/3544901 10.1146/annurev.ge.10.120176.001345 10.1098/rstb.1998.0200 10.1038/nrg.2015.28 10.1111/mec.12354 10.1590/s1519‐69842009000300021 10.1002/ECE3.8560 10.1016/j.baae.2014.10.001 10.1534/genetics.115.183665 10.1098/rspb.2012.1931 10.1111/jbi.12877 10.21425/F5FBG47013 10.1139/F02‐006 10.1002/aqc.1138 10.1007/S10592‐010‐0050‐7/FIGURES/4 10.1111/geb.12286 10.7554/eLife.67509 10.1093/mollus/eyaa034 10.1007/s10750‐021‐04622‐w 10.2307/1796430 10.3390/w13121616 10.1017/CBO9780511623400.007 10.1007/s10531‐020‐02097‐0 |
| ContentType | Journal Article |
| Copyright | 2023 John Wiley & Sons Ltd. Copyright © 2023 John Wiley & Sons Ltd |
| Copyright_xml | – notice: 2023 John Wiley & Sons Ltd. – notice: Copyright © 2023 John Wiley & Sons Ltd |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 |
| DOI | 10.1111/mec.16991 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Entomology Abstracts MEDLINE AGRICOLA MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Ecology |
| EISSN | 1365-294X |
| EndPage | 5912 |
| ExternalDocumentID | 37203688 10_1111_mec_16991 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
| GrantInformation_xml | – fundername: National Science Foundation grantid: 1831531 – fundername: National Science Foundation grantid: 1831512 |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29M 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AETEA AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AIAGR AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CITATION COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O8X O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE CGR CUY CVF ECM EIF ESX NPM WRC XJT 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c346t-daf933e1c5fbf5bc193379e3c973a09b77c9e0b69bdccfea483cfc9705ecb47e3 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000993181200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0962-1083 1365-294X |
| IngestDate | Fri Sep 05 17:32:13 EDT 2025 Thu Sep 04 20:07:05 EDT 2025 Wed Aug 13 07:25:33 EDT 2025 Wed Feb 19 02:05:12 EST 2025 Sat Nov 29 05:23:57 EST 2025 Tue Nov 18 22:22:11 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Keywords | abundance-genetic diversity correlations RADseq species-genetic diversity correlations Unionidae more-individuals hypothesis |
| Language | English |
| License | 2023 John Wiley & Sons Ltd. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c346t-daf933e1c5fbf5bc193379e3c973a09b77c9e0b69bdccfea483cfc9705ecb47e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7595-4197 0000-0003-4409-2210 0000-0003-3725-5640 0000-0001-6990-1681 0000-0002-6430-7613 0000-0002-1317-331X 0000-0002-5568-7132 0000-0002-4057-7061 |
| PMID | 37203688 |
| PQID | 2886236330 |
| PQPubID | 31465 |
| PageCount | 19 |
| ParticipantIDs | proquest_miscellaneous_3040354526 proquest_miscellaneous_2816760949 proquest_journals_2886236330 pubmed_primary_37203688 crossref_citationtrail_10_1111_mec_16991 crossref_primary_10_1111_mec_16991 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-00 20231101 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-00 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Molecular ecology |
| PublicationTitleAlternate | Mol Ecol |
| PublicationYear | 2023 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_13_1 e_1_2_10_32_1 Williams J. D. (e_1_2_10_98_1) 2008 e_1_2_10_51_1 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 R Core Team (e_1_2_10_76_1) 2020 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_60_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_99_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_47_1 e_1_2_10_89_1 |
| References_xml | – ident: e_1_2_10_77_1 doi: 10.1890/0012‐9658 – ident: e_1_2_10_85_1 doi: 10.1111/cla.12423 – ident: e_1_2_10_102_1 doi: 10.2307/3545369 – ident: e_1_2_10_50_1 doi: 10.1098/rspb.2000.1026 – ident: e_1_2_10_61_1 doi: 10.1046/j.1461‐0248.2000.00127.x – ident: e_1_2_10_72_1 doi: 10.1111/jbi.13541 – ident: e_1_2_10_73_1 doi: 10.1111/mec.12094 – ident: e_1_2_10_74_1 doi: 10.1111/2041‐210X.12775 – ident: e_1_2_10_36_1 doi: 10.1046/J.1523‐1739.1996.10061500.X – ident: e_1_2_10_82_1 doi: 10.1016/j.tree.2017.02.013 – ident: e_1_2_10_47_1 doi: 10.1111/j.1461‐0248.2004.00630.x – ident: e_1_2_10_81_1 doi: 10.1007/BF02704961 – ident: e_1_2_10_78_1 doi: 10.1111/jbi.13559 – ident: e_1_2_10_89_1 doi: 10.1111/j.1365‐2745.2008.01433.x – ident: e_1_2_10_88_1 doi: 10.1525/california/9780520255265.001.0001 – ident: e_1_2_10_12_1 – ident: e_1_2_10_103_1 doi: 10.1111/j.1365‐2656.2007.01297.x – ident: e_1_2_10_15_1 doi: 10.1111/J.1472‐4642.2011.00753.X – ident: e_1_2_10_52_1 doi: 10.3354/meps12520 – ident: e_1_2_10_9_1 doi: 10.18637/jss.v067.i01 – ident: e_1_2_10_99_1 doi: 10.1046/j.1365‐2699.2001.00603.x – ident: e_1_2_10_96_1 doi: 10.1146/annurev.ecolsys.30.1.257 – ident: e_1_2_10_38_1 doi: 10.2307/1936581 – ident: e_1_2_10_3_1 doi: 10.1007/978-3-030-61286-3 – ident: e_1_2_10_100_1 doi: 10.1111/cobi.13217 – ident: e_1_2_10_8_1 doi: 10.1899/07‐093.1 – ident: e_1_2_10_93_1 doi: 10.1046/j.1523‐1739.1999.97343.x – ident: e_1_2_10_54_1 doi: 10.1111/mec.12399 – ident: e_1_2_10_20_1 doi: 10.1007/s10592‐017‐1015‐x – ident: e_1_2_10_33_1 doi: 10.1126/science.1160854 – ident: e_1_2_10_49_1 doi: 10.1016/j.gecco.2014.10.013 – ident: e_1_2_10_40_1 doi: 10.1017/CBO9781139048217 – ident: e_1_2_10_65_1 doi: 10.1016/j.scitotenv.2016.09.097 – ident: e_1_2_10_32_1 doi: 10.1007/s10750‐016‐3059‐1 – ident: e_1_2_10_59_1 doi: 10.1371/journal.pone.0189737 – ident: e_1_2_10_48_1 doi: 10.1111/j.1365-2486.2005.1005.x – ident: e_1_2_10_69_1 doi: 10.1111/mec.12557 – ident: e_1_2_10_10_1 doi: 10.1111/mec.13923 – ident: e_1_2_10_66_1 doi: 10.1111/mec.14902 – ident: e_1_2_10_87_1 doi: 10.1111/ele.12941 – ident: e_1_2_10_94_1 doi: 10.1086/431318 – ident: e_1_2_10_24_1 doi: 10.1098/rspb.2021.1574 – ident: e_1_2_10_22_1 doi: 10.1890/0012‐9658(2000)081 – ident: e_1_2_10_35_1 doi: 10.1111/fwb.12826 – ident: e_1_2_10_68_1 doi: 10.1111/jbi.13432 – ident: e_1_2_10_92_1 doi: 10.1007/s10750‐017‐3139‐x – ident: e_1_2_10_91_1 doi: 10.1111/j.1600‐0587.1997.tb00352.x – ident: e_1_2_10_18_1 doi: 10.1146/annurev.ecolsys.31.1.343 – ident: e_1_2_10_62_1 – ident: e_1_2_10_86_1 doi: 10.1111/gcb.15549 – ident: e_1_2_10_90_1 doi: 10.1002/ecy.3035 – ident: e_1_2_10_29_1 doi: 10.1126/science.abn5642 – ident: e_1_2_10_75_1 doi: 10.1017/9781108551120.002 – ident: e_1_2_10_70_1 doi: 10.1002/AQC.3618 – ident: e_1_2_10_51_1 doi: 10.1002/ece3.8737 – ident: e_1_2_10_71_1 doi: 10.1007/BF00175500 – ident: e_1_2_10_41_1 doi: 10.31931/fmbc.v22i2.2019.43‐60 – ident: e_1_2_10_80_1 doi: 10.1002/ecs2.4495 – ident: e_1_2_10_53_1 doi: 10.1002/BIES.201000023 – ident: e_1_2_10_45_1 doi: 10.1111/j.1461‐0248.2008.01179.x – ident: e_1_2_10_7_1 doi: 10.1111/fwb.12001 – ident: e_1_2_10_19_1 doi: 10.3389/fmicb.2022.800061 – ident: e_1_2_10_43_1 doi: 10.1111/j.1461‐0248.2005.00811.x – ident: e_1_2_10_46_1 doi: 10.1073/pnas.0402642101 – volume-title: A language and environment for statistical computing year: 2020 ident: e_1_2_10_76_1 – ident: e_1_2_10_26_1 doi: 10.1007/s10592‐015‐0752‐y – ident: e_1_2_10_37_1 doi: 10.1111/j.1365‐2427.2007.01812.x – ident: e_1_2_10_55_1 doi: 10.1111/oik.03997 – ident: e_1_2_10_95_1 doi: 10.1086/652373 – ident: e_1_2_10_101_1 doi: 10.2307/3544109 – ident: e_1_2_10_34_1 doi: 10.1890/ES11‐00071.1 – ident: e_1_2_10_97_1 doi: 10.2307/1468247 – ident: e_1_2_10_17_1 doi: 10.1093/gbe/evac096 – ident: e_1_2_10_23_1 doi: 10.1038/s41467‐021‐20958‐2 – ident: e_1_2_10_83_1 doi: 10.1111/j.1472‐4642.2012.00940.x – ident: e_1_2_10_57_1 doi: 10.1016/j.cageo.2016.07.003 – ident: e_1_2_10_28_1 doi: 10.1111/j.1365‐294X.2009.04102.x – ident: e_1_2_10_79_1 doi: 10.1111/mec.15253 – ident: e_1_2_10_27_1 doi: 10.2307/3544901 – ident: e_1_2_10_30_1 doi: 10.1146/annurev.ge.10.120176.001345 – ident: e_1_2_10_4_1 doi: 10.1098/rstb.1998.0200 – ident: e_1_2_10_5_1 doi: 10.1038/nrg.2015.28 – ident: e_1_2_10_16_1 doi: 10.1111/mec.12354 – ident: e_1_2_10_31_1 doi: 10.1590/s1519‐69842009000300021 – ident: e_1_2_10_13_1 doi: 10.1002/ECE3.8560 – ident: e_1_2_10_11_1 doi: 10.1016/j.baae.2014.10.001 – ident: e_1_2_10_2_1 doi: 10.1534/genetics.115.183665 – ident: e_1_2_10_25_1 doi: 10.1098/rspb.2012.1931 – ident: e_1_2_10_84_1 doi: 10.1111/jbi.12877 – ident: e_1_2_10_67_1 doi: 10.21425/F5FBG47013 – ident: e_1_2_10_6_1 doi: 10.1139/F02‐006 – ident: e_1_2_10_42_1 doi: 10.1002/aqc.1138 – ident: e_1_2_10_63_1 doi: 10.1007/S10592‐010‐0050‐7/FIGURES/4 – ident: e_1_2_10_21_1 doi: 10.1111/geb.12286 – ident: e_1_2_10_14_1 doi: 10.7554/eLife.67509 – ident: e_1_2_10_39_1 doi: 10.1093/mollus/eyaa034 – ident: e_1_2_10_60_1 doi: 10.1007/s10750‐021‐04622‐w – ident: e_1_2_10_64_1 doi: 10.2307/1796430 – ident: e_1_2_10_44_1 doi: 10.3390/w13121616 – volume-title: Freshwater mussels of Alabama and the Mobile Basin in Georgia, Mississippi, and Tennessee year: 2008 ident: e_1_2_10_98_1 – ident: e_1_2_10_56_1 doi: 10.1017/CBO9780511623400.007 – ident: e_1_2_10_58_1 doi: 10.1007/s10531‐020‐02097‐0 |
| SSID | ssj0013255 |
| Score | 2.4923434 |
| Snippet | Understanding patterns of diversity across macro (e.g. species‐level) and micro (e.g. molecular‐level) scales can shed light on community function and... Understanding patterns of diversity across macro (e.g. species-level) and micro (e.g. molecular-level) scales can shed light on community function and... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 5894 |
| SubjectTerms | Abundance Animals Biodiversity Biodiversity hot spots Bivalvia - genetics Correlation Density Ecosystem Evolution Fresh Water freshwater Gene sequencing Genetic diversity genetic variation genome Humans Hypotheses Metagenomics Mollusks Mussels River basins Rivers Species diversity Species richness Unionidae |
| Title | Community‐wide correlations between species richness, abundance and population genomic diversity in a freshwater biodiversity hotspot |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37203688 https://www.proquest.com/docview/2886236330 https://www.proquest.com/docview/2816760949 https://www.proquest.com/docview/3040354526 |
| Volume | 32 |
| WOSCitedRecordID | wos000993181200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1365-294X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013255 issn: 0962-1083 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELb2ARIXxJvCsjIIIaSQKo0TP448urtIy4JQV_QWxY6jVipp6HafJ25c-WP8CX4J49pxWomVlgOXKLXd53yd8Yxn5kPoeS9lumSChTKWChwUHYWcUBWmBc1ZrCgp8kXL_H12cMCHQ_Fpbe1XUwtzMmFVxc_ORP1fRQ1jIGxTOvsP4vYvCgNwD0KHK4gdrlcSvCv5mJ_7PIbTcWFy0mczn_jWZGeZOktwlQNQhiOj8xa5nNIUhzSFBLUn-DJky6aEOSh8Kse4CvKgBId9dJqbZotyPG0nR9M5uMwrof8PDRdvoNVKOP_NsdHCFy5td6zbNMa9aV1bVO3apOLgS9dHhRan_L0KcHcR7E6rC_t4YoPi702zztaeTFxw3oYogn53Od4RE1f4txS4pDEYD0t_0-jwNkZqXOk4qLspF0mYCpejbbWzGVuy9M3sJVbkq1bdHhWWTGy1U_fBx2zncH8_G_SHgxf1t9CQmJnDfsfoso42Y5YKvoE2332GhUvHWgsaXv8VXKsrk1rm3211g3SJ17PY_QxuoZvObcGvLdxuozVd3UHXLZHpOdz1rTzvoh8efr-__zTAw8vAww542AEPN8B7hT3sMMAOt7DDDnbYIwuPK5zjFnZ4GXbYwe4eOtzpD97uhY7sI1QkofOwyEtBiO6ptJRlKhU4FoQJTZRgJI-EZEwJHUkqZKFUqfOEE1XCZJRqJROmyX20UU0r_RBholiSSqYTJWXSy2NOCx0rDVtZVdCIJx30svmFM-U64RtClknWeMQgjGwhjA565pfWtv3L3xZtNWLKnCI4ymLOwbOghEQd9NRPg-42B3J5pafHZk2PMhqJRFy-hoCVJeDmxLSDHlgI-E9iGKYI5fzRFZ79GN1o_01baGM-O9ZP0DV1Mh8fzbbROhvybQfXP3Vk2X8 |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Community%E2%80%90wide+correlations+between+species+richness%2C+abundance+and+population+genomic+diversity+in+a+freshwater+biodiversity+hotspot&rft.jtitle=Molecular+ecology&rft.au=Bucholz%2C+Jamie+R&rft.au=Hopper%2C+Garrett+W.&rft.au=S%C3%A1nchez+Gonz%C3%A1lez%2C+Irene&rft.au=Kelley%2C+Taylor+E.&rft.date=2023-11-01&rft.issn=0962-1083&rft.volume=32&rft.issue=22+p.5894-5912&rft.spage=5894&rft.epage=5912&rft_id=info:doi/10.1111%2Fmec.16991&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon |