An optimized machine learning framework for prediction of coal abrasive index: Leveraging supervised learning, metaheuristic optimization, and interpretability analysis

•The study compares 18 supervised learning models for Abrasive Index (AI) prediction using 129 coal samples from South Africa's Witbank Coalfield.•Eight metaheuristic optimization algorithms (MOAs) are used to optimize hyperparameters and improve model predictive performance.•Uncertainty and fe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Fuel (Guildford) Ročník 403; s. 136065
Hlavní autoři: Qi, Hongning, Zhou, Jian, Khandelwal, Manoj, Onifade, Moshood, Lawal, Abiodun Ismail, Li, Chuanqi, Bada, Samson Oluwaseyi, Genc, Bekir
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.01.2026
Témata:
ISSN:0016-2361
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •The study compares 18 supervised learning models for Abrasive Index (AI) prediction using 129 coal samples from South Africa's Witbank Coalfield.•Eight metaheuristic optimization algorithms (MOAs) are used to optimize hyperparameters and improve model predictive performance.•Uncertainty and feature importance are analyzed using MCS, SHAP, and ICE to provide insight into model reliability and key factors.•The DBO-RF model outperforms all other models, achieving R² = 0.94 and demonstrating its potential for coal processing applications. Abrasive Index (AI) is crucial in evaluating coal’s impact on mechanical equipment wear, influencing operational efficiency and maintenance costs. Accurate AI prediction is essential for optimizing coal utilization and reducing economic losses in industrial applications. This study systematically evaluates AI prediction using 18 supervised learning (SL) models on a dataset of 129 coal samples from the Witbank Coalfield, South Africa. The most suitable model is identified based on performance comparisons, followed by hyperparameter optimization using eight metaheuristic optimization algorithms (MOAs). To further ensure robustness and interpretability, Monte Carlo Simulation (MCS), SHapley Additive exPlanations (SHAP), and Individual Conditional Expectation (ICE) methods are employed for uncertainty quantification and feature importance analysis. The results indicate that the Dung Beetle Optimizer-optimized Random Forest (DBO-RF) model outperforms all other hybrid models, achieving an R2 of 0.94, RMSE of 26.583, MAPE of 0.202, and VAF of 94.178% on the test set. Feature interpretation analysis reveals that quartz content significantly impacts AI predictions, while volatile matter contributes the least. This study provides a comprehensive AI prediction framework that integrates SL, optimization, and interpretability analysis, offering valuable insights for coal selection, equipment maintenance, and industrial process optimization.
AbstractList •The study compares 18 supervised learning models for Abrasive Index (AI) prediction using 129 coal samples from South Africa's Witbank Coalfield.•Eight metaheuristic optimization algorithms (MOAs) are used to optimize hyperparameters and improve model predictive performance.•Uncertainty and feature importance are analyzed using MCS, SHAP, and ICE to provide insight into model reliability and key factors.•The DBO-RF model outperforms all other models, achieving R² = 0.94 and demonstrating its potential for coal processing applications. Abrasive Index (AI) is crucial in evaluating coal’s impact on mechanical equipment wear, influencing operational efficiency and maintenance costs. Accurate AI prediction is essential for optimizing coal utilization and reducing economic losses in industrial applications. This study systematically evaluates AI prediction using 18 supervised learning (SL) models on a dataset of 129 coal samples from the Witbank Coalfield, South Africa. The most suitable model is identified based on performance comparisons, followed by hyperparameter optimization using eight metaheuristic optimization algorithms (MOAs). To further ensure robustness and interpretability, Monte Carlo Simulation (MCS), SHapley Additive exPlanations (SHAP), and Individual Conditional Expectation (ICE) methods are employed for uncertainty quantification and feature importance analysis. The results indicate that the Dung Beetle Optimizer-optimized Random Forest (DBO-RF) model outperforms all other hybrid models, achieving an R2 of 0.94, RMSE of 26.583, MAPE of 0.202, and VAF of 94.178% on the test set. Feature interpretation analysis reveals that quartz content significantly impacts AI predictions, while volatile matter contributes the least. This study provides a comprehensive AI prediction framework that integrates SL, optimization, and interpretability analysis, offering valuable insights for coal selection, equipment maintenance, and industrial process optimization.
ArticleNumber 136065
Author Zhou, Jian
Li, Chuanqi
Genc, Bekir
Lawal, Abiodun Ismail
Qi, Hongning
Onifade, Moshood
Bada, Samson Oluwaseyi
Khandelwal, Manoj
Author_xml – sequence: 1
  givenname: Hongning
  surname: Qi
  fullname: Qi, Hongning
  email: qhn2080@csu.edu.cn
  organization: School of Resources and Safety Engineering, Central South University, Changsha 410083, PR China
– sequence: 2
  givenname: Jian
  surname: Zhou
  fullname: Zhou, Jian
  email: j.zhou@csu.edu.cn
  organization: School of Resources and Safety Engineering, Central South University, Changsha 410083, PR China
– sequence: 3
  givenname: Manoj
  orcidid: 0000-0003-0368-3188
  surname: Khandelwal
  fullname: Khandelwal, Manoj
  email: m.khandelwal@federation.edu.au, mkhandelwal1@gmail.com
  organization: Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia
– sequence: 4
  givenname: Moshood
  surname: Onifade
  fullname: Onifade, Moshood
  email: m.onifade@federation.edu.au
  organization: Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia
– sequence: 5
  givenname: Abiodun Ismail
  surname: Lawal
  fullname: Lawal, Abiodun Ismail
  email: ailawal@futa.edu.ng
  organization: Department of Mining Engineering, Federal University of Technology, Akure, Nigeria
– sequence: 6
  givenname: Chuanqi
  surname: Li
  fullname: Li, Chuanqi
  email: chuanqi.li@univ-grenoble-alpes.fr
  organization: School of Resources and Safety Engineering, Central South University, Changsha 410083, PR China
– sequence: 7
  givenname: Samson Oluwaseyi
  orcidid: 0000-0002-1079-3492
  surname: Bada
  fullname: Bada, Samson Oluwaseyi
  email: Samson.Bada@wits.ac.za
  organization: School of Chemical and Metallurgy, Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, South Africa
– sequence: 8
  givenname: Bekir
  orcidid: 0000-0002-3943-5103
  surname: Genc
  fullname: Genc, Bekir
  email: Bekir.Genc@wits.ac.za
  organization: School of Mining Engineering, Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, South Africa
BookMark eNp9kEtu2zAQQLlIgdhJLpAVDxC7JPWxXHRjBP0EMJBNuyZG1MgeV6KMIe3WOVGPWSpONl2YGwIk3hvyTcWVHzwKca_VXCtdftzN2wN2c6NMMddZqcriSkxUupmZrNTXYhrCTim1qIp8Iv6uvBz2kXp6wUb24LbkUXYI7MlvZMvQ4--Bf8l2YLlnbMhFGhLTSjdAJ6FmCHRESb7BP5_kGo_IsBnZcNgjHykk77vvQfYYYYsHphDJvU-GUfkgwTdJE5HTnAg1dRRP6RC6U6BwKz600AW8e9tvxM-vX348fp-tn789Pa7WM5flZZwtm7oqMa_KusHSINYLjXoBbaV1vUhrmeV6iYWDyrgMscpqo9tqaXJsCoMOshtRnb2OhxAYW-sovj4wMlBntbJjZbuzY2U7Vrbnygk1_6F7ph74dBn6fIYwfepIyDY4Qu9SaUYXbTPQJfwf4eyg5w
CitedBy_id crossref_primary_10_1016_j_jece_2025_118313
Cites_doi 10.3390/rs16203778
10.1016/j.paerosci.2016.07.004
10.3390/en15124501
10.1016/j.procs.2016.06.016
10.1002/aic.690390208
10.1016/j.jobe.2023.108386
10.1016/j.asej.2015.12.003
10.1016/j.coal.2007.09.007
10.1016/j.fuel.2024.133953
10.1007/s00603-025-04387-x
10.1016/j.advengsoft.2016.01.008
10.1016/S0016-2361(03)00262-X
10.1016/j.undsp.2024.11.004
10.1016/0016-2361(90)90077-4
10.1016/j.enggeo.2020.105972
10.1016/S0196-8904(02)00144-9
10.1016/j.tust.2022.104570
10.1016/j.undsp.2024.03.003
10.1016/j.asoc.2024.111388
10.1007/s00521-020-05296-6
10.1016/0043-1648(91)90077-8
10.1126/science.aaa8415
10.1016/j.measurement.2021.110247
10.1007/s11269-022-03080-w
10.3390/en14154424
10.1038/s41598-023-36620-4
10.1016/j.wear.2015.10.006
10.1016/j.inffus.2018.10.005
10.1007/s00521-023-08577-y
10.1016/j.tust.2022.104494
10.26855/jepes.2021.03.001
10.1016/j.aap.2023.107378
10.5194/gmd-10-3805-2017
10.1016/j.neucom.2010.01.017
10.1007/s00521-020-05004-4
10.1016/j.fuel.2024.132319
10.1080/19392699.2017.1406350
10.1007/s11831-022-09773-0
10.1109/ACCESS.2017.2696365
10.1016/j.neucom.2020.07.061
10.1016/j.fuproc.2004.04.002
10.1016/j.tust.2024.106081
10.1016/j.swevo.2021.100888
10.1016/j.jfranklin.2021.10.005
10.1007/s00603-024-03947-x
10.1016/j.tust.2021.104285
10.1016/j.scitotenv.2024.172195
10.1109/SSCI47803.2020.9308260
10.2478/v10006-012-0064-z
10.1016/j.jclepro.2012.03.016
10.1007/s11227-022-04959-6
10.1016/j.neucom.2017.01.026
10.1007/s11771-024-5699-z
10.1016/j.fuel.2022.127080
10.1007/s10462-021-09992-0
10.1007/s11831-022-09801-z
10.3390/su15075732
10.1017/psrm.2023.61
10.1016/j.rser.2011.08.039
10.1007/s00158-021-03026-7
10.1016/B978-0-08-102201-6.00001-7
10.1016/j.conbuildmat.2022.129948
10.1007/s11042-023-16161-8
10.1016/j.jenvman.2024.123068
10.1002/0471497398.mm421
10.3390/math11071636
10.1111/j.1365-2656.2008.01390.x
10.1016/j.asoc.2016.09.045
10.1016/j.measurement.2015.03.009
10.1016/j.ecolmodel.2019.06.002
10.1080/21642583.2019.1708830
10.1007/s00603-024-04055-6
10.1016/j.trgeo.2023.101022
10.1016/j.wear.2013.10.005
10.1080/19392699.2019.1694009
10.1080/19392699.2021.1959324
10.1609/aaai.v33i01.33019808
10.3390/math10152552
10.1080/03610928008827904
10.1021/ci300338w
10.1007/s10749-021-01326-y
10.1016/j.petrol.2020.108182
10.1016/j.coal.2010.08.005
10.1016/j.biortech.2023.129444
10.1016/j.autcon.2021.104084
10.1038/s41598-023-31876-2
10.1061/(ASCE)CP.1943-5487.0000553
10.1037/a0016973
10.1080/19392699.2024.2339319
10.1080/10618600.2014.907095
10.1109/MSP.2018.2867638
10.1016/j.ijmst.2023.06.001
10.1109/ICIECS.2009.5362936
10.1016/j.applthermaleng.2025.126421
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.fuel.2025.136065
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_fuel_2025_136065
S0016236125017909
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAFTH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABNUV
ACDAQ
ACIWK
ACLOT
ACNCT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADECG
ADEWK
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJSZI
AKBMS
AKIFW
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSJ
SSK
SSR
SSZ
T5K
TWZ
WH7
ZMT
~02
~G-
~HD
29H
8WZ
9DU
A6W
AAQXK
AAYXX
ABDEX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFFNX
AGQPQ
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
LY6
R2-
SAC
SCB
VH1
WUQ
XPP
ZY4
ID FETCH-LOGICAL-c346t-9db86e486bde62eeb71e17af811b777793419e5ca82c3ee83b21f8924ed52eca3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001522195200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0016-2361
IngestDate Sat Nov 29 07:03:53 EST 2025
Tue Nov 18 21:52:30 EST 2025
Sat Nov 22 16:51:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Metaheuristic optimization algorithms
Supervised learning
Artificial intelligence
Abrasive index
Coal
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c346t-9db86e486bde62eeb71e17af811b777793419e5ca82c3ee83b21f8924ed52eca3
ORCID 0000-0002-3943-5103
0000-0003-0368-3188
0000-0002-1079-3492
OpenAccessLink https://dx.doi.org/10.1016/j.fuel.2025.136065
ParticipantIDs crossref_citationtrail_10_1016_j_fuel_2025_136065
crossref_primary_10_1016_j_fuel_2025_136065
elsevier_sciencedirect_doi_10_1016_j_fuel_2025_136065
PublicationCentury 2000
PublicationDate 2026-01-01
2026-01-00
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: 2026-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Fuel (Guildford)
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gentle (b0185) 2003; Vol. 381
Lundberg, S. (2017). A unified approach to interpreting model predictions.
Mitra, Arya, Gupta (b0330) 2023; 335
(pp. 1528-1534). IEEE.
Perez, Karakus, Sepulveda (b0365) 2015; 344
Shaheen, Spea, Farrag, Abido (b0435) 2018; 9
Gupta (b0205) 2016
Tshiongo, Mulaba-Bafubiandi (b0500) 2013; SAUPEC
Qiu, Li, Huang, Ma, Zhou (b0380) 2024; 82
Ghadernejad, Esmaeili (b0190) 2024; 16
Spero (b0460) 1990; 69
Huang, Zhou (b0225) 2024; 57
Zhang, Li, Gu, Du, Zhou (b0590) 2025; 272
Bandopadhyay (b0075) 2010; 84
Spero, Hargreaves, Kirkcaldie, Flitt (b0455) 1991; 146
Sheskin (b0440) 2003
Yang, Shami (b0560) 2020; 415
Yancey, Geer, Price (b0555) 1951; 190
Muske, Rawlings (b0345) 1993; 39
Suárez-Ruiz, I., Diez, M. A., & Rubiera, F. (2019). Coal. In
Hu, Chen, Parks, Yao (b0220) 2016; 86
Schratz, Muenchow, Iturritxa, Richter, Brenning (b0430) 2019; 406
,
Taibi, Gielen, Bazilian (b0480) 2012; 16
Yu, T., & Zhu, H. (2020). Hyper-parameter optimization: A review of algorithms and applications.
.
Rao, Gopalakrishna (b0400) 2009; 91
Qiu, Zhou, He, Armaghani, Huang, He (b0385) 2024; 57
Zhou, Shen, Qiu, Shi, Khandelwal (b0600) 2022; 126
Lawal, A. I., Bada, S., & Onifade, M. (2024). Prediction of HGI of South African coalfields: A comparative analysis of ANN, SVR and LSTM models; in the International Coal Preparation and Utilization
7776-7797.
Abu Doush, Awadallah, Al-Betar, Alomari, Makhadmeh, Abasi (b0010) 2023; 35
Chen, Khandelwal, Onifade, Zhou, Lawal, Bada (b0100) 2025; 384
Clark, Pregibon (b0115) 2017
Ding, Liu, Yang, Cao (b0150) 2021; 358
Tlotleng, M. T. (2011).
Hussain, Liu, Ashraf, Ali, Hussain, Ali (b0230) 2022; 15
Rezk, Olabi, Wilberforce, Sayed (b0410) 2024; 102437
ASTM, D5373-14. Standard Test Methods for Determination of Carbon, Hydrogen, and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke.
Zhou, Huang, Qiu (b0605) 2022; 124
Bischl, Binder, Lang, Pielok, Richter, Coors (b0085) 2023; 13
Xue, Shen (b0550) 2023; 79
Ekanayake, Meddage, Rathnayake (b0165) 2022; 16
ASTM, D-2013. Standard Practice for Preparing Coal Samples for Analysis.
ISO 19579: 2006. Solid mineral fuels Determination of sulphur by IR spectrometry.
Zhou, Liu, Li, Du, Yang (b0620) 2025; 22
Zhou, Chen, Li, Qiu, Huang, Tao (b0610) 2023; 41
Idris, Man, Bustam, Rabat, Uddin, Abdul Mannan (b0235) 2022; 42
Ding, Tarokh, Yang (b0145) 2018; 35
Goldstein, Kapelner, Bleich, Pitkin (b0200) 2015; 24
Ehsani, Hamidian, Hajikarimi, Nejad (b0160) 2023; 364
Chou, Truong (b0105) 2021; 389
(pp. 1-30). Woodhead Publishing.
Xu, Han, Fu (b0540) 2017; 10
Chou, Truong (b0110) 2022; 134
Rezk, Olabi, Wilberforce, Sayed (b0405) 2023; 15
Rahkar Farshi (b0395) 2021; 33
Qiu, Zhou (b0390) 2025; 58
Tripathy, Singh, Kundu (b0495) 2015; 68
Qiu, Zhou (b0375) 2024; 19
Elith, Leathwick, Hastie (b0170) 2008; 77
Ghosh, Nag (b0195) 2001
Shwetha, Priyatham, Gangadhar (b0445) 2024; 83
Trawiński, Smętek, Telec, Lasota (b0490) 2012; 22
Mirjalili, Lewis (b0325) 2016; 95
Agarwal, N., & Das, S. (2020, December). Interpretable machine learning tools: A survey. In
Brahim, Kobayashi, Al Ali, Khatir, Elmeliani (b0090) 2024
Li, Zhou, Du, Dias (b0280) 2023; 33
Osaba, Villar-Rodriguez, Del Ser, Nebro, Molina, LaTorre (b0355) 2021; 64
Al-Betar, Alyasseri, Awadallah, Abu Doush (b0030) 2021; 33
Crone, Kourentzes (b0125) 2010; 73
Demšar (b0135) 2006; 7
Iman, Davenport (b0240) 1980; 9
Weston, Elisseeff, Schölkopf, Tipping (b0535) 2003; 3
Alekhnovich, Artemieva, Bogomolov (b0035) 2021; 55
Liu, Liu, Liu, Xiong, Zhang (b0300) 2023; 11
Otchere, Ganat, Gholami, Ridha (b0360) 2021; 200
Lagaros, Plevris, Kallioras (b0265) 2022; 29
Flach, P. (2019, July). Performance evaluation in machine learning: the good, the bad, the ugly, and the way forward. In
Akay, Karaboga, Akay (b0025) 2022; 55
Jordan, Mitchell (b0250) 2015; 349
Zhou, Pan, Wang, Vasilakos (b0630) 2017; 237
L’heureux, A., Grolinger, K., Elyamany, H. F., & Capretz, M. A. (2017). Machine learning with big data: Challenges and approaches.
Elshawi, Al-Mallah, Sakr (b0175) 2019; 19
(Doctoral dissertation).
(Vol. 33, No. 01, pp. 9808-9814).
Diez-Olivan, Del Ser, Galar, Sierra (b0140) 2019; 50
Uddin, Khan, Hossain, Moni (b0505) 2019; 19
Demirbaş (b0130) 2003; 44
Gutiérrez, Patiño, Duque-Grisales (b0210) 2021; 14
Abraham, A. (2005). Artificial neural networks.
Wells, Wigley, Foster, Gibb, Williamson (b0525) 2004; 83
(Vol. 2, pp. 19-21).
Wang, H., Ma, C., & Zhou, L. (2009, December). A brief review of machine learning and its application. In
Liang, Hu, Guo, Tang (b0290) 2022; 187
Snyman, C. P., 1998. Coal in Wilson. M. G. C and Anhausser. C. R (Eds). The Mineral deposits of South Africa, Handbook. Council of Geoscience, pp. 136-205.
Kabuba, J. (2016). Application of Neural Networks Technique for Predicting of Abrasiveness Characteristics of Thermal Coal. In
Yang (b0565) 2013; 1
Zhang, Qiu, Armaghani, Monjezi, Zhou (b0595) 2024; 31
Li, Mei, Zhang (b0275) 2024; 154
Vose (b0515) 2008
Xue, Shen (b0545) 2020; 8
Wells, Wigley, Foster, Livingston, Gibb, Williamson (b0530) 2005; 86
ASTM, D5865-04. Standard Test Method for Gross Calorific Value of Coal and Coke.
Zhou, Zhou, Ohl (b0635) 2024; 371
Onifade, Lawal, Bada, Khandelwal (b0350) 2024; 374
Zhou, Qi, Peng, Zhang, Khandelwal (b0615) 2024; 154
Duan, Gong, Luo, Zhao (b0155) 2023; 13
Bureska (b0095) 2021; 5
Strobl, Malley, Tutz (b0465) 2009; 14
Sun, Xu, Wen, Wang (b0475) 2021; 281
Petrica, Badisch, Peinsitt (b0370) 2013; 308
Rzychoń, Żogała, Rog (b0415) 2022; 42
Sahin, Akay (b0420) 2016; 49
Hastie, Tibshirani, Friedman, Hastie, Tibshirani, Friedman (b0215) 2009
Yin, Liu, Huang, Pan (b0575) 2022; 120
Sahoo, Saha, Ezugwu, Agushaka, Abuhaija, Alsoud (b0425) 2023; 30
Zhou, Li, Mitri (b0625) 2016; 30
(pp. 1-4). IEEE.
Ürünveren, Altıner, Kuvvetli, Ural, Ural (b0510) 2020; 40
Liu, Wang, Song (b0305) 2022; 36
Martin, Harten, Young, Muratov, Golbraikh, Zhu (b0315) 2012; 52
Li, Xue, Li, Sun, Hao (b0285) 2023; 385
Zang, Idoughi, Li, Wonka, Heidrich (b0585) 2021
ASTM, D5142. Standard Test Methods for Proximate Analysis of the Analysis Sample of Coal and Coke by Instrumental Procedures.
Cristianini, Scholkopf (b0120) 2002; 23
Belavagi, Muniyal (b0080) 2016; 89
McLellan, Corder, Giurco, Ishihara (b0320) 2012; 32
Yaralı, Yaşar, Bacak, Ranjith (b0570) 2008; 74
Mukhamediev, Popova, Kuchin, Zaitseva, Kalimoldayev, Symagulov (b0340) 2022; 10
Acar, Bayrak, Jung, Lee, Ramu, Ravichandran (b0015) 2021; 64
Arnold, Biedebach, Küpfer, Neunhoeffer (b0045) 2024; 12
Mohapatra, Mohapatra (b0335) 2023; 13
Bacanin, Perisic, Jovanovic, Damaševičius, Stanisic, Simic (b0070) 2024; 929
Ali, Hussain, Haque (b0040) 2024; 194
Chen (10.1016/j.fuel.2025.136065_b0100) 2025; 384
10.1016/j.fuel.2025.136065_b0270
Elshawi (10.1016/j.fuel.2025.136065_b0175) 2019; 19
Ghadernejad (10.1016/j.fuel.2025.136065_b0190) 2024; 16
Chou (10.1016/j.fuel.2025.136065_b0110) 2022; 134
Sahoo (10.1016/j.fuel.2025.136065_b0425) 2023; 30
Yin (10.1016/j.fuel.2025.136065_b0575) 2022; 120
Yang (10.1016/j.fuel.2025.136065_b0565) 2013; 1
Otchere (10.1016/j.fuel.2025.136065_b0360) 2021; 200
Zhang (10.1016/j.fuel.2025.136065_b0590) 2025; 272
Muske (10.1016/j.fuel.2025.136065_b0345) 1993; 39
10.1016/j.fuel.2025.136065_b0310
Yang (10.1016/j.fuel.2025.136065_b0560) 2020; 415
Ehsani (10.1016/j.fuel.2025.136065_b0160) 2023; 364
Martin (10.1016/j.fuel.2025.136065_b0315) 2012; 52
Acar (10.1016/j.fuel.2025.136065_b0015) 2021; 64
Li (10.1016/j.fuel.2025.136065_b0280) 2023; 33
Vose (10.1016/j.fuel.2025.136065_b0515) 2008
Goldstein (10.1016/j.fuel.2025.136065_b0200) 2015; 24
Strobl (10.1016/j.fuel.2025.136065_b0465) 2009; 14
Rahkar Farshi (10.1016/j.fuel.2025.136065_b0395) 2021; 33
Xu (10.1016/j.fuel.2025.136065_b0540) 2017; 10
Petrica (10.1016/j.fuel.2025.136065_b0370) 2013; 308
Brahim (10.1016/j.fuel.2025.136065_b0090) 2024
Gupta (10.1016/j.fuel.2025.136065_b0205) 2016
Bischl (10.1016/j.fuel.2025.136065_b0085) 2023; 13
Zhou (10.1016/j.fuel.2025.136065_b0610) 2023; 41
Rao (10.1016/j.fuel.2025.136065_b0400) 2009; 91
Rezk (10.1016/j.fuel.2025.136065_b0410) 2024; 102437
Al-Betar (10.1016/j.fuel.2025.136065_b0030) 2021; 33
Qiu (10.1016/j.fuel.2025.136065_b0380) 2024; 82
Mukhamediev (10.1016/j.fuel.2025.136065_b0340) 2022; 10
Elith (10.1016/j.fuel.2025.136065_b0170) 2008; 77
Hu (10.1016/j.fuel.2025.136065_b0220) 2016; 86
Ding (10.1016/j.fuel.2025.136065_b0145) 2018; 35
Schratz (10.1016/j.fuel.2025.136065_b0430) 2019; 406
Zang (10.1016/j.fuel.2025.136065_b0585) 2021
Liu (10.1016/j.fuel.2025.136065_b0300) 2023; 11
Lagaros (10.1016/j.fuel.2025.136065_b0265) 2022; 29
Weston (10.1016/j.fuel.2025.136065_b0535) 2003; 3
Trawiński (10.1016/j.fuel.2025.136065_b0490) 2012; 22
Sheskin (10.1016/j.fuel.2025.136065_b0440) 2003
Duan (10.1016/j.fuel.2025.136065_b0155) 2023; 13
Sun (10.1016/j.fuel.2025.136065_b0475) 2021; 281
Spero (10.1016/j.fuel.2025.136065_b0460) 1990; 69
Wells (10.1016/j.fuel.2025.136065_b0530) 2005; 86
Liu (10.1016/j.fuel.2025.136065_b0305) 2022; 36
Perez (10.1016/j.fuel.2025.136065_b0365) 2015; 344
10.1016/j.fuel.2025.136065_b0255
Onifade (10.1016/j.fuel.2025.136065_b0350) 2024; 374
Qiu (10.1016/j.fuel.2025.136065_b0375) 2024; 19
Crone (10.1016/j.fuel.2025.136065_b0125) 2010; 73
10.1016/j.fuel.2025.136065_b0260
Qiu (10.1016/j.fuel.2025.136065_b0390) 2025; 58
Demirbaş (10.1016/j.fuel.2025.136065_b0130) 2003; 44
Bureska (10.1016/j.fuel.2025.136065_b0095) 2021; 5
Huang (10.1016/j.fuel.2025.136065_b0225) 2024; 57
Gentle (10.1016/j.fuel.2025.136065_b0185) 2003; Vol. 381
Diez-Olivan (10.1016/j.fuel.2025.136065_b0140) 2019; 50
Ali (10.1016/j.fuel.2025.136065_b0040) 2024; 194
Akay (10.1016/j.fuel.2025.136065_b0025) 2022; 55
10.1016/j.fuel.2025.136065_b0020
Xue (10.1016/j.fuel.2025.136065_b0550) 2023; 79
Cristianini (10.1016/j.fuel.2025.136065_b0120) 2002; 23
Bandopadhyay (10.1016/j.fuel.2025.136065_b0075) 2010; 84
Ghosh (10.1016/j.fuel.2025.136065_b0195) 2001
Ürünveren (10.1016/j.fuel.2025.136065_b0510) 2020; 40
Li (10.1016/j.fuel.2025.136065_b0285) 2023; 385
Belavagi (10.1016/j.fuel.2025.136065_b0080) 2016; 89
Mirjalili (10.1016/j.fuel.2025.136065_b0325) 2016; 95
Sahin (10.1016/j.fuel.2025.136065_b0420) 2016; 49
Tshiongo (10.1016/j.fuel.2025.136065_b0500) 2013; SAUPEC
Uddin (10.1016/j.fuel.2025.136065_b0505) 2019; 19
Zhou (10.1016/j.fuel.2025.136065_b0630) 2017; 237
10.1016/j.fuel.2025.136065_b0470
Li (10.1016/j.fuel.2025.136065_b0275) 2024; 154
Gutiérrez (10.1016/j.fuel.2025.136065_b0210) 2021; 14
Zhou (10.1016/j.fuel.2025.136065_b0600) 2022; 126
Shwetha (10.1016/j.fuel.2025.136065_b0445) 2024; 83
Ekanayake (10.1016/j.fuel.2025.136065_b0165) 2022; 16
Zhou (10.1016/j.fuel.2025.136065_b0635) 2024; 371
Ding (10.1016/j.fuel.2025.136065_b0150) 2021; 358
Clark (10.1016/j.fuel.2025.136065_b0115) 2017
Xue (10.1016/j.fuel.2025.136065_b0545) 2020; 8
Alekhnovich (10.1016/j.fuel.2025.136065_b0035) 2021; 55
Rzychoń (10.1016/j.fuel.2025.136065_b0415) 2022; 42
Osaba (10.1016/j.fuel.2025.136065_b0355) 2021; 64
Zhou (10.1016/j.fuel.2025.136065_b0625) 2016; 30
Hussain (10.1016/j.fuel.2025.136065_b0230) 2022; 15
Liang (10.1016/j.fuel.2025.136065_b0290) 2022; 187
10.1016/j.fuel.2025.136065_b0005
Spero (10.1016/j.fuel.2025.136065_b0455) 1991; 146
Rezk (10.1016/j.fuel.2025.136065_b0405) 2023; 15
Zhou (10.1016/j.fuel.2025.136065_b0620) 2025; 22
Wells (10.1016/j.fuel.2025.136065_b0525) 2004; 83
10.1016/j.fuel.2025.136065_b0520
10.1016/j.fuel.2025.136065_b0245
Abu Doush (10.1016/j.fuel.2025.136065_b0010) 2023; 35
Yaralı (10.1016/j.fuel.2025.136065_b0570) 2008; 74
10.1016/j.fuel.2025.136065_b0485
McLellan (10.1016/j.fuel.2025.136065_b0320) 2012; 32
Idris (10.1016/j.fuel.2025.136065_b0235) 2022; 42
Zhou (10.1016/j.fuel.2025.136065_b0605) 2022; 124
10.1016/j.fuel.2025.136065_b0050
Mohapatra (10.1016/j.fuel.2025.136065_b0335) 2023; 13
Arnold (10.1016/j.fuel.2025.136065_b0045) 2024; 12
Jordan (10.1016/j.fuel.2025.136065_b0250) 2015; 349
10.1016/j.fuel.2025.136065_b0055
Qiu (10.1016/j.fuel.2025.136065_b0385) 2024; 57
10.1016/j.fuel.2025.136065_b0450
Mitra (10.1016/j.fuel.2025.136065_b0330) 2023; 335
Bacanin (10.1016/j.fuel.2025.136065_b0070) 2024; 929
Taibi (10.1016/j.fuel.2025.136065_b0480) 2012; 16
10.1016/j.fuel.2025.136065_b0060
Shaheen (10.1016/j.fuel.2025.136065_b0435) 2018; 9
10.1016/j.fuel.2025.136065_b0180
Zhang (10.1016/j.fuel.2025.136065_b0595) 2024; 31
Yancey (10.1016/j.fuel.2025.136065_b0555) 1951; 190
Tripathy (10.1016/j.fuel.2025.136065_b0495) 2015; 68
Hastie (10.1016/j.fuel.2025.136065_b0215) 2009
Zhou (10.1016/j.fuel.2025.136065_b0615) 2024; 154
Chou (10.1016/j.fuel.2025.136065_b0105) 2021; 389
10.1016/j.fuel.2025.136065_b0065
Iman (10.1016/j.fuel.2025.136065_b0240) 1980; 9
10.1016/j.fuel.2025.136065_b0580
Demšar (10.1016/j.fuel.2025.136065_b0135) 2006; 7
References_xml – reference: Wang, H., Ma, C., & Zhou, L. (2009, December). A brief review of machine learning and its application. In
– volume: 1
  start-page: 23
  year: 2013
  ident: b0565
  article-title: Optimization and metaheuristic algorithms in engineering
  publication-title: Metaheuristics in water, geotechnical and transport engineering
– volume: 237
  start-page: 350
  year: 2017
  end-page: 361
  ident: b0630
  article-title: Machine learning on big data: Opportunities and challenges
  publication-title: Neurocomputing
– volume: 22
  start-page: 241
  year: 2025
  end-page: 262
  ident: b0620
  article-title: Cutting-edge approaches to specific energy prediction in TBM disc cutters: Integrating COSSA-RF model with three interpretative techniques
  publication-title: Underground Space
– volume: 33
  start-page: 5011
  year: 2021
  end-page: 5042
  ident: b0030
  article-title: Coronavirus herd immunity optimizer (CHIO)
  publication-title: Neural Comput. & Applic.
– volume: 200
  year: 2021
  ident: b0360
  article-title: Application of supervised machine learning paradigms in the prediction of petroleum reservoir properties: Comparative analysis of ANN and SVM models
  publication-title: J. Petrol. Sci. Eng.
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: b0135
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: The Journal of Machine learning research
– volume: 154
  year: 2024
  ident: b0275
  article-title: Application of supervised random forest paradigms based on optimization and post-hoc explanation in underground stope stability prediction
  publication-title: Appl. Soft Comput.
– start-page: 1
  year: 2001
  end-page: 36
  ident: b0195
  article-title: An overview of radial basis function networks
– reference: Suárez-Ruiz, I., Diez, M. A., & Rubiera, F. (2019). Coal. In
– volume: 42
  start-page: 1143
  year: 2022
  end-page: 1169
  ident: b0235
  article-title: Grindability and abrasive behavior of coal blends: analysis and prediction
  publication-title: Int. J. Coal Prep. Util.
– volume: 11
  start-page: 1636
  year: 2023
  ident: b0300
  article-title: Random forest and whale optimization algorithm to predict the invalidation risk of backfilling pipeline
  publication-title: Mathematics
– start-page: 9
  year: 2009
  end-page: 41
  ident: b0215
  article-title: Overview of supervised learning
– reference: Yu, T., & Zhu, H. (2020). Hyper-parameter optimization: A review of algorithms and applications.
– reference: (Vol. 2, pp. 19-21).
– volume: 13
  start-page: e1484
  year: 2023
  ident: b0085
  article-title: Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges
  publication-title: Wiley Interdiscip. Rev.: Data Min. Knowl. Discovery
– volume: 364
  year: 2023
  ident: b0160
  article-title: Optimized prediction models for faulting failure of Jointed Plain concrete pavement using the metaheuristic optimization algorithms
  publication-title: Constr. Build. Mater.
– volume: 126
  year: 2022
  ident: b0600
  article-title: Cross-correlation stacking-based microseismic source location using three metaheuristic optimization algorithms
  publication-title: Tunn. Undergr. Space Technol.
– volume: 35
  start-page: 16
  year: 2018
  end-page: 34
  ident: b0145
  article-title: Model selection techniques: an overview
  publication-title: IEEE Signal Process Mag.
– volume: 79
  start-page: 7305
  year: 2023
  end-page: 7336
  ident: b0550
  article-title: Dung beetle optimizer: a new meta-heuristic algorithm for global optimization
  publication-title: J. Supercomput.
– volume: 272
  year: 2025
  ident: b0590
  article-title: Residential building cooling load prediction with optimized KELM models and interpretability insights
  publication-title: Appl. Therm. Eng.
– volume: 194
  year: 2024
  ident: b0040
  article-title: Advances, challenges, and future research needs in machine learning-based crash prediction models: a systematic review
  publication-title: Accid. Anal. Prev.
– volume: 14
  start-page: 4424
  year: 2021
  ident: b0210
  article-title: A comparison of the performance of supervised learning algorithms for solar power prediction
  publication-title: Energies
– volume: 19
  start-page: 1
  year: 2019
  end-page: 32
  ident: b0175
  article-title: On the interpretability of machine learning-based model for predicting hypertension
  publication-title: BMC Med. Inf. Decis. Making
– volume: 77
  start-page: 802
  year: 2008
  end-page: 813
  ident: b0170
  article-title: A working guide to boosted regression trees
  publication-title: J. Anim. Ecol.
– reference: Kabuba, J. (2016). Application of Neural Networks Technique for Predicting of Abrasiveness Characteristics of Thermal Coal. In
– year: 2016
  ident: b0205
– volume: 3
  start-page: 1439
  year: 2003
  end-page: 1461
  ident: b0535
  article-title: Use of the zero norm with linear models and kernel methods
  publication-title: The Journal of Machine Learning Research
– volume: 44
  start-page: 1465
  year: 2003
  end-page: 1479
  ident: b0130
  article-title: Sustainable cofiring of biomass with coal
  publication-title: Energ. Conver. Manage.
– year: 2008
  ident: b0515
– volume: 9
  start-page: 571
  year: 1980
  end-page: 595
  ident: b0240
  article-title: Approximations of the critical region of the fbietkan statistic
  publication-title: Communications in Statistics-Theory and Methods
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b0325
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 389
  year: 2021
  ident: b0105
  article-title: A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean
  publication-title: Appl. Math Comput.
– volume: 82
  year: 2024
  ident: b0380
  article-title: An ensemble model of explainable soft computing for failure mode identification in reinforced concrete shear walls
  publication-title: Journal of Building Engineering
– reference: Tlotleng, M. T. (2011).
– volume: 371
  year: 2024
  ident: b0635
  article-title: Improved prediction accuracy for compressive strength of recycled aggregate concrete using optimization-based algorithms and cascade forward neural network
  publication-title: J. Environ. Manage.
– volume: 102437
  year: 2024
  ident: b0410
  article-title: Metaheuristic optimization algorithms for real-world electrical and civil engineering application: a Review
  publication-title: Results Eng.
– reference: Lundberg, S. (2017). A unified approach to interpreting model predictions.
– reference: ,
– volume: 349
  start-page: 255
  year: 2015
  end-page: 260
  ident: b0250
  article-title: Machine learning: Trends, perspectives, and prospects
  publication-title: Science
– volume: 30
  year: 2016
  ident: b0625
  article-title: Classification of rockburst in underground projects: comparison of ten supervised learning methods
  publication-title: J. Comput. Civ. Eng.
– volume: 55
  start-page: 829
  year: 2022
  end-page: 894
  ident: b0025
  article-title: A comprehensive survey on optimizing deep learning models by metaheuristics
  publication-title: Artif. Intell. Rev.
– volume: 42
  start-page: 3348
  year: 2022
  end-page: 3368
  ident: b0415
  article-title: SHAP-based interpretation of an XGBoost model in the prediction of grindability of coals and their blends
  publication-title: Int. J. Coal Prep. Util.
– volume: 64
  year: 2021
  ident: b0355
  article-title: A tutorial on the design, experimentation and application of metaheuristic algorithms to real-world optimization problems
  publication-title: Swarm Evol. Comput.
– reference: L’heureux, A., Grolinger, K., Elyamany, H. F., & Capretz, M. A. (2017). Machine learning with big data: Challenges and approaches.
– volume: 929
  year: 2024
  ident: b0070
  article-title: The explainable potential of coupling hybridized metaheuristics, XGBoost, and SHAP in revealing toluene behavior in the atmosphere
  publication-title: Sci. Total Environ.
– volume: 415
  start-page: 295
  year: 2020
  end-page: 316
  ident: b0560
  article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice
  publication-title: Neurocomputing
– reference: (Doctoral dissertation).
– reference: (pp. 1-4). IEEE.
– volume: 64
  start-page: 2909
  year: 2021
  end-page: 2945
  ident: b0015
  article-title: Modeling, analysis, and optimization under uncertainties: a review
  publication-title: Struct. Multidiscip. Optim.
– reference: (Vol. 33, No. 01, pp. 9808-9814).
– volume: 49
  start-page: 1202
  year: 2016
  end-page: 1214
  ident: b0420
  article-title: Comparisons of metaheuristic algorithms and fitness functions on software test data generation
  publication-title: Appl. Soft Comput.
– volume: 83
  start-page: 15565
  year: 2024
  end-page: 15590
  ident: b0445
  article-title: Artificial neural network based channel equalization using battle royale optimization algorithm with different initialization strategies
  publication-title: Multimed. Tools Appl.
– volume: 33
  start-page: 1139
  year: 2021
  end-page: 1157
  ident: b0395
  article-title: Battle royale optimization algorithm
  publication-title: Neural Comput. & Applic.
– volume: 73
  start-page: 1923
  year: 2010
  end-page: 1936
  ident: b0125
  article-title: Feature selection for time series prediction–a combined filter and wrapper approach for neural networks
  publication-title: Neurocomputing
– volume: 52
  start-page: 2570
  year: 2012
  end-page: 2578
  ident: b0315
  article-title: Does rational selection of training and test sets improve the outcome of QSAR modeling?
  publication-title: J. Chem. Inf. Model.
– volume: 10
  start-page: 2552
  year: 2022
  ident: b0340
  article-title: Review of artificial intelligence and machine learning technologies: classification, restrictions, opportunities and challenges
  publication-title: Mathematics
– volume: 36
  start-page: 1271
  year: 2022
  end-page: 1285
  ident: b0305
  article-title: Failure prediction of municipal water pipes using machine learning algorithms
  publication-title: Water Resour. Manag.
– volume: 16
  year: 2022
  ident: b0165
  article-title: A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations (SHAP)
  publication-title: Case Stud. Constr. Mater.
– volume: 281
  year: 2021
  ident: b0475
  article-title: Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: a comparison between logistic regression and random forest
  publication-title: Eng. Geol.
– reference: (pp. 1528-1534). IEEE.
– volume: 120
  year: 2022
  ident: b0575
  article-title: Perception model of surrounding rock geological conditions based on TBM operational big data and combined unsupervised-supervised learning
  publication-title: Tunn. Undergr. Space Technol.
– volume: 335
  year: 2023
  ident: b0330
  article-title: A comprehensive and comparative review on parameter estimation methods for modelling proton exchange membrane fuel cell
  publication-title: Fuel
– volume: 15
  start-page: 5732
  year: 2023
  ident: b0405
  article-title: A comprehensive review and application of metaheuristics in solving the optimal parameter identification problems
  publication-title: Sustainability
– volume: 14
  start-page: 323
  year: 2009
  ident: b0465
  article-title: An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests
  publication-title: Psychol. Methods
– volume: 384
  year: 2025
  ident: b0100
  article-title: Predicting the hardgrove grindability index using interpretable decision tree-based machine learning models
  publication-title: Fuel
– reference: ASTM, D5142. Standard Test Methods for Proximate Analysis of the Analysis Sample of Coal and Coke by Instrumental Procedures.
– volume: 9
  start-page: 215
  year: 2018
  end-page: 231
  ident: b0435
  article-title: A review of meta-heuristic algorithms for reactive power planning problem
  publication-title: Ain Shams Eng. J.
– volume: Vol. 381
  year: 2003
  ident: b0185
  publication-title: Random number generation and Monte Carlo methods
– volume: 50
  start-page: 92
  year: 2019
  end-page: 111
  ident: b0140
  article-title: Data fusion and machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0
  publication-title: Inf. Fusion
– volume: 190
  start-page: 262
  year: 1951
  end-page: 268
  ident: b0555
  article-title: An investigation of the abrasiveness of coal and its associated impurities
  publication-title: TRANSACTIONS OF THE AMERICAN INSTITUTE OF MINING AND METALLURGICAL ENGINEERS
– volume: 69
  start-page: 1168
  year: 1990
  end-page: 1176
  ident: b0460
  article-title: Assessment and prediction of coal abrasiveness
  publication-title: Fuel
– volume: 13
  start-page: 5211
  year: 2023
  ident: b0335
  article-title: American zebra optimization algorithm for global optimization problems
  publication-title: Sci. Rep.
– volume: 16
  start-page: 3778
  year: 2024
  ident: b0190
  article-title: Predicting Rock Hardness and Abrasivity using Hyperspectral Imaging Data and Random Forest Regressor Model
  publication-title: Remote Sens. (Basel)
– volume: 16
  start-page: 735
  year: 2012
  end-page: 744
  ident: b0480
  article-title: The potential for renewable energy in industrial applications
  publication-title: Renew. Sustain. Energy Rev.
– volume: 358
  start-page: 10121
  year: 2021
  end-page: 10140
  ident: b0150
  article-title: Random radial basis function kernel-based support vector machine
  publication-title: J. Franklin Inst.
– volume: 86
  start-page: 535
  year: 2005
  end-page: 550
  ident: b0530
  article-title: The nature of mineral matter in a coal and the effects on erosive and abrasive behaviour
  publication-title: Fuel Process. Technol.
– volume: 15
  start-page: 4501
  year: 2022
  ident: b0230
  article-title: Application of machine learning for lithofacies prediction and cluster analysis approach to identify rock type
  publication-title: Energies
– volume: 86
  start-page: 20
  year: 2016
  end-page: 27
  ident: b0220
  article-title: Review of improved Monte Carlo methods in uncertainty-based design optimization for aerospace vehicles
  publication-title: Prog. Aerosp. Sci.
– volume: 146
  start-page: 389
  year: 1991
  end-page: 408
  ident: b0455
  article-title: Review of test methods for abrasive wear in ore grinding
  publication-title: Wear
– volume: 89
  start-page: 117
  year: 2016
  end-page: 123
  ident: b0080
  article-title: Performance evaluation of supervised machine learning algorithms for intrusion detection
  publication-title: Procedia Comput. Sci.
– volume: 57
  start-page: 9781
  year: 2024
  end-page: 9804
  ident: b0225
  article-title: Refined approaches for open stope stability analysis in mining environments: hybrid SVM model with multi-optimization strategies and gp technique
  publication-title: Rock Mech. Rock Eng.
– volume: 308
  start-page: 86
  year: 2013
  end-page: 94
  ident: b0370
  article-title: Abrasive wear mechanisms and their relation to rock properties
  publication-title: Wear
– volume: 124
  year: 2022
  ident: b0605
  article-title: Optimization of random forest through the use of MVO, GWO and MFO in evaluating the stability of underground entry-type excavations
  publication-title: Tunn. Undergr. Space Technol.
– volume: 374
  year: 2024
  ident: b0350
  article-title: Predictive modelling for coal abrasive index: Unveiling influential factors through Shallow and Deep Neural Networks
  publication-title: Fuel
– reference: ASTM, D-2013. Standard Practice for Preparing Coal Samples for Analysis.
– volume: 406
  start-page: 109
  year: 2019
  end-page: 120
  ident: b0430
  article-title: Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data
  publication-title: Ecol. Model.
– volume: 91
  start-page: 55
  year: 2009
  end-page: 59
  ident: b0400
  article-title: Hardgrove grindability index prediction using support vector regression
  publication-title: Int. J. Miner. Process.
– volume: 19
  start-page: 101
  year: 2024
  end-page: 118
  ident: b0375
  article-title: Novel rockburst prediction criterion with enhanced explainability employing CatBoost and nature-inspired metaheuristic technique
  publication-title: Underground Space
– volume: 29
  start-page: 5457
  year: 2022
  end-page: 5492
  ident: b0265
  article-title: The mosaic of metaheuristic algorithms in structural optimization
  publication-title: Arch. Comput. Meth. Eng.
– reference: Flach, P. (2019, July). Performance evaluation in machine learning: the good, the bad, the ugly, and the way forward. In
– start-page: 1960
  year: 2021
  end-page: 1970
  ident: b0585
  article-title: Intratomo: self-supervised learning-based tomography via sinogram synthesis and prediction
  publication-title: In
– volume: 344
  start-page: 1
  year: 2015
  end-page: 8
  ident: b0365
  article-title: A preliminary study on the role of acoustic emission on inferring Cerchar abrasivity index of rocks using artificial neural network
  publication-title: Wear
– volume: 35
  start-page: 15923
  year: 2023
  end-page: 15941
  ident: b0010
  article-title: Archive-based coronavirus herd immunity algorithm for optimizing weights in neural networks
  publication-title: Neural Comput. & Applic.
– reference: (pp. 1-30). Woodhead Publishing.
– volume: SAUPEC
  start-page: 288
  year: 2013
  end-page: 293
  ident: b0500
  article-title: South african coal and its abrasiveness index determination: an account of challenges
  publication-title: In Proc of Southern African Universities Engineering Conf
– volume: 83
  start-page: 359
  year: 2004
  end-page: 364
  ident: b0525
  article-title: The relationship between excluded mineral matter and abrasion index of a coal
  publication-title: Fuel
– volume: 31
  start-page: 2916
  year: 2024
  end-page: 2929
  ident: b0595
  article-title: Enhancing rock fragmentation prediction in mining operations: a Hybrid GWO-RF model with SHAP interpretability
  publication-title: J. Cent. South Univ.
– volume: 55
  start-page: 96
  year: 2021
  end-page: 102
  ident: b0035
  article-title: Definition and Assessment of Coal Abrasivity
  publication-title: Power Technology and Engineering
– volume: 33
  start-page: 1019
  year: 2023
  end-page: 1036
  ident: b0280
  article-title: Stability prediction of hard rock pillar using support vector machine optimized by three metaheuristic algorithms
  publication-title: Int. J. Min. Sci. Technol.
– reference: ISO 19579: 2006. Solid mineral fuels Determination of sulphur by IR spectrometry.
– reference: , 7776-7797.
– volume: 57
  start-page: 7535
  year: 2024
  end-page: 7563
  ident: b0385
  article-title: Evaluation and interpretation of blasting-induced tunnel overbreak: using heuristic-based ensemble learning and gene expression programming techniques
  publication-title: Rock Mech. Rock Eng.
– reference: Abraham, A. (2005). Artificial neural networks.
– volume: 22
  start-page: 867
  year: 2012
  end-page: 881
  ident: b0490
  article-title: Nonparametric statistical analysis for multiple comparison of machine learning regression algorithms
  publication-title: Int. J. Appl. Math. Comput. Sci.
– volume: 23
  start-page: 31
  year: 2002
  ident: b0120
  article-title: Support vector machines and kernel methods: the new generation of learning machines
  publication-title: AI Mag.
– reference: ASTM, D5373-14. Standard Test Methods for Determination of Carbon, Hydrogen, and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke.
– volume: 58
  start-page: 5475
  year: 2025
  end-page: 5502
  ident: b0390
  article-title: Methodology for Constructing Explicit Stability Formulas for Hard Rock Pillars: Integrating Data-Driven Approaches and Interpretability Techniques
  publication-title: Rock Mech. Rock Eng.
– volume: 68
  start-page: 302
  year: 2015
  end-page: 309
  ident: b0495
  article-title: Prediction of abrasiveness index of some Indian rocks using soft computing methods
  publication-title: Measurement
– year: 2024
  ident: b0090
  article-title: Metaheuristic Optimization Algorithms: an overview
  publication-title: HCMCOU Journal of Science-Advances in Computational Structures
– volume: 154
  year: 2024
  ident: b0615
  article-title: Comprehensive review and future perspectives on prediction and mitigation of tunnel-induced ground settlement: a bibliometric analysis and methodological overview (2002–2022)
  publication-title: Tunn. Undergr. Space Technol.
– volume: 30
  start-page: 391
  year: 2023
  end-page: 426
  ident: b0425
  article-title: Moth flame optimization: theory, modifications, hybridizations, and applications
  publication-title: Arch. Comput. Meth. Eng.
– volume: 74
  start-page: 53
  year: 2008
  end-page: 66
  ident: b0570
  article-title: A study of rock abrasivity and tool wear in coal measures rocks
  publication-title: Int. J. Coal Geol.
– reference: Lawal, A. I., Bada, S., & Onifade, M. (2024). Prediction of HGI of South African coalfields: A comparative analysis of ANN, SVR and LSTM models; in the International Coal Preparation and Utilization,
– volume: 19
  start-page: 1
  year: 2019
  end-page: 16
  ident: b0505
  article-title: Comparing different supervised machine learning algorithms for disease prediction
  publication-title: BMC Med. Inf. Decis. Making
– volume: 8
  start-page: 22
  year: 2020
  end-page: 34
  ident: b0545
  article-title: A novel swarm intelligence optimization approach: sparrow search algorithm
  publication-title: Systems science & control engineering
– reference: Agarwal, N., & Das, S. (2020, December). Interpretable machine learning tools: A survey. In
– volume: 134
  year: 2022
  ident: b0110
  article-title: Multiobjective forensic-based investigation algorithm for solving structural design problems
  publication-title: Autom. Constr.
– reference: Snyman, C. P., 1998. Coal in Wilson. M. G. C and Anhausser. C. R (Eds). The Mineral deposits of South Africa, Handbook. Council of Geoscience, pp. 136-205.
– volume: 187
  year: 2022
  ident: b0290
  article-title: Abrasive tool wear prediction based on an improved hybrid difference grey wolf algorithm for optimizing SVM
  publication-title: Measurement
– start-page: 377
  year: 2017
  end-page: 419
  ident: b0115
  publication-title: Tree-based models
– volume: 32
  start-page: 32
  year: 2012
  end-page: 44
  ident: b0320
  article-title: Renewable energy in the minerals industry: a review of global potential
  publication-title: J. Clean. Prod.
– volume: 385
  year: 2023
  ident: b0285
  article-title: Prediction of composting maturity and identification of critical parameters for green waste compost using machine learning
  publication-title: Bioresour. Technol.
– volume: 10
  start-page: 3805
  year: 2017
  end-page: 3820
  ident: b0540
  article-title: Multivariable integrated evaluation of model performance with the vector field evaluation diagram
  publication-title: Geosci. Model Dev.
– reference: ASTM, D5865-04. Standard Test Method for Gross Calorific Value of Coal and Coke.
– volume: 5
  start-page: 1
  year: 2021
  end-page: 7
  ident: b0095
  article-title: Influence of coal quality on boiler elements abrasion'
  publication-title: Journal of Electrical Power & Energy Systems
– volume: 41
  year: 2023
  ident: b0610
  article-title: Machine learning models to predict the tunnel wall convergence
  publication-title: Transp. Geotech.
– volume: 24
  start-page: 44
  year: 2015
  end-page: 65
  ident: b0200
  article-title: Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation
  publication-title: J. Comput. Graph. Stat.
– volume: 12
  start-page: 841
  year: 2024
  end-page: 848
  ident: b0045
  article-title: The role of hyperparameters in machine learning models and how to tune them
  publication-title: Polit. Sci. Res. Methods
– reference: .
– volume: 84
  start-page: 63
  year: 2010
  end-page: 69
  ident: b0075
  article-title: A study on the abundance of quartz in thermal coals of India and its relation to abrasion index: Development of predictive model for abrasion
  publication-title: Int. J. Coal Geol.
– year: 2003
  ident: b0440
  article-title: Handbook of parametric and nonparametric statistical procedures
– volume: 13
  start-page: 12127
  year: 2023
  ident: b0155
  article-title: Air-quality prediction based on the ARIMA-CNN-LSTM combination model optimized by dung beetle optimizer
  publication-title: Sci. Rep.
– volume: 39
  start-page: 262
  year: 1993
  end-page: 287
  ident: b0345
  article-title: Model predictive control with linear models
  publication-title: AIChE J
– volume: 40
  start-page: 701
  year: 2020
  end-page: 711
  ident: b0510
  article-title: Prediction of hardgrove grindability index of Afsin-Elbistan (Turkey) low-grade coals based on proximate analysis and ash chemical composition by neural networks
  publication-title: Int. J. Coal Prep. Util.
– volume: 16
  start-page: 3778
  issue: 20
  year: 2024
  ident: 10.1016/j.fuel.2025.136065_b0190
  article-title: Predicting Rock Hardness and Abrasivity using Hyperspectral Imaging Data and Random Forest Regressor Model
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs16203778
– volume: 19
  start-page: 1
  year: 2019
  ident: 10.1016/j.fuel.2025.136065_b0175
  article-title: On the interpretability of machine learning-based model for predicting hypertension
  publication-title: BMC Med. Inf. Decis. Making
– volume: 13
  start-page: e1484
  issue: 2
  year: 2023
  ident: 10.1016/j.fuel.2025.136065_b0085
  article-title: Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges
  publication-title: Wiley Interdiscip. Rev.: Data Min. Knowl. Discovery
– volume: 19
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.fuel.2025.136065_b0505
  article-title: Comparing different supervised machine learning algorithms for disease prediction
  publication-title: BMC Med. Inf. Decis. Making
– volume: 86
  start-page: 20
  year: 2016
  ident: 10.1016/j.fuel.2025.136065_b0220
  article-title: Review of improved Monte Carlo methods in uncertainty-based design optimization for aerospace vehicles
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2016.07.004
– volume: 15
  start-page: 4501
  issue: 12
  year: 2022
  ident: 10.1016/j.fuel.2025.136065_b0230
  article-title: Application of machine learning for lithofacies prediction and cluster analysis approach to identify rock type
  publication-title: Energies
  doi: 10.3390/en15124501
– volume: 89
  start-page: 117
  year: 2016
  ident: 10.1016/j.fuel.2025.136065_b0080
  article-title: Performance evaluation of supervised machine learning algorithms for intrusion detection
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.06.016
– volume: 39
  start-page: 262
  issue: 2
  year: 1993
  ident: 10.1016/j.fuel.2025.136065_b0345
  article-title: Model predictive control with linear models
  publication-title: AIChE J
  doi: 10.1002/aic.690390208
– ident: 10.1016/j.fuel.2025.136065_b0245
– start-page: 1
  year: 2001
  ident: 10.1016/j.fuel.2025.136065_b0195
  article-title: An overview of radial basis function networks
– volume: 82
  year: 2024
  ident: 10.1016/j.fuel.2025.136065_b0380
  article-title: An ensemble model of explainable soft computing for failure mode identification in reinforced concrete shear walls
  publication-title: Journal of Building Engineering
  doi: 10.1016/j.jobe.2023.108386
– volume: 9
  start-page: 215
  issue: 2
  year: 2018
  ident: 10.1016/j.fuel.2025.136065_b0435
  article-title: A review of meta-heuristic algorithms for reactive power planning problem
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2015.12.003
– volume: 74
  start-page: 53
  issue: 1
  year: 2008
  ident: 10.1016/j.fuel.2025.136065_b0570
  article-title: A study of rock abrasivity and tool wear in coal measures rocks
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2007.09.007
– ident: 10.1016/j.fuel.2025.136065_b0065
– volume: 384
  year: 2025
  ident: 10.1016/j.fuel.2025.136065_b0100
  article-title: Predicting the hardgrove grindability index using interpretable decision tree-based machine learning models
  publication-title: Fuel
  doi: 10.1016/j.fuel.2024.133953
– volume: 58
  start-page: 5475
  year: 2025
  ident: 10.1016/j.fuel.2025.136065_b0390
  article-title: Methodology for Constructing Explicit Stability Formulas for Hard Rock Pillars: Integrating Data-Driven Approaches and Interpretability Techniques
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-025-04387-x
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.fuel.2025.136065_b0325
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 83
  start-page: 359
  issue: 3
  year: 2004
  ident: 10.1016/j.fuel.2025.136065_b0525
  article-title: The relationship between excluded mineral matter and abrasion index of a coal
  publication-title: Fuel
  doi: 10.1016/S0016-2361(03)00262-X
– volume: 22
  start-page: 241
  year: 2025
  ident: 10.1016/j.fuel.2025.136065_b0620
  article-title: Cutting-edge approaches to specific energy prediction in TBM disc cutters: Integrating COSSA-RF model with three interpretative techniques
  publication-title: Underground Space
  doi: 10.1016/j.undsp.2024.11.004
– volume: 69
  start-page: 1168
  issue: 9
  year: 1990
  ident: 10.1016/j.fuel.2025.136065_b0460
  article-title: Assessment and prediction of coal abrasiveness
  publication-title: Fuel
  doi: 10.1016/0016-2361(90)90077-4
– volume: 281
  year: 2021
  ident: 10.1016/j.fuel.2025.136065_b0475
  article-title: Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: a comparison between logistic regression and random forest
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2020.105972
– volume: 44
  start-page: 1465
  issue: 9
  year: 2003
  ident: 10.1016/j.fuel.2025.136065_b0130
  article-title: Sustainable cofiring of biomass with coal
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/S0196-8904(02)00144-9
– volume: 126
  year: 2022
  ident: 10.1016/j.fuel.2025.136065_b0600
  article-title: Cross-correlation stacking-based microseismic source location using three metaheuristic optimization algorithms
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2022.104570
– volume: 19
  start-page: 101
  year: 2024
  ident: 10.1016/j.fuel.2025.136065_b0375
  article-title: Novel rockburst prediction criterion with enhanced explainability employing CatBoost and nature-inspired metaheuristic technique
  publication-title: Underground Space
  doi: 10.1016/j.undsp.2024.03.003
– volume: 154
  year: 2024
  ident: 10.1016/j.fuel.2025.136065_b0275
  article-title: Application of supervised random forest paradigms based on optimization and post-hoc explanation in underground stope stability prediction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.111388
– volume: 33
  start-page: 5011
  year: 2021
  ident: 10.1016/j.fuel.2025.136065_b0030
  article-title: Coronavirus herd immunity optimizer (CHIO)
  publication-title: Neural Comput. & Applic.
  doi: 10.1007/s00521-020-05296-6
– start-page: 9
  year: 2009
  ident: 10.1016/j.fuel.2025.136065_b0215
– volume: 146
  start-page: 389
  issue: 2
  year: 1991
  ident: 10.1016/j.fuel.2025.136065_b0455
  article-title: Review of test methods for abrasive wear in ore grinding
  publication-title: Wear
  doi: 10.1016/0043-1648(91)90077-8
– volume: 349
  start-page: 255
  issue: 6245
  year: 2015
  ident: 10.1016/j.fuel.2025.136065_b0250
  article-title: Machine learning: Trends, perspectives, and prospects
  publication-title: Science
  doi: 10.1126/science.aaa8415
– volume: 187
  year: 2022
  ident: 10.1016/j.fuel.2025.136065_b0290
  article-title: Abrasive tool wear prediction based on an improved hybrid difference grey wolf algorithm for optimizing SVM
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110247
– volume: 3
  start-page: 1439
  year: 2003
  ident: 10.1016/j.fuel.2025.136065_b0535
  article-title: Use of the zero norm with linear models and kernel methods
  publication-title: The Journal of Machine Learning Research
– volume: 36
  start-page: 1271
  issue: 4
  year: 2022
  ident: 10.1016/j.fuel.2025.136065_b0305
  article-title: Failure prediction of municipal water pipes using machine learning algorithms
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-022-03080-w
– volume: 14
  start-page: 4424
  issue: 15
  year: 2021
  ident: 10.1016/j.fuel.2025.136065_b0210
  article-title: A comparison of the performance of supervised learning algorithms for solar power prediction
  publication-title: Energies
  doi: 10.3390/en14154424
– volume: 1
  start-page: 23
  year: 2013
  ident: 10.1016/j.fuel.2025.136065_b0565
  article-title: Optimization and metaheuristic algorithms in engineering
  publication-title: Metaheuristics in water, geotechnical and transport engineering
– volume: 13
  start-page: 12127
  issue: 1
  year: 2023
  ident: 10.1016/j.fuel.2025.136065_b0155
  article-title: Air-quality prediction based on the ARIMA-CNN-LSTM combination model optimized by dung beetle optimizer
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-36620-4
– volume: 344
  start-page: 1
  year: 2015
  ident: 10.1016/j.fuel.2025.136065_b0365
  article-title: A preliminary study on the role of acoustic emission on inferring Cerchar abrasivity index of rocks using artificial neural network
  publication-title: Wear
  doi: 10.1016/j.wear.2015.10.006
– volume: 50
  start-page: 92
  year: 2019
  ident: 10.1016/j.fuel.2025.136065_b0140
  article-title: Data fusion and machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.10.005
– volume: 35
  start-page: 15923
  issue: 21
  year: 2023
  ident: 10.1016/j.fuel.2025.136065_b0010
  article-title: Archive-based coronavirus herd immunity algorithm for optimizing weights in neural networks
  publication-title: Neural Comput. & Applic.
  doi: 10.1007/s00521-023-08577-y
– start-page: 1960
  year: 2021
  ident: 10.1016/j.fuel.2025.136065_b0585
  article-title: Intratomo: self-supervised learning-based tomography via sinogram synthesis and prediction
– volume: 124
  year: 2022
  ident: 10.1016/j.fuel.2025.136065_b0605
  article-title: Optimization of random forest through the use of MVO, GWO and MFO in evaluating the stability of underground entry-type excavations
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2022.104494
– ident: 10.1016/j.fuel.2025.136065_b0060
– volume: 5
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.fuel.2025.136065_b0095
  article-title: Influence of coal quality on boiler elements abrasion'
  publication-title: Journal of Electrical Power & Energy Systems
  doi: 10.26855/jepes.2021.03.001
– volume: 194
  year: 2024
  ident: 10.1016/j.fuel.2025.136065_b0040
  article-title: Advances, challenges, and future research needs in machine learning-based crash prediction models: a systematic review
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2023.107378
– volume: 10
  start-page: 3805
  issue: 10
  year: 2017
  ident: 10.1016/j.fuel.2025.136065_b0540
  article-title: Multivariable integrated evaluation of model performance with the vector field evaluation diagram
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-10-3805-2017
– volume: 73
  start-page: 1923
  issue: 10–12
  year: 2010
  ident: 10.1016/j.fuel.2025.136065_b0125
  article-title: Feature selection for time series prediction–a combined filter and wrapper approach for neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.01.017
– volume: 23
  start-page: 31
  issue: 3
  year: 2002
  ident: 10.1016/j.fuel.2025.136065_b0120
  article-title: Support vector machines and kernel methods: the new generation of learning machines
  publication-title: AI Mag.
– volume: 33
  start-page: 1139
  issue: 4
  year: 2021
  ident: 10.1016/j.fuel.2025.136065_b0395
  article-title: Battle royale optimization algorithm
  publication-title: Neural Comput. & Applic.
  doi: 10.1007/s00521-020-05004-4
– volume: 374
  year: 2024
  ident: 10.1016/j.fuel.2025.136065_b0350
  article-title: Predictive modelling for coal abrasive index: Unveiling influential factors through Shallow and Deep Neural Networks
  publication-title: Fuel
  doi: 10.1016/j.fuel.2024.132319
– volume: 40
  start-page: 701
  issue: 10
  year: 2020
  ident: 10.1016/j.fuel.2025.136065_b0510
  article-title: Prediction of hardgrove grindability index of Afsin-Elbistan (Turkey) low-grade coals based on proximate analysis and ash chemical composition by neural networks
  publication-title: Int. J. Coal Prep. Util.
  doi: 10.1080/19392699.2017.1406350
– volume: 29
  start-page: 5457
  issue: 7
  year: 2022
  ident: 10.1016/j.fuel.2025.136065_b0265
  article-title: The mosaic of metaheuristic algorithms in structural optimization
  publication-title: Arch. Comput. Meth. Eng.
  doi: 10.1007/s11831-022-09773-0
– ident: 10.1016/j.fuel.2025.136065_b0260
  doi: 10.1109/ACCESS.2017.2696365
– volume: 415
  start-page: 295
  year: 2020
  ident: 10.1016/j.fuel.2025.136065_b0560
  article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.061
– year: 2008
  ident: 10.1016/j.fuel.2025.136065_b0515
– volume: 86
  start-page: 535
  issue: 5
  year: 2005
  ident: 10.1016/j.fuel.2025.136065_b0530
  article-title: The nature of mineral matter in a coal and the effects on erosive and abrasive behaviour
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2004.04.002
– volume: 154
  year: 2024
  ident: 10.1016/j.fuel.2025.136065_b0615
  article-title: Comprehensive review and future perspectives on prediction and mitigation of tunnel-induced ground settlement: a bibliometric analysis and methodological overview (2002–2022)
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2024.106081
– volume: 64
  year: 2021
  ident: 10.1016/j.fuel.2025.136065_b0355
  article-title: A tutorial on the design, experimentation and application of metaheuristic algorithms to real-world optimization problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2021.100888
– volume: 358
  start-page: 10121
  issue: 18
  year: 2021
  ident: 10.1016/j.fuel.2025.136065_b0150
  article-title: Random radial basis function kernel-based support vector machine
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2021.10.005
– ident: 10.1016/j.fuel.2025.136065_b0255
– volume: 57
  start-page: 7535
  issue: 9
  year: 2024
  ident: 10.1016/j.fuel.2025.136065_b0385
  article-title: Evaluation and interpretation of blasting-induced tunnel overbreak: using heuristic-based ensemble learning and gene expression programming techniques
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-024-03947-x
– volume: 120
  year: 2022
  ident: 10.1016/j.fuel.2025.136065_b0575
  article-title: Perception model of surrounding rock geological conditions based on TBM operational big data and combined unsupervised-supervised learning
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2021.104285
– volume: 929
  year: 2024
  ident: 10.1016/j.fuel.2025.136065_b0070
  article-title: The explainable potential of coupling hybridized metaheuristics, XGBoost, and SHAP in revealing toluene behavior in the atmosphere
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2024.172195
– ident: 10.1016/j.fuel.2025.136065_b0020
  doi: 10.1109/SSCI47803.2020.9308260
– volume: 22
  start-page: 867
  issue: 4
  year: 2012
  ident: 10.1016/j.fuel.2025.136065_b0490
  article-title: Nonparametric statistical analysis for multiple comparison of machine learning regression algorithms
  publication-title: Int. J. Appl. Math. Comput. Sci.
  doi: 10.2478/v10006-012-0064-z
– volume: 32
  start-page: 32
  year: 2012
  ident: 10.1016/j.fuel.2025.136065_b0320
  article-title: Renewable energy in the minerals industry: a review of global potential
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2012.03.016
– volume: 79
  start-page: 7305
  issue: 7
  year: 2023
  ident: 10.1016/j.fuel.2025.136065_b0550
  article-title: Dung beetle optimizer: a new meta-heuristic algorithm for global optimization
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-022-04959-6
– volume: 237
  start-page: 350
  year: 2017
  ident: 10.1016/j.fuel.2025.136065_b0630
  article-title: Machine learning on big data: Opportunities and challenges
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.026
– volume: 31
  start-page: 2916
  issue: 8
  year: 2024
  ident: 10.1016/j.fuel.2025.136065_b0595
  article-title: Enhancing rock fragmentation prediction in mining operations: a Hybrid GWO-RF model with SHAP interpretability
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-024-5699-z
– volume: 16
  year: 2022
  ident: 10.1016/j.fuel.2025.136065_b0165
  article-title: A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations (SHAP)
  publication-title: Case Stud. Constr. Mater.
– volume: 335
  year: 2023
  ident: 10.1016/j.fuel.2025.136065_b0330
  article-title: A comprehensive and comparative review on parameter estimation methods for modelling proton exchange membrane fuel cell
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.127080
– volume: 55
  start-page: 829
  issue: 2
  year: 2022
  ident: 10.1016/j.fuel.2025.136065_b0025
  article-title: A comprehensive survey on optimizing deep learning models by metaheuristics
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-09992-0
– volume: 30
  start-page: 391
  issue: 1
  year: 2023
  ident: 10.1016/j.fuel.2025.136065_b0425
  article-title: Moth flame optimization: theory, modifications, hybridizations, and applications
  publication-title: Arch. Comput. Meth. Eng.
  doi: 10.1007/s11831-022-09801-z
– volume: 15
  start-page: 5732
  issue: 7
  year: 2023
  ident: 10.1016/j.fuel.2025.136065_b0405
  article-title: A comprehensive review and application of metaheuristics in solving the optimal parameter identification problems
  publication-title: Sustainability
  doi: 10.3390/su15075732
– volume: 12
  start-page: 841
  issue: 4
  year: 2024
  ident: 10.1016/j.fuel.2025.136065_b0045
  article-title: The role of hyperparameters in machine learning models and how to tune them
  publication-title: Polit. Sci. Res. Methods
  doi: 10.1017/psrm.2023.61
– volume: 16
  start-page: 735
  issue: 1
  year: 2012
  ident: 10.1016/j.fuel.2025.136065_b0480
  article-title: The potential for renewable energy in industrial applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2011.08.039
– start-page: 377
  year: 2017
  ident: 10.1016/j.fuel.2025.136065_b0115
– volume: 102437
  year: 2024
  ident: 10.1016/j.fuel.2025.136065_b0410
  article-title: Metaheuristic optimization algorithms for real-world electrical and civil engineering application: a Review
  publication-title: Results Eng.
– volume: 64
  start-page: 2909
  issue: 5
  year: 2021
  ident: 10.1016/j.fuel.2025.136065_b0015
  article-title: Modeling, analysis, and optimization under uncertainties: a review
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-021-03026-7
– ident: 10.1016/j.fuel.2025.136065_b0470
  doi: 10.1016/B978-0-08-102201-6.00001-7
– volume: 364
  year: 2023
  ident: 10.1016/j.fuel.2025.136065_b0160
  article-title: Optimized prediction models for faulting failure of Jointed Plain concrete pavement using the metaheuristic optimization algorithms
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.129948
– volume: 83
  start-page: 15565
  issue: 6
  year: 2024
  ident: 10.1016/j.fuel.2025.136065_b0445
  article-title: Artificial neural network based channel equalization using battle royale optimization algorithm with different initialization strategies
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-16161-8
– volume: Vol. 381
  year: 2003
  ident: 10.1016/j.fuel.2025.136065_b0185
– volume: 91
  start-page: 55
  issue: 1–2
  year: 2009
  ident: 10.1016/j.fuel.2025.136065_b0400
  article-title: Hardgrove grindability index prediction using support vector regression
  publication-title: Int. J. Miner. Process.
– volume: 371
  year: 2024
  ident: 10.1016/j.fuel.2025.136065_b0635
  article-title: Improved prediction accuracy for compressive strength of recycled aggregate concrete using optimization-based algorithms and cascade forward neural network
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2024.123068
– ident: 10.1016/j.fuel.2025.136065_b0055
– ident: 10.1016/j.fuel.2025.136065_b0485
– ident: 10.1016/j.fuel.2025.136065_b0005
  doi: 10.1002/0471497398.mm421
– volume: 11
  start-page: 1636
  issue: 7
  year: 2023
  ident: 10.1016/j.fuel.2025.136065_b0300
  article-title: Random forest and whale optimization algorithm to predict the invalidation risk of backfilling pipeline
  publication-title: Mathematics
  doi: 10.3390/math11071636
– volume: 190
  start-page: 262
  issue: 3
  year: 1951
  ident: 10.1016/j.fuel.2025.136065_b0555
  article-title: An investigation of the abrasiveness of coal and its associated impurities
  publication-title: TRANSACTIONS OF THE AMERICAN INSTITUTE OF MINING AND METALLURGICAL ENGINEERS
– volume: 77
  start-page: 802
  issue: 4
  year: 2008
  ident: 10.1016/j.fuel.2025.136065_b0170
  article-title: A working guide to boosted regression trees
  publication-title: J. Anim. Ecol.
  doi: 10.1111/j.1365-2656.2008.01390.x
– volume: 49
  start-page: 1202
  year: 2016
  ident: 10.1016/j.fuel.2025.136065_b0420
  article-title: Comparisons of metaheuristic algorithms and fitness functions on software test data generation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.09.045
– ident: 10.1016/j.fuel.2025.136065_b0580
– volume: 68
  start-page: 302
  year: 2015
  ident: 10.1016/j.fuel.2025.136065_b0495
  article-title: Prediction of abrasiveness index of some Indian rocks using soft computing methods
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.03.009
– ident: 10.1016/j.fuel.2025.136065_b0450
– volume: 406
  start-page: 109
  year: 2019
  ident: 10.1016/j.fuel.2025.136065_b0430
  article-title: Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2019.06.002
– volume: 8
  start-page: 22
  issue: 1
  year: 2020
  ident: 10.1016/j.fuel.2025.136065_b0545
  article-title: A novel swarm intelligence optimization approach: sparrow search algorithm
  publication-title: Systems science & control engineering
  doi: 10.1080/21642583.2019.1708830
– year: 2003
  ident: 10.1016/j.fuel.2025.136065_b0440
– ident: 10.1016/j.fuel.2025.136065_b0310
– volume: 57
  start-page: 9781
  issue: 11
  year: 2024
  ident: 10.1016/j.fuel.2025.136065_b0225
  article-title: Refined approaches for open stope stability analysis in mining environments: hybrid SVM model with multi-optimization strategies and gp technique
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-024-04055-6
– volume: 41
  year: 2023
  ident: 10.1016/j.fuel.2025.136065_b0610
  article-title: Machine learning models to predict the tunnel wall convergence
  publication-title: Transp. Geotech.
  doi: 10.1016/j.trgeo.2023.101022
– year: 2016
  ident: 10.1016/j.fuel.2025.136065_b0205
– ident: 10.1016/j.fuel.2025.136065_b0050
– volume: 308
  start-page: 86
  issue: 1–2
  year: 2013
  ident: 10.1016/j.fuel.2025.136065_b0370
  article-title: Abrasive wear mechanisms and their relation to rock properties
  publication-title: Wear
  doi: 10.1016/j.wear.2013.10.005
– volume: 42
  start-page: 1143
  issue: 4
  year: 2022
  ident: 10.1016/j.fuel.2025.136065_b0235
  article-title: Grindability and abrasive behavior of coal blends: analysis and prediction
  publication-title: Int. J. Coal Prep. Util.
  doi: 10.1080/19392699.2019.1694009
– year: 2024
  ident: 10.1016/j.fuel.2025.136065_b0090
  article-title: Metaheuristic Optimization Algorithms: an overview
  publication-title: HCMCOU Journal of Science-Advances in Computational Structures
– volume: 389
  year: 2021
  ident: 10.1016/j.fuel.2025.136065_b0105
  article-title: A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean
  publication-title: Appl. Math Comput.
– volume: SAUPEC
  start-page: 288
  year: 2013
  ident: 10.1016/j.fuel.2025.136065_b0500
  article-title: South african coal and its abrasiveness index determination: an account of challenges
  publication-title: In Proc of Southern African Universities Engineering Conf
– volume: 42
  start-page: 3348
  issue: 11
  year: 2022
  ident: 10.1016/j.fuel.2025.136065_b0415
  article-title: SHAP-based interpretation of an XGBoost model in the prediction of grindability of coals and their blends
  publication-title: Int. J. Coal Prep. Util.
  doi: 10.1080/19392699.2021.1959324
– ident: 10.1016/j.fuel.2025.136065_b0180
  doi: 10.1609/aaai.v33i01.33019808
– volume: 10
  start-page: 2552
  issue: 15
  year: 2022
  ident: 10.1016/j.fuel.2025.136065_b0340
  article-title: Review of artificial intelligence and machine learning technologies: classification, restrictions, opportunities and challenges
  publication-title: Mathematics
  doi: 10.3390/math10152552
– volume: 9
  start-page: 571
  issue: 6
  year: 1980
  ident: 10.1016/j.fuel.2025.136065_b0240
  article-title: Approximations of the critical region of the fbietkan statistic
  publication-title: Communications in Statistics-Theory and Methods
  doi: 10.1080/03610928008827904
– volume: 52
  start-page: 2570
  issue: 10
  year: 2012
  ident: 10.1016/j.fuel.2025.136065_b0315
  article-title: Does rational selection of training and test sets improve the outcome of QSAR modeling?
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci300338w
– volume: 55
  start-page: 96
  issue: 1
  year: 2021
  ident: 10.1016/j.fuel.2025.136065_b0035
  article-title: Definition and Assessment of Coal Abrasivity
  publication-title: Power Technology and Engineering
  doi: 10.1007/s10749-021-01326-y
– volume: 200
  year: 2021
  ident: 10.1016/j.fuel.2025.136065_b0360
  article-title: Application of supervised machine learning paradigms in the prediction of petroleum reservoir properties: Comparative analysis of ANN and SVM models
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2020.108182
– volume: 84
  start-page: 63
  issue: 1
  year: 2010
  ident: 10.1016/j.fuel.2025.136065_b0075
  article-title: A study on the abundance of quartz in thermal coals of India and its relation to abrasion index: Development of predictive model for abrasion
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2010.08.005
– volume: 385
  year: 2023
  ident: 10.1016/j.fuel.2025.136065_b0285
  article-title: Prediction of composting maturity and identification of critical parameters for green waste compost using machine learning
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2023.129444
– volume: 134
  year: 2022
  ident: 10.1016/j.fuel.2025.136065_b0110
  article-title: Multiobjective forensic-based investigation algorithm for solving structural design problems
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.104084
– volume: 13
  start-page: 5211
  issue: 1
  year: 2023
  ident: 10.1016/j.fuel.2025.136065_b0335
  article-title: American zebra optimization algorithm for global optimization problems
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-31876-2
– volume: 30
  issue: 5
  year: 2016
  ident: 10.1016/j.fuel.2025.136065_b0625
  article-title: Classification of rockburst in underground projects: comparison of ten supervised learning methods
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000553
– volume: 14
  start-page: 323
  issue: 4
  year: 2009
  ident: 10.1016/j.fuel.2025.136065_b0465
  article-title: An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests
  publication-title: Psychol. Methods
  doi: 10.1037/a0016973
– ident: 10.1016/j.fuel.2025.136065_b0270
  doi: 10.1080/19392699.2024.2339319
– volume: 24
  start-page: 44
  issue: 1
  year: 2015
  ident: 10.1016/j.fuel.2025.136065_b0200
  article-title: Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1080/10618600.2014.907095
– volume: 35
  start-page: 16
  issue: 6
  year: 2018
  ident: 10.1016/j.fuel.2025.136065_b0145
  article-title: Model selection techniques: an overview
  publication-title: IEEE Signal Process Mag.
  doi: 10.1109/MSP.2018.2867638
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.fuel.2025.136065_b0135
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: The Journal of Machine learning research
– volume: 33
  start-page: 1019
  issue: 8
  year: 2023
  ident: 10.1016/j.fuel.2025.136065_b0280
  article-title: Stability prediction of hard rock pillar using support vector machine optimized by three metaheuristic algorithms
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2023.06.001
– ident: 10.1016/j.fuel.2025.136065_b0520
  doi: 10.1109/ICIECS.2009.5362936
– volume: 272
  year: 2025
  ident: 10.1016/j.fuel.2025.136065_b0590
  article-title: Residential building cooling load prediction with optimized KELM models and interpretability insights
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2025.126421
SSID ssj0007854
Score 2.5031679
Snippet •The study compares 18 supervised learning models for Abrasive Index (AI) prediction using 129 coal samples from South Africa's Witbank Coalfield.•Eight...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 136065
SubjectTerms Abrasive index
Artificial intelligence
Coal
Metaheuristic optimization algorithms
Supervised learning
Title An optimized machine learning framework for prediction of coal abrasive index: Leveraging supervised learning, metaheuristic optimization, and interpretability analysis
URI https://dx.doi.org/10.1016/j.fuel.2025.136065
Volume 403
WOSCitedRecordID wos001522195200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0016-2361
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007854
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKxgM8IK5iDJAfeNsyNTfH2VuFNnEZE4iB-hYlzvHWqk2qXsbEL-KF_8g5dpyGgiZAog9RFdV2m--rfXLy-TuMvQiLvBCBVl6_lNqLlAg9GZfaE0KDSqBU1u3z80lyeiqHw_R9r_fd7YW5nCRVJa-u0tl_hRrPIdi0dfYv4G47xRP4HkHHI8KOxz8CfoABIM4D09FXjCWnRisJrjjE-Z52YiyjL5zN6TmNCxpVTcYBePtsJO3GR5ESBieA18AWM1qsZjS3LLBn1yNhNIVlfgEra_rsRreykUYcOmq1jUaMS6ZP1gylGxwfr2Bi0hZUqtuK7ts0xQdbXbuuziu32Jp0d70yPOyQ_C09C4DJF1PJgOQ99bjNJFcj3fgMv6sXZOjcTXoEm0mPdjfOWvpkZndfeGQm053dI2Oh8OtKYZMW4wONP-0Ah4hJ8Ne3dSs2HLg_UsfUL4aLZGiW3mDbQRKnOIluD14fDd-0S38iY2v73XyRZpeWFRRujvT7SKgT3ZzdZXea2xI-sHS6x3pQ3We3O2aVD9i3QcVbYvGGWNzRgLfE4ogcXxOL15oTsbgjFjfEOuRrWvE1rdr-9vlPpOJdUu1zRJhvUoo7Sj1kn46Pzl6-8po6H54KI7H00rKQAiIpihJEAFAkPvhJrqXvFwm-UvIchFjlMlAhgAyLwNcyDSIo4wBUHj5iW1VdwWPGtRAqilVINo6RLEKMbyEplK9y6It-kOww313zTDUm-FSLZZI5teM4I5wywimzOO2wvbbNzFrAXPvp2EGZNUGsDU4zZN417Z78Y7tddmv9B3nKtpbzFTxjN9XlcrSYP28I-gPkBcvc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimized+machine+learning+framework+for+prediction+of+coal+abrasive+index%3A+Leveraging+supervised+learning%2C+metaheuristic+optimization%2C+and+interpretability+analysis&rft.jtitle=Fuel+%28Guildford%29&rft.au=Qi%2C+Hongning&rft.au=Zhou%2C+Jian&rft.au=Khandelwal%2C+Manoj&rft.au=Onifade%2C+Moshood&rft.date=2026-01-01&rft.pub=Elsevier+Ltd&rft.issn=0016-2361&rft.volume=403&rft_id=info:doi/10.1016%2Fj.fuel.2025.136065&rft.externalDocID=S0016236125017909
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon