Convergence of a Batch Gradient Algorithm with Adaptive Momentum for Neural Networks
In this paper, a batch gradient algorithm with adaptive momentum is considered and a convergence theorem is presented when it is used for two-layer feedforward neural networks training. Simple but necessary sufficient conditions are offered to guarantee both weak and strong convergence. Compared wit...
Uloženo v:
| Vydáno v: | Neural processing letters Ročník 34; číslo 3; s. 221 - 228 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Boston
Springer US
01.12.2011
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 1370-4621, 1573-773X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, a batch gradient algorithm with adaptive momentum is considered and a convergence theorem is presented when it is used for two-layer feedforward neural networks training. Simple but necessary sufficient conditions are offered to guarantee both weak and strong convergence. Compared with existing general requirements, we do not restrict the error function to be quadratic or uniformly convex. A numerical example is supplied to illustrate the performance of the algorithm and support our theoretical finding. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1370-4621 1573-773X |
| DOI: | 10.1007/s11063-011-9193-x |