An optimized machine learning framework for prediction of coal abrasive index: Leveraging supervised learning, metaheuristic optimization, and interpretability analysis
•The study compares 18 supervised learning models for Abrasive Index (AI) prediction using 129 coal samples from South Africa's Witbank Coalfield.•Eight metaheuristic optimization algorithms (MOAs) are used to optimize hyperparameters and improve model predictive performance.•Uncertainty and fe...
Uloženo v:
| Vydáno v: | Fuel (Guildford) Ročník 403; s. 136065 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.01.2026
|
| Témata: | |
| ISSN: | 0016-2361 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •The study compares 18 supervised learning models for Abrasive Index (AI) prediction using 129 coal samples from South Africa's Witbank Coalfield.•Eight metaheuristic optimization algorithms (MOAs) are used to optimize hyperparameters and improve model predictive performance.•Uncertainty and feature importance are analyzed using MCS, SHAP, and ICE to provide insight into model reliability and key factors.•The DBO-RF model outperforms all other models, achieving R² = 0.94 and demonstrating its potential for coal processing applications.
Abrasive Index (AI) is crucial in evaluating coal’s impact on mechanical equipment wear, influencing operational efficiency and maintenance costs. Accurate AI prediction is essential for optimizing coal utilization and reducing economic losses in industrial applications. This study systematically evaluates AI prediction using 18 supervised learning (SL) models on a dataset of 129 coal samples from the Witbank Coalfield, South Africa. The most suitable model is identified based on performance comparisons, followed by hyperparameter optimization using eight metaheuristic optimization algorithms (MOAs). To further ensure robustness and interpretability, Monte Carlo Simulation (MCS), SHapley Additive exPlanations (SHAP), and Individual Conditional Expectation (ICE) methods are employed for uncertainty quantification and feature importance analysis. The results indicate that the Dung Beetle Optimizer-optimized Random Forest (DBO-RF) model outperforms all other hybrid models, achieving an R2 of 0.94, RMSE of 26.583, MAPE of 0.202, and VAF of 94.178% on the test set. Feature interpretation analysis reveals that quartz content significantly impacts AI predictions, while volatile matter contributes the least. This study provides a comprehensive AI prediction framework that integrates SL, optimization, and interpretability analysis, offering valuable insights for coal selection, equipment maintenance, and industrial process optimization. |
|---|---|
| AbstractList | •The study compares 18 supervised learning models for Abrasive Index (AI) prediction using 129 coal samples from South Africa's Witbank Coalfield.•Eight metaheuristic optimization algorithms (MOAs) are used to optimize hyperparameters and improve model predictive performance.•Uncertainty and feature importance are analyzed using MCS, SHAP, and ICE to provide insight into model reliability and key factors.•The DBO-RF model outperforms all other models, achieving R² = 0.94 and demonstrating its potential for coal processing applications.
Abrasive Index (AI) is crucial in evaluating coal’s impact on mechanical equipment wear, influencing operational efficiency and maintenance costs. Accurate AI prediction is essential for optimizing coal utilization and reducing economic losses in industrial applications. This study systematically evaluates AI prediction using 18 supervised learning (SL) models on a dataset of 129 coal samples from the Witbank Coalfield, South Africa. The most suitable model is identified based on performance comparisons, followed by hyperparameter optimization using eight metaheuristic optimization algorithms (MOAs). To further ensure robustness and interpretability, Monte Carlo Simulation (MCS), SHapley Additive exPlanations (SHAP), and Individual Conditional Expectation (ICE) methods are employed for uncertainty quantification and feature importance analysis. The results indicate that the Dung Beetle Optimizer-optimized Random Forest (DBO-RF) model outperforms all other hybrid models, achieving an R2 of 0.94, RMSE of 26.583, MAPE of 0.202, and VAF of 94.178% on the test set. Feature interpretation analysis reveals that quartz content significantly impacts AI predictions, while volatile matter contributes the least. This study provides a comprehensive AI prediction framework that integrates SL, optimization, and interpretability analysis, offering valuable insights for coal selection, equipment maintenance, and industrial process optimization. |
| ArticleNumber | 136065 |
| Author | Zhou, Jian Li, Chuanqi Genc, Bekir Lawal, Abiodun Ismail Qi, Hongning Onifade, Moshood Bada, Samson Oluwaseyi Khandelwal, Manoj |
| Author_xml | – sequence: 1 givenname: Hongning surname: Qi fullname: Qi, Hongning email: qhn2080@csu.edu.cn organization: School of Resources and Safety Engineering, Central South University, Changsha 410083, PR China – sequence: 2 givenname: Jian surname: Zhou fullname: Zhou, Jian email: j.zhou@csu.edu.cn organization: School of Resources and Safety Engineering, Central South University, Changsha 410083, PR China – sequence: 3 givenname: Manoj orcidid: 0000-0003-0368-3188 surname: Khandelwal fullname: Khandelwal, Manoj email: m.khandelwal@federation.edu.au, mkhandelwal1@gmail.com organization: Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia – sequence: 4 givenname: Moshood surname: Onifade fullname: Onifade, Moshood email: m.onifade@federation.edu.au organization: Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia – sequence: 5 givenname: Abiodun Ismail surname: Lawal fullname: Lawal, Abiodun Ismail email: ailawal@futa.edu.ng organization: Department of Mining Engineering, Federal University of Technology, Akure, Nigeria – sequence: 6 givenname: Chuanqi surname: Li fullname: Li, Chuanqi email: chuanqi.li@univ-grenoble-alpes.fr organization: School of Resources and Safety Engineering, Central South University, Changsha 410083, PR China – sequence: 7 givenname: Samson Oluwaseyi orcidid: 0000-0002-1079-3492 surname: Bada fullname: Bada, Samson Oluwaseyi email: Samson.Bada@wits.ac.za organization: School of Chemical and Metallurgy, Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, South Africa – sequence: 8 givenname: Bekir orcidid: 0000-0002-3943-5103 surname: Genc fullname: Genc, Bekir email: Bekir.Genc@wits.ac.za organization: School of Mining Engineering, Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, South Africa |
| BookMark | eNp9kEtu2zAQQLlIgdhJLpAVDxC7JPWxXHRjBP0EMJBNuyZG1MgeV6KMIe3WOVGPWSpONl2YGwIk3hvyTcWVHzwKca_VXCtdftzN2wN2c6NMMddZqcriSkxUupmZrNTXYhrCTim1qIp8Iv6uvBz2kXp6wUb24LbkUXYI7MlvZMvQ4--Bf8l2YLlnbMhFGhLTSjdAJ6FmCHRESb7BP5_kGo_IsBnZcNgjHykk77vvQfYYYYsHphDJvU-GUfkgwTdJE5HTnAg1dRRP6RC6U6BwKz600AW8e9tvxM-vX348fp-tn789Pa7WM5flZZwtm7oqMa_KusHSINYLjXoBbaV1vUhrmeV6iYWDyrgMscpqo9tqaXJsCoMOshtRnb2OhxAYW-sovj4wMlBntbJjZbuzY2U7Vrbnygk1_6F7ph74dBn6fIYwfepIyDY4Qu9SaUYXbTPQJfwf4eyg5w |
| CitedBy_id | crossref_primary_10_1016_j_jece_2025_118313 |
| Cites_doi | 10.3390/rs16203778 10.1016/j.paerosci.2016.07.004 10.3390/en15124501 10.1016/j.procs.2016.06.016 10.1002/aic.690390208 10.1016/j.jobe.2023.108386 10.1016/j.asej.2015.12.003 10.1016/j.coal.2007.09.007 10.1016/j.fuel.2024.133953 10.1007/s00603-025-04387-x 10.1016/j.advengsoft.2016.01.008 10.1016/S0016-2361(03)00262-X 10.1016/j.undsp.2024.11.004 10.1016/0016-2361(90)90077-4 10.1016/j.enggeo.2020.105972 10.1016/S0196-8904(02)00144-9 10.1016/j.tust.2022.104570 10.1016/j.undsp.2024.03.003 10.1016/j.asoc.2024.111388 10.1007/s00521-020-05296-6 10.1016/0043-1648(91)90077-8 10.1126/science.aaa8415 10.1016/j.measurement.2021.110247 10.1007/s11269-022-03080-w 10.3390/en14154424 10.1038/s41598-023-36620-4 10.1016/j.wear.2015.10.006 10.1016/j.inffus.2018.10.005 10.1007/s00521-023-08577-y 10.1016/j.tust.2022.104494 10.26855/jepes.2021.03.001 10.1016/j.aap.2023.107378 10.5194/gmd-10-3805-2017 10.1016/j.neucom.2010.01.017 10.1007/s00521-020-05004-4 10.1016/j.fuel.2024.132319 10.1080/19392699.2017.1406350 10.1007/s11831-022-09773-0 10.1109/ACCESS.2017.2696365 10.1016/j.neucom.2020.07.061 10.1016/j.fuproc.2004.04.002 10.1016/j.tust.2024.106081 10.1016/j.swevo.2021.100888 10.1016/j.jfranklin.2021.10.005 10.1007/s00603-024-03947-x 10.1016/j.tust.2021.104285 10.1016/j.scitotenv.2024.172195 10.1109/SSCI47803.2020.9308260 10.2478/v10006-012-0064-z 10.1016/j.jclepro.2012.03.016 10.1007/s11227-022-04959-6 10.1016/j.neucom.2017.01.026 10.1007/s11771-024-5699-z 10.1016/j.fuel.2022.127080 10.1007/s10462-021-09992-0 10.1007/s11831-022-09801-z 10.3390/su15075732 10.1017/psrm.2023.61 10.1016/j.rser.2011.08.039 10.1007/s00158-021-03026-7 10.1016/B978-0-08-102201-6.00001-7 10.1016/j.conbuildmat.2022.129948 10.1007/s11042-023-16161-8 10.1016/j.jenvman.2024.123068 10.1002/0471497398.mm421 10.3390/math11071636 10.1111/j.1365-2656.2008.01390.x 10.1016/j.asoc.2016.09.045 10.1016/j.measurement.2015.03.009 10.1016/j.ecolmodel.2019.06.002 10.1080/21642583.2019.1708830 10.1007/s00603-024-04055-6 10.1016/j.trgeo.2023.101022 10.1016/j.wear.2013.10.005 10.1080/19392699.2019.1694009 10.1080/19392699.2021.1959324 10.1609/aaai.v33i01.33019808 10.3390/math10152552 10.1080/03610928008827904 10.1021/ci300338w 10.1007/s10749-021-01326-y 10.1016/j.petrol.2020.108182 10.1016/j.coal.2010.08.005 10.1016/j.biortech.2023.129444 10.1016/j.autcon.2021.104084 10.1038/s41598-023-31876-2 10.1061/(ASCE)CP.1943-5487.0000553 10.1037/a0016973 10.1080/19392699.2024.2339319 10.1080/10618600.2014.907095 10.1109/MSP.2018.2867638 10.1016/j.ijmst.2023.06.001 10.1109/ICIECS.2009.5362936 10.1016/j.applthermaleng.2025.126421 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors |
| Copyright_xml | – notice: 2025 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.fuel.2025.136065 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_fuel_2025_136065 S0016236125017909 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAFTH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABNUV ACDAQ ACIWK ACLOT ACNCT ACPRK ACRLP ACVFH ADBBV ADCNI ADECG ADEWK ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFRAH AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AJSZI AKBMS AKIFW AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSJ SSK SSR SSZ T5K TWZ WH7 ZMT ~02 ~G- ~HD 29H 8WZ 9DU A6W AAQXK AAYXX ABDEX ABEFU ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFFNX AGQPQ AI. ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 LY6 R2- SAC SCB VH1 WUQ XPP ZY4 |
| ID | FETCH-LOGICAL-c346t-9db86e486bde62eeb71e17af811b777793419e5ca82c3ee83b21f8924ed52eca3 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001522195200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0016-2361 |
| IngestDate | Sat Nov 29 07:03:53 EST 2025 Tue Nov 18 21:52:30 EST 2025 Sat Nov 22 16:51:12 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Metaheuristic optimization algorithms Supervised learning Artificial intelligence Abrasive index Coal |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c346t-9db86e486bde62eeb71e17af811b777793419e5ca82c3ee83b21f8924ed52eca3 |
| ORCID | 0000-0002-3943-5103 0000-0003-0368-3188 0000-0002-1079-3492 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.fuel.2025.136065 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_fuel_2025_136065 crossref_primary_10_1016_j_fuel_2025_136065 elsevier_sciencedirect_doi_10_1016_j_fuel_2025_136065 |
| PublicationCentury | 2000 |
| PublicationDate | 2026-01-01 2026-01-00 |
| PublicationDateYYYYMMDD | 2026-01-01 |
| PublicationDate_xml | – month: 01 year: 2026 text: 2026-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Fuel (Guildford) |
| PublicationYear | 2026 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Gentle (b0185) 2003; Vol. 381 Lundberg, S. (2017). A unified approach to interpreting model predictions. Mitra, Arya, Gupta (b0330) 2023; 335 (pp. 1528-1534). IEEE. Perez, Karakus, Sepulveda (b0365) 2015; 344 Shaheen, Spea, Farrag, Abido (b0435) 2018; 9 Gupta (b0205) 2016 Tshiongo, Mulaba-Bafubiandi (b0500) 2013; SAUPEC Qiu, Li, Huang, Ma, Zhou (b0380) 2024; 82 Ghadernejad, Esmaeili (b0190) 2024; 16 Spero (b0460) 1990; 69 Huang, Zhou (b0225) 2024; 57 Zhang, Li, Gu, Du, Zhou (b0590) 2025; 272 Bandopadhyay (b0075) 2010; 84 Spero, Hargreaves, Kirkcaldie, Flitt (b0455) 1991; 146 Sheskin (b0440) 2003 Yang, Shami (b0560) 2020; 415 Yancey, Geer, Price (b0555) 1951; 190 Muske, Rawlings (b0345) 1993; 39 Suárez-Ruiz, I., Diez, M. A., & Rubiera, F. (2019). Coal. In Hu, Chen, Parks, Yao (b0220) 2016; 86 Schratz, Muenchow, Iturritxa, Richter, Brenning (b0430) 2019; 406 , Taibi, Gielen, Bazilian (b0480) 2012; 16 Yu, T., & Zhu, H. (2020). Hyper-parameter optimization: A review of algorithms and applications. . Rao, Gopalakrishna (b0400) 2009; 91 Qiu, Zhou, He, Armaghani, Huang, He (b0385) 2024; 57 Zhou, Shen, Qiu, Shi, Khandelwal (b0600) 2022; 126 Lawal, A. I., Bada, S., & Onifade, M. (2024). Prediction of HGI of South African coalfields: A comparative analysis of ANN, SVR and LSTM models; in the International Coal Preparation and Utilization 7776-7797. Abu Doush, Awadallah, Al-Betar, Alomari, Makhadmeh, Abasi (b0010) 2023; 35 Chen, Khandelwal, Onifade, Zhou, Lawal, Bada (b0100) 2025; 384 Clark, Pregibon (b0115) 2017 Ding, Liu, Yang, Cao (b0150) 2021; 358 Tlotleng, M. T. (2011). Hussain, Liu, Ashraf, Ali, Hussain, Ali (b0230) 2022; 15 Rezk, Olabi, Wilberforce, Sayed (b0410) 2024; 102437 ASTM, D5373-14. Standard Test Methods for Determination of Carbon, Hydrogen, and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke. Zhou, Huang, Qiu (b0605) 2022; 124 Bischl, Binder, Lang, Pielok, Richter, Coors (b0085) 2023; 13 Xue, Shen (b0550) 2023; 79 Ekanayake, Meddage, Rathnayake (b0165) 2022; 16 ASTM, D-2013. Standard Practice for Preparing Coal Samples for Analysis. ISO 19579: 2006. Solid mineral fuels Determination of sulphur by IR spectrometry. Zhou, Liu, Li, Du, Yang (b0620) 2025; 22 Zhou, Chen, Li, Qiu, Huang, Tao (b0610) 2023; 41 Idris, Man, Bustam, Rabat, Uddin, Abdul Mannan (b0235) 2022; 42 Ding, Tarokh, Yang (b0145) 2018; 35 Goldstein, Kapelner, Bleich, Pitkin (b0200) 2015; 24 Ehsani, Hamidian, Hajikarimi, Nejad (b0160) 2023; 364 Chou, Truong (b0105) 2021; 389 (pp. 1-30). Woodhead Publishing. Xu, Han, Fu (b0540) 2017; 10 Chou, Truong (b0110) 2022; 134 Rezk, Olabi, Wilberforce, Sayed (b0405) 2023; 15 Rahkar Farshi (b0395) 2021; 33 Qiu, Zhou (b0390) 2025; 58 Tripathy, Singh, Kundu (b0495) 2015; 68 Qiu, Zhou (b0375) 2024; 19 Elith, Leathwick, Hastie (b0170) 2008; 77 Ghosh, Nag (b0195) 2001 Shwetha, Priyatham, Gangadhar (b0445) 2024; 83 Trawiński, Smętek, Telec, Lasota (b0490) 2012; 22 Mirjalili, Lewis (b0325) 2016; 95 Agarwal, N., & Das, S. (2020, December). Interpretable machine learning tools: A survey. In Brahim, Kobayashi, Al Ali, Khatir, Elmeliani (b0090) 2024 Li, Zhou, Du, Dias (b0280) 2023; 33 Osaba, Villar-Rodriguez, Del Ser, Nebro, Molina, LaTorre (b0355) 2021; 64 Al-Betar, Alyasseri, Awadallah, Abu Doush (b0030) 2021; 33 Crone, Kourentzes (b0125) 2010; 73 Demšar (b0135) 2006; 7 Iman, Davenport (b0240) 1980; 9 Weston, Elisseeff, Schölkopf, Tipping (b0535) 2003; 3 Alekhnovich, Artemieva, Bogomolov (b0035) 2021; 55 Liu, Liu, Liu, Xiong, Zhang (b0300) 2023; 11 Otchere, Ganat, Gholami, Ridha (b0360) 2021; 200 Lagaros, Plevris, Kallioras (b0265) 2022; 29 Flach, P. (2019, July). Performance evaluation in machine learning: the good, the bad, the ugly, and the way forward. In Akay, Karaboga, Akay (b0025) 2022; 55 Jordan, Mitchell (b0250) 2015; 349 Zhou, Pan, Wang, Vasilakos (b0630) 2017; 237 L’heureux, A., Grolinger, K., Elyamany, H. F., & Capretz, M. A. (2017). Machine learning with big data: Challenges and approaches. Elshawi, Al-Mallah, Sakr (b0175) 2019; 19 (Doctoral dissertation). (Vol. 33, No. 01, pp. 9808-9814). Diez-Olivan, Del Ser, Galar, Sierra (b0140) 2019; 50 Uddin, Khan, Hossain, Moni (b0505) 2019; 19 Demirbaş (b0130) 2003; 44 Gutiérrez, Patiño, Duque-Grisales (b0210) 2021; 14 Abraham, A. (2005). Artificial neural networks. Wells, Wigley, Foster, Gibb, Williamson (b0525) 2004; 83 (Vol. 2, pp. 19-21). Wang, H., Ma, C., & Zhou, L. (2009, December). A brief review of machine learning and its application. In Liang, Hu, Guo, Tang (b0290) 2022; 187 Snyman, C. P., 1998. Coal in Wilson. M. G. C and Anhausser. C. R (Eds). The Mineral deposits of South Africa, Handbook. Council of Geoscience, pp. 136-205. Kabuba, J. (2016). Application of Neural Networks Technique for Predicting of Abrasiveness Characteristics of Thermal Coal. In Yang (b0565) 2013; 1 Zhang, Qiu, Armaghani, Monjezi, Zhou (b0595) 2024; 31 Li, Mei, Zhang (b0275) 2024; 154 Vose (b0515) 2008 Xue, Shen (b0545) 2020; 8 Wells, Wigley, Foster, Livingston, Gibb, Williamson (b0530) 2005; 86 ASTM, D5865-04. Standard Test Method for Gross Calorific Value of Coal and Coke. Zhou, Zhou, Ohl (b0635) 2024; 371 Onifade, Lawal, Bada, Khandelwal (b0350) 2024; 374 Zhou, Qi, Peng, Zhang, Khandelwal (b0615) 2024; 154 Duan, Gong, Luo, Zhao (b0155) 2023; 13 Bureska (b0095) 2021; 5 Strobl, Malley, Tutz (b0465) 2009; 14 Sun, Xu, Wen, Wang (b0475) 2021; 281 Petrica, Badisch, Peinsitt (b0370) 2013; 308 Rzychoń, Żogała, Rog (b0415) 2022; 42 Sahin, Akay (b0420) 2016; 49 Hastie, Tibshirani, Friedman, Hastie, Tibshirani, Friedman (b0215) 2009 Yin, Liu, Huang, Pan (b0575) 2022; 120 Sahoo, Saha, Ezugwu, Agushaka, Abuhaija, Alsoud (b0425) 2023; 30 Zhou, Li, Mitri (b0625) 2016; 30 (pp. 1-4). IEEE. Ürünveren, Altıner, Kuvvetli, Ural, Ural (b0510) 2020; 40 Liu, Wang, Song (b0305) 2022; 36 Martin, Harten, Young, Muratov, Golbraikh, Zhu (b0315) 2012; 52 Li, Xue, Li, Sun, Hao (b0285) 2023; 385 Zang, Idoughi, Li, Wonka, Heidrich (b0585) 2021 ASTM, D5142. Standard Test Methods for Proximate Analysis of the Analysis Sample of Coal and Coke by Instrumental Procedures. Cristianini, Scholkopf (b0120) 2002; 23 Belavagi, Muniyal (b0080) 2016; 89 McLellan, Corder, Giurco, Ishihara (b0320) 2012; 32 Yaralı, Yaşar, Bacak, Ranjith (b0570) 2008; 74 Mukhamediev, Popova, Kuchin, Zaitseva, Kalimoldayev, Symagulov (b0340) 2022; 10 Acar, Bayrak, Jung, Lee, Ramu, Ravichandran (b0015) 2021; 64 Arnold, Biedebach, Küpfer, Neunhoeffer (b0045) 2024; 12 Mohapatra, Mohapatra (b0335) 2023; 13 Bacanin, Perisic, Jovanovic, Damaševičius, Stanisic, Simic (b0070) 2024; 929 Ali, Hussain, Haque (b0040) 2024; 194 Chen (10.1016/j.fuel.2025.136065_b0100) 2025; 384 10.1016/j.fuel.2025.136065_b0270 Elshawi (10.1016/j.fuel.2025.136065_b0175) 2019; 19 Ghadernejad (10.1016/j.fuel.2025.136065_b0190) 2024; 16 Chou (10.1016/j.fuel.2025.136065_b0110) 2022; 134 Sahoo (10.1016/j.fuel.2025.136065_b0425) 2023; 30 Yin (10.1016/j.fuel.2025.136065_b0575) 2022; 120 Yang (10.1016/j.fuel.2025.136065_b0565) 2013; 1 Otchere (10.1016/j.fuel.2025.136065_b0360) 2021; 200 Zhang (10.1016/j.fuel.2025.136065_b0590) 2025; 272 Muske (10.1016/j.fuel.2025.136065_b0345) 1993; 39 10.1016/j.fuel.2025.136065_b0310 Yang (10.1016/j.fuel.2025.136065_b0560) 2020; 415 Ehsani (10.1016/j.fuel.2025.136065_b0160) 2023; 364 Martin (10.1016/j.fuel.2025.136065_b0315) 2012; 52 Acar (10.1016/j.fuel.2025.136065_b0015) 2021; 64 Li (10.1016/j.fuel.2025.136065_b0280) 2023; 33 Vose (10.1016/j.fuel.2025.136065_b0515) 2008 Goldstein (10.1016/j.fuel.2025.136065_b0200) 2015; 24 Strobl (10.1016/j.fuel.2025.136065_b0465) 2009; 14 Rahkar Farshi (10.1016/j.fuel.2025.136065_b0395) 2021; 33 Xu (10.1016/j.fuel.2025.136065_b0540) 2017; 10 Petrica (10.1016/j.fuel.2025.136065_b0370) 2013; 308 Brahim (10.1016/j.fuel.2025.136065_b0090) 2024 Gupta (10.1016/j.fuel.2025.136065_b0205) 2016 Bischl (10.1016/j.fuel.2025.136065_b0085) 2023; 13 Zhou (10.1016/j.fuel.2025.136065_b0610) 2023; 41 Rao (10.1016/j.fuel.2025.136065_b0400) 2009; 91 Rezk (10.1016/j.fuel.2025.136065_b0410) 2024; 102437 Al-Betar (10.1016/j.fuel.2025.136065_b0030) 2021; 33 Qiu (10.1016/j.fuel.2025.136065_b0380) 2024; 82 Mukhamediev (10.1016/j.fuel.2025.136065_b0340) 2022; 10 Elith (10.1016/j.fuel.2025.136065_b0170) 2008; 77 Hu (10.1016/j.fuel.2025.136065_b0220) 2016; 86 Ding (10.1016/j.fuel.2025.136065_b0145) 2018; 35 Schratz (10.1016/j.fuel.2025.136065_b0430) 2019; 406 Zang (10.1016/j.fuel.2025.136065_b0585) 2021 Liu (10.1016/j.fuel.2025.136065_b0300) 2023; 11 Lagaros (10.1016/j.fuel.2025.136065_b0265) 2022; 29 Weston (10.1016/j.fuel.2025.136065_b0535) 2003; 3 Trawiński (10.1016/j.fuel.2025.136065_b0490) 2012; 22 Sheskin (10.1016/j.fuel.2025.136065_b0440) 2003 Duan (10.1016/j.fuel.2025.136065_b0155) 2023; 13 Sun (10.1016/j.fuel.2025.136065_b0475) 2021; 281 Spero (10.1016/j.fuel.2025.136065_b0460) 1990; 69 Wells (10.1016/j.fuel.2025.136065_b0530) 2005; 86 Liu (10.1016/j.fuel.2025.136065_b0305) 2022; 36 Perez (10.1016/j.fuel.2025.136065_b0365) 2015; 344 10.1016/j.fuel.2025.136065_b0255 Onifade (10.1016/j.fuel.2025.136065_b0350) 2024; 374 Qiu (10.1016/j.fuel.2025.136065_b0375) 2024; 19 Crone (10.1016/j.fuel.2025.136065_b0125) 2010; 73 10.1016/j.fuel.2025.136065_b0260 Qiu (10.1016/j.fuel.2025.136065_b0390) 2025; 58 Demirbaş (10.1016/j.fuel.2025.136065_b0130) 2003; 44 Bureska (10.1016/j.fuel.2025.136065_b0095) 2021; 5 Huang (10.1016/j.fuel.2025.136065_b0225) 2024; 57 Gentle (10.1016/j.fuel.2025.136065_b0185) 2003; Vol. 381 Diez-Olivan (10.1016/j.fuel.2025.136065_b0140) 2019; 50 Ali (10.1016/j.fuel.2025.136065_b0040) 2024; 194 Akay (10.1016/j.fuel.2025.136065_b0025) 2022; 55 10.1016/j.fuel.2025.136065_b0020 Xue (10.1016/j.fuel.2025.136065_b0550) 2023; 79 Cristianini (10.1016/j.fuel.2025.136065_b0120) 2002; 23 Bandopadhyay (10.1016/j.fuel.2025.136065_b0075) 2010; 84 Ghosh (10.1016/j.fuel.2025.136065_b0195) 2001 Ürünveren (10.1016/j.fuel.2025.136065_b0510) 2020; 40 Li (10.1016/j.fuel.2025.136065_b0285) 2023; 385 Belavagi (10.1016/j.fuel.2025.136065_b0080) 2016; 89 Mirjalili (10.1016/j.fuel.2025.136065_b0325) 2016; 95 Sahin (10.1016/j.fuel.2025.136065_b0420) 2016; 49 Tshiongo (10.1016/j.fuel.2025.136065_b0500) 2013; SAUPEC Uddin (10.1016/j.fuel.2025.136065_b0505) 2019; 19 Zhou (10.1016/j.fuel.2025.136065_b0630) 2017; 237 10.1016/j.fuel.2025.136065_b0470 Li (10.1016/j.fuel.2025.136065_b0275) 2024; 154 Gutiérrez (10.1016/j.fuel.2025.136065_b0210) 2021; 14 Zhou (10.1016/j.fuel.2025.136065_b0600) 2022; 126 Shwetha (10.1016/j.fuel.2025.136065_b0445) 2024; 83 Ekanayake (10.1016/j.fuel.2025.136065_b0165) 2022; 16 Zhou (10.1016/j.fuel.2025.136065_b0635) 2024; 371 Ding (10.1016/j.fuel.2025.136065_b0150) 2021; 358 Clark (10.1016/j.fuel.2025.136065_b0115) 2017 Xue (10.1016/j.fuel.2025.136065_b0545) 2020; 8 Alekhnovich (10.1016/j.fuel.2025.136065_b0035) 2021; 55 Rzychoń (10.1016/j.fuel.2025.136065_b0415) 2022; 42 Osaba (10.1016/j.fuel.2025.136065_b0355) 2021; 64 Zhou (10.1016/j.fuel.2025.136065_b0625) 2016; 30 Hussain (10.1016/j.fuel.2025.136065_b0230) 2022; 15 Liang (10.1016/j.fuel.2025.136065_b0290) 2022; 187 10.1016/j.fuel.2025.136065_b0005 Spero (10.1016/j.fuel.2025.136065_b0455) 1991; 146 Rezk (10.1016/j.fuel.2025.136065_b0405) 2023; 15 Zhou (10.1016/j.fuel.2025.136065_b0620) 2025; 22 Wells (10.1016/j.fuel.2025.136065_b0525) 2004; 83 10.1016/j.fuel.2025.136065_b0520 10.1016/j.fuel.2025.136065_b0245 Abu Doush (10.1016/j.fuel.2025.136065_b0010) 2023; 35 Yaralı (10.1016/j.fuel.2025.136065_b0570) 2008; 74 10.1016/j.fuel.2025.136065_b0485 McLellan (10.1016/j.fuel.2025.136065_b0320) 2012; 32 Idris (10.1016/j.fuel.2025.136065_b0235) 2022; 42 Zhou (10.1016/j.fuel.2025.136065_b0605) 2022; 124 10.1016/j.fuel.2025.136065_b0050 Mohapatra (10.1016/j.fuel.2025.136065_b0335) 2023; 13 Arnold (10.1016/j.fuel.2025.136065_b0045) 2024; 12 Jordan (10.1016/j.fuel.2025.136065_b0250) 2015; 349 10.1016/j.fuel.2025.136065_b0055 Qiu (10.1016/j.fuel.2025.136065_b0385) 2024; 57 10.1016/j.fuel.2025.136065_b0450 Mitra (10.1016/j.fuel.2025.136065_b0330) 2023; 335 Bacanin (10.1016/j.fuel.2025.136065_b0070) 2024; 929 Taibi (10.1016/j.fuel.2025.136065_b0480) 2012; 16 10.1016/j.fuel.2025.136065_b0060 Shaheen (10.1016/j.fuel.2025.136065_b0435) 2018; 9 10.1016/j.fuel.2025.136065_b0180 Zhang (10.1016/j.fuel.2025.136065_b0595) 2024; 31 Yancey (10.1016/j.fuel.2025.136065_b0555) 1951; 190 Tripathy (10.1016/j.fuel.2025.136065_b0495) 2015; 68 Hastie (10.1016/j.fuel.2025.136065_b0215) 2009 Zhou (10.1016/j.fuel.2025.136065_b0615) 2024; 154 Chou (10.1016/j.fuel.2025.136065_b0105) 2021; 389 10.1016/j.fuel.2025.136065_b0065 Iman (10.1016/j.fuel.2025.136065_b0240) 1980; 9 10.1016/j.fuel.2025.136065_b0580 Demšar (10.1016/j.fuel.2025.136065_b0135) 2006; 7 |
| References_xml | – reference: Wang, H., Ma, C., & Zhou, L. (2009, December). A brief review of machine learning and its application. In – volume: 1 start-page: 23 year: 2013 ident: b0565 article-title: Optimization and metaheuristic algorithms in engineering publication-title: Metaheuristics in water, geotechnical and transport engineering – volume: 237 start-page: 350 year: 2017 end-page: 361 ident: b0630 article-title: Machine learning on big data: Opportunities and challenges publication-title: Neurocomputing – volume: 22 start-page: 241 year: 2025 end-page: 262 ident: b0620 article-title: Cutting-edge approaches to specific energy prediction in TBM disc cutters: Integrating COSSA-RF model with three interpretative techniques publication-title: Underground Space – volume: 33 start-page: 5011 year: 2021 end-page: 5042 ident: b0030 article-title: Coronavirus herd immunity optimizer (CHIO) publication-title: Neural Comput. & Applic. – volume: 200 year: 2021 ident: b0360 article-title: Application of supervised machine learning paradigms in the prediction of petroleum reservoir properties: Comparative analysis of ANN and SVM models publication-title: J. Petrol. Sci. Eng. – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: b0135 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: The Journal of Machine learning research – volume: 154 year: 2024 ident: b0275 article-title: Application of supervised random forest paradigms based on optimization and post-hoc explanation in underground stope stability prediction publication-title: Appl. Soft Comput. – start-page: 1 year: 2001 end-page: 36 ident: b0195 article-title: An overview of radial basis function networks – reference: Suárez-Ruiz, I., Diez, M. A., & Rubiera, F. (2019). Coal. In – volume: 42 start-page: 1143 year: 2022 end-page: 1169 ident: b0235 article-title: Grindability and abrasive behavior of coal blends: analysis and prediction publication-title: Int. J. Coal Prep. Util. – volume: 11 start-page: 1636 year: 2023 ident: b0300 article-title: Random forest and whale optimization algorithm to predict the invalidation risk of backfilling pipeline publication-title: Mathematics – start-page: 9 year: 2009 end-page: 41 ident: b0215 article-title: Overview of supervised learning – reference: Yu, T., & Zhu, H. (2020). Hyper-parameter optimization: A review of algorithms and applications. – reference: (Vol. 2, pp. 19-21). – volume: 13 start-page: e1484 year: 2023 ident: b0085 article-title: Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges publication-title: Wiley Interdiscip. Rev.: Data Min. Knowl. Discovery – volume: 364 year: 2023 ident: b0160 article-title: Optimized prediction models for faulting failure of Jointed Plain concrete pavement using the metaheuristic optimization algorithms publication-title: Constr. Build. Mater. – volume: 126 year: 2022 ident: b0600 article-title: Cross-correlation stacking-based microseismic source location using three metaheuristic optimization algorithms publication-title: Tunn. Undergr. Space Technol. – volume: 35 start-page: 16 year: 2018 end-page: 34 ident: b0145 article-title: Model selection techniques: an overview publication-title: IEEE Signal Process Mag. – volume: 79 start-page: 7305 year: 2023 end-page: 7336 ident: b0550 article-title: Dung beetle optimizer: a new meta-heuristic algorithm for global optimization publication-title: J. Supercomput. – volume: 272 year: 2025 ident: b0590 article-title: Residential building cooling load prediction with optimized KELM models and interpretability insights publication-title: Appl. Therm. Eng. – volume: 194 year: 2024 ident: b0040 article-title: Advances, challenges, and future research needs in machine learning-based crash prediction models: a systematic review publication-title: Accid. Anal. Prev. – volume: 14 start-page: 4424 year: 2021 ident: b0210 article-title: A comparison of the performance of supervised learning algorithms for solar power prediction publication-title: Energies – volume: 19 start-page: 1 year: 2019 end-page: 32 ident: b0175 article-title: On the interpretability of machine learning-based model for predicting hypertension publication-title: BMC Med. Inf. Decis. Making – volume: 77 start-page: 802 year: 2008 end-page: 813 ident: b0170 article-title: A working guide to boosted regression trees publication-title: J. Anim. Ecol. – reference: Kabuba, J. (2016). Application of Neural Networks Technique for Predicting of Abrasiveness Characteristics of Thermal Coal. In – year: 2016 ident: b0205 – volume: 3 start-page: 1439 year: 2003 end-page: 1461 ident: b0535 article-title: Use of the zero norm with linear models and kernel methods publication-title: The Journal of Machine Learning Research – volume: 44 start-page: 1465 year: 2003 end-page: 1479 ident: b0130 article-title: Sustainable cofiring of biomass with coal publication-title: Energ. Conver. Manage. – year: 2008 ident: b0515 – volume: 9 start-page: 571 year: 1980 end-page: 595 ident: b0240 article-title: Approximations of the critical region of the fbietkan statistic publication-title: Communications in Statistics-Theory and Methods – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b0325 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – volume: 389 year: 2021 ident: b0105 article-title: A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean publication-title: Appl. Math Comput. – volume: 82 year: 2024 ident: b0380 article-title: An ensemble model of explainable soft computing for failure mode identification in reinforced concrete shear walls publication-title: Journal of Building Engineering – reference: Tlotleng, M. T. (2011). – volume: 371 year: 2024 ident: b0635 article-title: Improved prediction accuracy for compressive strength of recycled aggregate concrete using optimization-based algorithms and cascade forward neural network publication-title: J. Environ. Manage. – volume: 102437 year: 2024 ident: b0410 article-title: Metaheuristic optimization algorithms for real-world electrical and civil engineering application: a Review publication-title: Results Eng. – reference: Lundberg, S. (2017). A unified approach to interpreting model predictions. – reference: , – volume: 349 start-page: 255 year: 2015 end-page: 260 ident: b0250 article-title: Machine learning: Trends, perspectives, and prospects publication-title: Science – volume: 30 year: 2016 ident: b0625 article-title: Classification of rockburst in underground projects: comparison of ten supervised learning methods publication-title: J. Comput. Civ. Eng. – volume: 55 start-page: 829 year: 2022 end-page: 894 ident: b0025 article-title: A comprehensive survey on optimizing deep learning models by metaheuristics publication-title: Artif. Intell. Rev. – volume: 42 start-page: 3348 year: 2022 end-page: 3368 ident: b0415 article-title: SHAP-based interpretation of an XGBoost model in the prediction of grindability of coals and their blends publication-title: Int. J. Coal Prep. Util. – volume: 64 year: 2021 ident: b0355 article-title: A tutorial on the design, experimentation and application of metaheuristic algorithms to real-world optimization problems publication-title: Swarm Evol. Comput. – reference: L’heureux, A., Grolinger, K., Elyamany, H. F., & Capretz, M. A. (2017). Machine learning with big data: Challenges and approaches. – volume: 929 year: 2024 ident: b0070 article-title: The explainable potential of coupling hybridized metaheuristics, XGBoost, and SHAP in revealing toluene behavior in the atmosphere publication-title: Sci. Total Environ. – volume: 415 start-page: 295 year: 2020 end-page: 316 ident: b0560 article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice publication-title: Neurocomputing – reference: (Doctoral dissertation). – reference: (pp. 1-4). IEEE. – volume: 64 start-page: 2909 year: 2021 end-page: 2945 ident: b0015 article-title: Modeling, analysis, and optimization under uncertainties: a review publication-title: Struct. Multidiscip. Optim. – reference: (Vol. 33, No. 01, pp. 9808-9814). – volume: 49 start-page: 1202 year: 2016 end-page: 1214 ident: b0420 article-title: Comparisons of metaheuristic algorithms and fitness functions on software test data generation publication-title: Appl. Soft Comput. – volume: 83 start-page: 15565 year: 2024 end-page: 15590 ident: b0445 article-title: Artificial neural network based channel equalization using battle royale optimization algorithm with different initialization strategies publication-title: Multimed. Tools Appl. – volume: 33 start-page: 1139 year: 2021 end-page: 1157 ident: b0395 article-title: Battle royale optimization algorithm publication-title: Neural Comput. & Applic. – volume: 73 start-page: 1923 year: 2010 end-page: 1936 ident: b0125 article-title: Feature selection for time series prediction–a combined filter and wrapper approach for neural networks publication-title: Neurocomputing – volume: 52 start-page: 2570 year: 2012 end-page: 2578 ident: b0315 article-title: Does rational selection of training and test sets improve the outcome of QSAR modeling? publication-title: J. Chem. Inf. Model. – volume: 10 start-page: 2552 year: 2022 ident: b0340 article-title: Review of artificial intelligence and machine learning technologies: classification, restrictions, opportunities and challenges publication-title: Mathematics – volume: 36 start-page: 1271 year: 2022 end-page: 1285 ident: b0305 article-title: Failure prediction of municipal water pipes using machine learning algorithms publication-title: Water Resour. Manag. – volume: 16 year: 2022 ident: b0165 article-title: A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations (SHAP) publication-title: Case Stud. Constr. Mater. – volume: 281 year: 2021 ident: b0475 article-title: Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: a comparison between logistic regression and random forest publication-title: Eng. Geol. – reference: (pp. 1528-1534). IEEE. – volume: 120 year: 2022 ident: b0575 article-title: Perception model of surrounding rock geological conditions based on TBM operational big data and combined unsupervised-supervised learning publication-title: Tunn. Undergr. Space Technol. – volume: 335 year: 2023 ident: b0330 article-title: A comprehensive and comparative review on parameter estimation methods for modelling proton exchange membrane fuel cell publication-title: Fuel – volume: 15 start-page: 5732 year: 2023 ident: b0405 article-title: A comprehensive review and application of metaheuristics in solving the optimal parameter identification problems publication-title: Sustainability – volume: 14 start-page: 323 year: 2009 ident: b0465 article-title: An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests publication-title: Psychol. Methods – volume: 384 year: 2025 ident: b0100 article-title: Predicting the hardgrove grindability index using interpretable decision tree-based machine learning models publication-title: Fuel – reference: ASTM, D5142. Standard Test Methods for Proximate Analysis of the Analysis Sample of Coal and Coke by Instrumental Procedures. – volume: 9 start-page: 215 year: 2018 end-page: 231 ident: b0435 article-title: A review of meta-heuristic algorithms for reactive power planning problem publication-title: Ain Shams Eng. J. – volume: Vol. 381 year: 2003 ident: b0185 publication-title: Random number generation and Monte Carlo methods – volume: 50 start-page: 92 year: 2019 end-page: 111 ident: b0140 article-title: Data fusion and machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0 publication-title: Inf. Fusion – volume: 190 start-page: 262 year: 1951 end-page: 268 ident: b0555 article-title: An investigation of the abrasiveness of coal and its associated impurities publication-title: TRANSACTIONS OF THE AMERICAN INSTITUTE OF MINING AND METALLURGICAL ENGINEERS – volume: 69 start-page: 1168 year: 1990 end-page: 1176 ident: b0460 article-title: Assessment and prediction of coal abrasiveness publication-title: Fuel – volume: 13 start-page: 5211 year: 2023 ident: b0335 article-title: American zebra optimization algorithm for global optimization problems publication-title: Sci. Rep. – volume: 16 start-page: 3778 year: 2024 ident: b0190 article-title: Predicting Rock Hardness and Abrasivity using Hyperspectral Imaging Data and Random Forest Regressor Model publication-title: Remote Sens. (Basel) – volume: 16 start-page: 735 year: 2012 end-page: 744 ident: b0480 article-title: The potential for renewable energy in industrial applications publication-title: Renew. Sustain. Energy Rev. – volume: 358 start-page: 10121 year: 2021 end-page: 10140 ident: b0150 article-title: Random radial basis function kernel-based support vector machine publication-title: J. Franklin Inst. – volume: 86 start-page: 535 year: 2005 end-page: 550 ident: b0530 article-title: The nature of mineral matter in a coal and the effects on erosive and abrasive behaviour publication-title: Fuel Process. Technol. – volume: 15 start-page: 4501 year: 2022 ident: b0230 article-title: Application of machine learning for lithofacies prediction and cluster analysis approach to identify rock type publication-title: Energies – volume: 86 start-page: 20 year: 2016 end-page: 27 ident: b0220 article-title: Review of improved Monte Carlo methods in uncertainty-based design optimization for aerospace vehicles publication-title: Prog. Aerosp. Sci. – volume: 146 start-page: 389 year: 1991 end-page: 408 ident: b0455 article-title: Review of test methods for abrasive wear in ore grinding publication-title: Wear – volume: 89 start-page: 117 year: 2016 end-page: 123 ident: b0080 article-title: Performance evaluation of supervised machine learning algorithms for intrusion detection publication-title: Procedia Comput. Sci. – volume: 57 start-page: 9781 year: 2024 end-page: 9804 ident: b0225 article-title: Refined approaches for open stope stability analysis in mining environments: hybrid SVM model with multi-optimization strategies and gp technique publication-title: Rock Mech. Rock Eng. – volume: 308 start-page: 86 year: 2013 end-page: 94 ident: b0370 article-title: Abrasive wear mechanisms and their relation to rock properties publication-title: Wear – volume: 124 year: 2022 ident: b0605 article-title: Optimization of random forest through the use of MVO, GWO and MFO in evaluating the stability of underground entry-type excavations publication-title: Tunn. Undergr. Space Technol. – volume: 374 year: 2024 ident: b0350 article-title: Predictive modelling for coal abrasive index: Unveiling influential factors through Shallow and Deep Neural Networks publication-title: Fuel – reference: ASTM, D-2013. Standard Practice for Preparing Coal Samples for Analysis. – volume: 406 start-page: 109 year: 2019 end-page: 120 ident: b0430 article-title: Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data publication-title: Ecol. Model. – volume: 91 start-page: 55 year: 2009 end-page: 59 ident: b0400 article-title: Hardgrove grindability index prediction using support vector regression publication-title: Int. J. Miner. Process. – volume: 19 start-page: 101 year: 2024 end-page: 118 ident: b0375 article-title: Novel rockburst prediction criterion with enhanced explainability employing CatBoost and nature-inspired metaheuristic technique publication-title: Underground Space – volume: 29 start-page: 5457 year: 2022 end-page: 5492 ident: b0265 article-title: The mosaic of metaheuristic algorithms in structural optimization publication-title: Arch. Comput. Meth. Eng. – reference: Flach, P. (2019, July). Performance evaluation in machine learning: the good, the bad, the ugly, and the way forward. In – start-page: 1960 year: 2021 end-page: 1970 ident: b0585 article-title: Intratomo: self-supervised learning-based tomography via sinogram synthesis and prediction publication-title: In – volume: 344 start-page: 1 year: 2015 end-page: 8 ident: b0365 article-title: A preliminary study on the role of acoustic emission on inferring Cerchar abrasivity index of rocks using artificial neural network publication-title: Wear – volume: 35 start-page: 15923 year: 2023 end-page: 15941 ident: b0010 article-title: Archive-based coronavirus herd immunity algorithm for optimizing weights in neural networks publication-title: Neural Comput. & Applic. – reference: (pp. 1-30). Woodhead Publishing. – volume: SAUPEC start-page: 288 year: 2013 end-page: 293 ident: b0500 article-title: South african coal and its abrasiveness index determination: an account of challenges publication-title: In Proc of Southern African Universities Engineering Conf – volume: 83 start-page: 359 year: 2004 end-page: 364 ident: b0525 article-title: The relationship between excluded mineral matter and abrasion index of a coal publication-title: Fuel – volume: 31 start-page: 2916 year: 2024 end-page: 2929 ident: b0595 article-title: Enhancing rock fragmentation prediction in mining operations: a Hybrid GWO-RF model with SHAP interpretability publication-title: J. Cent. South Univ. – volume: 55 start-page: 96 year: 2021 end-page: 102 ident: b0035 article-title: Definition and Assessment of Coal Abrasivity publication-title: Power Technology and Engineering – volume: 33 start-page: 1019 year: 2023 end-page: 1036 ident: b0280 article-title: Stability prediction of hard rock pillar using support vector machine optimized by three metaheuristic algorithms publication-title: Int. J. Min. Sci. Technol. – reference: ISO 19579: 2006. Solid mineral fuels Determination of sulphur by IR spectrometry. – reference: , 7776-7797. – volume: 57 start-page: 7535 year: 2024 end-page: 7563 ident: b0385 article-title: Evaluation and interpretation of blasting-induced tunnel overbreak: using heuristic-based ensemble learning and gene expression programming techniques publication-title: Rock Mech. Rock Eng. – reference: Abraham, A. (2005). Artificial neural networks. – volume: 22 start-page: 867 year: 2012 end-page: 881 ident: b0490 article-title: Nonparametric statistical analysis for multiple comparison of machine learning regression algorithms publication-title: Int. J. Appl. Math. Comput. Sci. – volume: 23 start-page: 31 year: 2002 ident: b0120 article-title: Support vector machines and kernel methods: the new generation of learning machines publication-title: AI Mag. – reference: ASTM, D5373-14. Standard Test Methods for Determination of Carbon, Hydrogen, and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke. – volume: 58 start-page: 5475 year: 2025 end-page: 5502 ident: b0390 article-title: Methodology for Constructing Explicit Stability Formulas for Hard Rock Pillars: Integrating Data-Driven Approaches and Interpretability Techniques publication-title: Rock Mech. Rock Eng. – volume: 68 start-page: 302 year: 2015 end-page: 309 ident: b0495 article-title: Prediction of abrasiveness index of some Indian rocks using soft computing methods publication-title: Measurement – year: 2024 ident: b0090 article-title: Metaheuristic Optimization Algorithms: an overview publication-title: HCMCOU Journal of Science-Advances in Computational Structures – volume: 154 year: 2024 ident: b0615 article-title: Comprehensive review and future perspectives on prediction and mitigation of tunnel-induced ground settlement: a bibliometric analysis and methodological overview (2002–2022) publication-title: Tunn. Undergr. Space Technol. – volume: 30 start-page: 391 year: 2023 end-page: 426 ident: b0425 article-title: Moth flame optimization: theory, modifications, hybridizations, and applications publication-title: Arch. Comput. Meth. Eng. – volume: 74 start-page: 53 year: 2008 end-page: 66 ident: b0570 article-title: A study of rock abrasivity and tool wear in coal measures rocks publication-title: Int. J. Coal Geol. – reference: Lawal, A. I., Bada, S., & Onifade, M. (2024). Prediction of HGI of South African coalfields: A comparative analysis of ANN, SVR and LSTM models; in the International Coal Preparation and Utilization, – volume: 19 start-page: 1 year: 2019 end-page: 16 ident: b0505 article-title: Comparing different supervised machine learning algorithms for disease prediction publication-title: BMC Med. Inf. Decis. Making – volume: 8 start-page: 22 year: 2020 end-page: 34 ident: b0545 article-title: A novel swarm intelligence optimization approach: sparrow search algorithm publication-title: Systems science & control engineering – reference: Agarwal, N., & Das, S. (2020, December). Interpretable machine learning tools: A survey. In – volume: 134 year: 2022 ident: b0110 article-title: Multiobjective forensic-based investigation algorithm for solving structural design problems publication-title: Autom. Constr. – reference: Snyman, C. P., 1998. Coal in Wilson. M. G. C and Anhausser. C. R (Eds). The Mineral deposits of South Africa, Handbook. Council of Geoscience, pp. 136-205. – volume: 187 year: 2022 ident: b0290 article-title: Abrasive tool wear prediction based on an improved hybrid difference grey wolf algorithm for optimizing SVM publication-title: Measurement – start-page: 377 year: 2017 end-page: 419 ident: b0115 publication-title: Tree-based models – volume: 32 start-page: 32 year: 2012 end-page: 44 ident: b0320 article-title: Renewable energy in the minerals industry: a review of global potential publication-title: J. Clean. Prod. – volume: 385 year: 2023 ident: b0285 article-title: Prediction of composting maturity and identification of critical parameters for green waste compost using machine learning publication-title: Bioresour. Technol. – volume: 10 start-page: 3805 year: 2017 end-page: 3820 ident: b0540 article-title: Multivariable integrated evaluation of model performance with the vector field evaluation diagram publication-title: Geosci. Model Dev. – reference: ASTM, D5865-04. Standard Test Method for Gross Calorific Value of Coal and Coke. – volume: 5 start-page: 1 year: 2021 end-page: 7 ident: b0095 article-title: Influence of coal quality on boiler elements abrasion' publication-title: Journal of Electrical Power & Energy Systems – volume: 41 year: 2023 ident: b0610 article-title: Machine learning models to predict the tunnel wall convergence publication-title: Transp. Geotech. – volume: 24 start-page: 44 year: 2015 end-page: 65 ident: b0200 article-title: Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation publication-title: J. Comput. Graph. Stat. – volume: 12 start-page: 841 year: 2024 end-page: 848 ident: b0045 article-title: The role of hyperparameters in machine learning models and how to tune them publication-title: Polit. Sci. Res. Methods – reference: . – volume: 84 start-page: 63 year: 2010 end-page: 69 ident: b0075 article-title: A study on the abundance of quartz in thermal coals of India and its relation to abrasion index: Development of predictive model for abrasion publication-title: Int. J. Coal Geol. – year: 2003 ident: b0440 article-title: Handbook of parametric and nonparametric statistical procedures – volume: 13 start-page: 12127 year: 2023 ident: b0155 article-title: Air-quality prediction based on the ARIMA-CNN-LSTM combination model optimized by dung beetle optimizer publication-title: Sci. Rep. – volume: 39 start-page: 262 year: 1993 end-page: 287 ident: b0345 article-title: Model predictive control with linear models publication-title: AIChE J – volume: 40 start-page: 701 year: 2020 end-page: 711 ident: b0510 article-title: Prediction of hardgrove grindability index of Afsin-Elbistan (Turkey) low-grade coals based on proximate analysis and ash chemical composition by neural networks publication-title: Int. J. Coal Prep. Util. – volume: 16 start-page: 3778 issue: 20 year: 2024 ident: 10.1016/j.fuel.2025.136065_b0190 article-title: Predicting Rock Hardness and Abrasivity using Hyperspectral Imaging Data and Random Forest Regressor Model publication-title: Remote Sens. (Basel) doi: 10.3390/rs16203778 – volume: 19 start-page: 1 year: 2019 ident: 10.1016/j.fuel.2025.136065_b0175 article-title: On the interpretability of machine learning-based model for predicting hypertension publication-title: BMC Med. Inf. Decis. Making – volume: 13 start-page: e1484 issue: 2 year: 2023 ident: 10.1016/j.fuel.2025.136065_b0085 article-title: Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges publication-title: Wiley Interdiscip. Rev.: Data Min. Knowl. Discovery – volume: 19 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.fuel.2025.136065_b0505 article-title: Comparing different supervised machine learning algorithms for disease prediction publication-title: BMC Med. Inf. Decis. Making – volume: 86 start-page: 20 year: 2016 ident: 10.1016/j.fuel.2025.136065_b0220 article-title: Review of improved Monte Carlo methods in uncertainty-based design optimization for aerospace vehicles publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2016.07.004 – volume: 15 start-page: 4501 issue: 12 year: 2022 ident: 10.1016/j.fuel.2025.136065_b0230 article-title: Application of machine learning for lithofacies prediction and cluster analysis approach to identify rock type publication-title: Energies doi: 10.3390/en15124501 – volume: 89 start-page: 117 year: 2016 ident: 10.1016/j.fuel.2025.136065_b0080 article-title: Performance evaluation of supervised machine learning algorithms for intrusion detection publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.06.016 – volume: 39 start-page: 262 issue: 2 year: 1993 ident: 10.1016/j.fuel.2025.136065_b0345 article-title: Model predictive control with linear models publication-title: AIChE J doi: 10.1002/aic.690390208 – ident: 10.1016/j.fuel.2025.136065_b0245 – start-page: 1 year: 2001 ident: 10.1016/j.fuel.2025.136065_b0195 article-title: An overview of radial basis function networks – volume: 82 year: 2024 ident: 10.1016/j.fuel.2025.136065_b0380 article-title: An ensemble model of explainable soft computing for failure mode identification in reinforced concrete shear walls publication-title: Journal of Building Engineering doi: 10.1016/j.jobe.2023.108386 – volume: 9 start-page: 215 issue: 2 year: 2018 ident: 10.1016/j.fuel.2025.136065_b0435 article-title: A review of meta-heuristic algorithms for reactive power planning problem publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2015.12.003 – volume: 74 start-page: 53 issue: 1 year: 2008 ident: 10.1016/j.fuel.2025.136065_b0570 article-title: A study of rock abrasivity and tool wear in coal measures rocks publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2007.09.007 – ident: 10.1016/j.fuel.2025.136065_b0065 – volume: 384 year: 2025 ident: 10.1016/j.fuel.2025.136065_b0100 article-title: Predicting the hardgrove grindability index using interpretable decision tree-based machine learning models publication-title: Fuel doi: 10.1016/j.fuel.2024.133953 – volume: 58 start-page: 5475 year: 2025 ident: 10.1016/j.fuel.2025.136065_b0390 article-title: Methodology for Constructing Explicit Stability Formulas for Hard Rock Pillars: Integrating Data-Driven Approaches and Interpretability Techniques publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-025-04387-x – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.fuel.2025.136065_b0325 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 83 start-page: 359 issue: 3 year: 2004 ident: 10.1016/j.fuel.2025.136065_b0525 article-title: The relationship between excluded mineral matter and abrasion index of a coal publication-title: Fuel doi: 10.1016/S0016-2361(03)00262-X – volume: 22 start-page: 241 year: 2025 ident: 10.1016/j.fuel.2025.136065_b0620 article-title: Cutting-edge approaches to specific energy prediction in TBM disc cutters: Integrating COSSA-RF model with three interpretative techniques publication-title: Underground Space doi: 10.1016/j.undsp.2024.11.004 – volume: 69 start-page: 1168 issue: 9 year: 1990 ident: 10.1016/j.fuel.2025.136065_b0460 article-title: Assessment and prediction of coal abrasiveness publication-title: Fuel doi: 10.1016/0016-2361(90)90077-4 – volume: 281 year: 2021 ident: 10.1016/j.fuel.2025.136065_b0475 article-title: Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: a comparison between logistic regression and random forest publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2020.105972 – volume: 44 start-page: 1465 issue: 9 year: 2003 ident: 10.1016/j.fuel.2025.136065_b0130 article-title: Sustainable cofiring of biomass with coal publication-title: Energ. Conver. Manage. doi: 10.1016/S0196-8904(02)00144-9 – volume: 126 year: 2022 ident: 10.1016/j.fuel.2025.136065_b0600 article-title: Cross-correlation stacking-based microseismic source location using three metaheuristic optimization algorithms publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2022.104570 – volume: 19 start-page: 101 year: 2024 ident: 10.1016/j.fuel.2025.136065_b0375 article-title: Novel rockburst prediction criterion with enhanced explainability employing CatBoost and nature-inspired metaheuristic technique publication-title: Underground Space doi: 10.1016/j.undsp.2024.03.003 – volume: 154 year: 2024 ident: 10.1016/j.fuel.2025.136065_b0275 article-title: Application of supervised random forest paradigms based on optimization and post-hoc explanation in underground stope stability prediction publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.111388 – volume: 33 start-page: 5011 year: 2021 ident: 10.1016/j.fuel.2025.136065_b0030 article-title: Coronavirus herd immunity optimizer (CHIO) publication-title: Neural Comput. & Applic. doi: 10.1007/s00521-020-05296-6 – start-page: 9 year: 2009 ident: 10.1016/j.fuel.2025.136065_b0215 – volume: 146 start-page: 389 issue: 2 year: 1991 ident: 10.1016/j.fuel.2025.136065_b0455 article-title: Review of test methods for abrasive wear in ore grinding publication-title: Wear doi: 10.1016/0043-1648(91)90077-8 – volume: 349 start-page: 255 issue: 6245 year: 2015 ident: 10.1016/j.fuel.2025.136065_b0250 article-title: Machine learning: Trends, perspectives, and prospects publication-title: Science doi: 10.1126/science.aaa8415 – volume: 187 year: 2022 ident: 10.1016/j.fuel.2025.136065_b0290 article-title: Abrasive tool wear prediction based on an improved hybrid difference grey wolf algorithm for optimizing SVM publication-title: Measurement doi: 10.1016/j.measurement.2021.110247 – volume: 3 start-page: 1439 year: 2003 ident: 10.1016/j.fuel.2025.136065_b0535 article-title: Use of the zero norm with linear models and kernel methods publication-title: The Journal of Machine Learning Research – volume: 36 start-page: 1271 issue: 4 year: 2022 ident: 10.1016/j.fuel.2025.136065_b0305 article-title: Failure prediction of municipal water pipes using machine learning algorithms publication-title: Water Resour. Manag. doi: 10.1007/s11269-022-03080-w – volume: 14 start-page: 4424 issue: 15 year: 2021 ident: 10.1016/j.fuel.2025.136065_b0210 article-title: A comparison of the performance of supervised learning algorithms for solar power prediction publication-title: Energies doi: 10.3390/en14154424 – volume: 1 start-page: 23 year: 2013 ident: 10.1016/j.fuel.2025.136065_b0565 article-title: Optimization and metaheuristic algorithms in engineering publication-title: Metaheuristics in water, geotechnical and transport engineering – volume: 13 start-page: 12127 issue: 1 year: 2023 ident: 10.1016/j.fuel.2025.136065_b0155 article-title: Air-quality prediction based on the ARIMA-CNN-LSTM combination model optimized by dung beetle optimizer publication-title: Sci. Rep. doi: 10.1038/s41598-023-36620-4 – volume: 344 start-page: 1 year: 2015 ident: 10.1016/j.fuel.2025.136065_b0365 article-title: A preliminary study on the role of acoustic emission on inferring Cerchar abrasivity index of rocks using artificial neural network publication-title: Wear doi: 10.1016/j.wear.2015.10.006 – volume: 50 start-page: 92 year: 2019 ident: 10.1016/j.fuel.2025.136065_b0140 article-title: Data fusion and machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0 publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.10.005 – volume: 35 start-page: 15923 issue: 21 year: 2023 ident: 10.1016/j.fuel.2025.136065_b0010 article-title: Archive-based coronavirus herd immunity algorithm for optimizing weights in neural networks publication-title: Neural Comput. & Applic. doi: 10.1007/s00521-023-08577-y – start-page: 1960 year: 2021 ident: 10.1016/j.fuel.2025.136065_b0585 article-title: Intratomo: self-supervised learning-based tomography via sinogram synthesis and prediction – volume: 124 year: 2022 ident: 10.1016/j.fuel.2025.136065_b0605 article-title: Optimization of random forest through the use of MVO, GWO and MFO in evaluating the stability of underground entry-type excavations publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2022.104494 – ident: 10.1016/j.fuel.2025.136065_b0060 – volume: 5 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.fuel.2025.136065_b0095 article-title: Influence of coal quality on boiler elements abrasion' publication-title: Journal of Electrical Power & Energy Systems doi: 10.26855/jepes.2021.03.001 – volume: 194 year: 2024 ident: 10.1016/j.fuel.2025.136065_b0040 article-title: Advances, challenges, and future research needs in machine learning-based crash prediction models: a systematic review publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2023.107378 – volume: 10 start-page: 3805 issue: 10 year: 2017 ident: 10.1016/j.fuel.2025.136065_b0540 article-title: Multivariable integrated evaluation of model performance with the vector field evaluation diagram publication-title: Geosci. Model Dev. doi: 10.5194/gmd-10-3805-2017 – volume: 73 start-page: 1923 issue: 10–12 year: 2010 ident: 10.1016/j.fuel.2025.136065_b0125 article-title: Feature selection for time series prediction–a combined filter and wrapper approach for neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.01.017 – volume: 23 start-page: 31 issue: 3 year: 2002 ident: 10.1016/j.fuel.2025.136065_b0120 article-title: Support vector machines and kernel methods: the new generation of learning machines publication-title: AI Mag. – volume: 33 start-page: 1139 issue: 4 year: 2021 ident: 10.1016/j.fuel.2025.136065_b0395 article-title: Battle royale optimization algorithm publication-title: Neural Comput. & Applic. doi: 10.1007/s00521-020-05004-4 – volume: 374 year: 2024 ident: 10.1016/j.fuel.2025.136065_b0350 article-title: Predictive modelling for coal abrasive index: Unveiling influential factors through Shallow and Deep Neural Networks publication-title: Fuel doi: 10.1016/j.fuel.2024.132319 – volume: 40 start-page: 701 issue: 10 year: 2020 ident: 10.1016/j.fuel.2025.136065_b0510 article-title: Prediction of hardgrove grindability index of Afsin-Elbistan (Turkey) low-grade coals based on proximate analysis and ash chemical composition by neural networks publication-title: Int. J. Coal Prep. Util. doi: 10.1080/19392699.2017.1406350 – volume: 29 start-page: 5457 issue: 7 year: 2022 ident: 10.1016/j.fuel.2025.136065_b0265 article-title: The mosaic of metaheuristic algorithms in structural optimization publication-title: Arch. Comput. Meth. Eng. doi: 10.1007/s11831-022-09773-0 – ident: 10.1016/j.fuel.2025.136065_b0260 doi: 10.1109/ACCESS.2017.2696365 – volume: 415 start-page: 295 year: 2020 ident: 10.1016/j.fuel.2025.136065_b0560 article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.061 – year: 2008 ident: 10.1016/j.fuel.2025.136065_b0515 – volume: 86 start-page: 535 issue: 5 year: 2005 ident: 10.1016/j.fuel.2025.136065_b0530 article-title: The nature of mineral matter in a coal and the effects on erosive and abrasive behaviour publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2004.04.002 – volume: 154 year: 2024 ident: 10.1016/j.fuel.2025.136065_b0615 article-title: Comprehensive review and future perspectives on prediction and mitigation of tunnel-induced ground settlement: a bibliometric analysis and methodological overview (2002–2022) publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2024.106081 – volume: 64 year: 2021 ident: 10.1016/j.fuel.2025.136065_b0355 article-title: A tutorial on the design, experimentation and application of metaheuristic algorithms to real-world optimization problems publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2021.100888 – volume: 358 start-page: 10121 issue: 18 year: 2021 ident: 10.1016/j.fuel.2025.136065_b0150 article-title: Random radial basis function kernel-based support vector machine publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2021.10.005 – ident: 10.1016/j.fuel.2025.136065_b0255 – volume: 57 start-page: 7535 issue: 9 year: 2024 ident: 10.1016/j.fuel.2025.136065_b0385 article-title: Evaluation and interpretation of blasting-induced tunnel overbreak: using heuristic-based ensemble learning and gene expression programming techniques publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-024-03947-x – volume: 120 year: 2022 ident: 10.1016/j.fuel.2025.136065_b0575 article-title: Perception model of surrounding rock geological conditions based on TBM operational big data and combined unsupervised-supervised learning publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2021.104285 – volume: 929 year: 2024 ident: 10.1016/j.fuel.2025.136065_b0070 article-title: The explainable potential of coupling hybridized metaheuristics, XGBoost, and SHAP in revealing toluene behavior in the atmosphere publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2024.172195 – ident: 10.1016/j.fuel.2025.136065_b0020 doi: 10.1109/SSCI47803.2020.9308260 – volume: 22 start-page: 867 issue: 4 year: 2012 ident: 10.1016/j.fuel.2025.136065_b0490 article-title: Nonparametric statistical analysis for multiple comparison of machine learning regression algorithms publication-title: Int. J. Appl. Math. Comput. Sci. doi: 10.2478/v10006-012-0064-z – volume: 32 start-page: 32 year: 2012 ident: 10.1016/j.fuel.2025.136065_b0320 article-title: Renewable energy in the minerals industry: a review of global potential publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2012.03.016 – volume: 79 start-page: 7305 issue: 7 year: 2023 ident: 10.1016/j.fuel.2025.136065_b0550 article-title: Dung beetle optimizer: a new meta-heuristic algorithm for global optimization publication-title: J. Supercomput. doi: 10.1007/s11227-022-04959-6 – volume: 237 start-page: 350 year: 2017 ident: 10.1016/j.fuel.2025.136065_b0630 article-title: Machine learning on big data: Opportunities and challenges publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.01.026 – volume: 31 start-page: 2916 issue: 8 year: 2024 ident: 10.1016/j.fuel.2025.136065_b0595 article-title: Enhancing rock fragmentation prediction in mining operations: a Hybrid GWO-RF model with SHAP interpretability publication-title: J. Cent. South Univ. doi: 10.1007/s11771-024-5699-z – volume: 16 year: 2022 ident: 10.1016/j.fuel.2025.136065_b0165 article-title: A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations (SHAP) publication-title: Case Stud. Constr. Mater. – volume: 335 year: 2023 ident: 10.1016/j.fuel.2025.136065_b0330 article-title: A comprehensive and comparative review on parameter estimation methods for modelling proton exchange membrane fuel cell publication-title: Fuel doi: 10.1016/j.fuel.2022.127080 – volume: 55 start-page: 829 issue: 2 year: 2022 ident: 10.1016/j.fuel.2025.136065_b0025 article-title: A comprehensive survey on optimizing deep learning models by metaheuristics publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-021-09992-0 – volume: 30 start-page: 391 issue: 1 year: 2023 ident: 10.1016/j.fuel.2025.136065_b0425 article-title: Moth flame optimization: theory, modifications, hybridizations, and applications publication-title: Arch. Comput. Meth. Eng. doi: 10.1007/s11831-022-09801-z – volume: 15 start-page: 5732 issue: 7 year: 2023 ident: 10.1016/j.fuel.2025.136065_b0405 article-title: A comprehensive review and application of metaheuristics in solving the optimal parameter identification problems publication-title: Sustainability doi: 10.3390/su15075732 – volume: 12 start-page: 841 issue: 4 year: 2024 ident: 10.1016/j.fuel.2025.136065_b0045 article-title: The role of hyperparameters in machine learning models and how to tune them publication-title: Polit. Sci. Res. Methods doi: 10.1017/psrm.2023.61 – volume: 16 start-page: 735 issue: 1 year: 2012 ident: 10.1016/j.fuel.2025.136065_b0480 article-title: The potential for renewable energy in industrial applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2011.08.039 – start-page: 377 year: 2017 ident: 10.1016/j.fuel.2025.136065_b0115 – volume: 102437 year: 2024 ident: 10.1016/j.fuel.2025.136065_b0410 article-title: Metaheuristic optimization algorithms for real-world electrical and civil engineering application: a Review publication-title: Results Eng. – volume: 64 start-page: 2909 issue: 5 year: 2021 ident: 10.1016/j.fuel.2025.136065_b0015 article-title: Modeling, analysis, and optimization under uncertainties: a review publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-021-03026-7 – ident: 10.1016/j.fuel.2025.136065_b0470 doi: 10.1016/B978-0-08-102201-6.00001-7 – volume: 364 year: 2023 ident: 10.1016/j.fuel.2025.136065_b0160 article-title: Optimized prediction models for faulting failure of Jointed Plain concrete pavement using the metaheuristic optimization algorithms publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2022.129948 – volume: 83 start-page: 15565 issue: 6 year: 2024 ident: 10.1016/j.fuel.2025.136065_b0445 article-title: Artificial neural network based channel equalization using battle royale optimization algorithm with different initialization strategies publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-16161-8 – volume: Vol. 381 year: 2003 ident: 10.1016/j.fuel.2025.136065_b0185 – volume: 91 start-page: 55 issue: 1–2 year: 2009 ident: 10.1016/j.fuel.2025.136065_b0400 article-title: Hardgrove grindability index prediction using support vector regression publication-title: Int. J. Miner. Process. – volume: 371 year: 2024 ident: 10.1016/j.fuel.2025.136065_b0635 article-title: Improved prediction accuracy for compressive strength of recycled aggregate concrete using optimization-based algorithms and cascade forward neural network publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2024.123068 – ident: 10.1016/j.fuel.2025.136065_b0055 – ident: 10.1016/j.fuel.2025.136065_b0485 – ident: 10.1016/j.fuel.2025.136065_b0005 doi: 10.1002/0471497398.mm421 – volume: 11 start-page: 1636 issue: 7 year: 2023 ident: 10.1016/j.fuel.2025.136065_b0300 article-title: Random forest and whale optimization algorithm to predict the invalidation risk of backfilling pipeline publication-title: Mathematics doi: 10.3390/math11071636 – volume: 190 start-page: 262 issue: 3 year: 1951 ident: 10.1016/j.fuel.2025.136065_b0555 article-title: An investigation of the abrasiveness of coal and its associated impurities publication-title: TRANSACTIONS OF THE AMERICAN INSTITUTE OF MINING AND METALLURGICAL ENGINEERS – volume: 77 start-page: 802 issue: 4 year: 2008 ident: 10.1016/j.fuel.2025.136065_b0170 article-title: A working guide to boosted regression trees publication-title: J. Anim. Ecol. doi: 10.1111/j.1365-2656.2008.01390.x – volume: 49 start-page: 1202 year: 2016 ident: 10.1016/j.fuel.2025.136065_b0420 article-title: Comparisons of metaheuristic algorithms and fitness functions on software test data generation publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.09.045 – ident: 10.1016/j.fuel.2025.136065_b0580 – volume: 68 start-page: 302 year: 2015 ident: 10.1016/j.fuel.2025.136065_b0495 article-title: Prediction of abrasiveness index of some Indian rocks using soft computing methods publication-title: Measurement doi: 10.1016/j.measurement.2015.03.009 – ident: 10.1016/j.fuel.2025.136065_b0450 – volume: 406 start-page: 109 year: 2019 ident: 10.1016/j.fuel.2025.136065_b0430 article-title: Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2019.06.002 – volume: 8 start-page: 22 issue: 1 year: 2020 ident: 10.1016/j.fuel.2025.136065_b0545 article-title: A novel swarm intelligence optimization approach: sparrow search algorithm publication-title: Systems science & control engineering doi: 10.1080/21642583.2019.1708830 – year: 2003 ident: 10.1016/j.fuel.2025.136065_b0440 – ident: 10.1016/j.fuel.2025.136065_b0310 – volume: 57 start-page: 9781 issue: 11 year: 2024 ident: 10.1016/j.fuel.2025.136065_b0225 article-title: Refined approaches for open stope stability analysis in mining environments: hybrid SVM model with multi-optimization strategies and gp technique publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-024-04055-6 – volume: 41 year: 2023 ident: 10.1016/j.fuel.2025.136065_b0610 article-title: Machine learning models to predict the tunnel wall convergence publication-title: Transp. Geotech. doi: 10.1016/j.trgeo.2023.101022 – year: 2016 ident: 10.1016/j.fuel.2025.136065_b0205 – ident: 10.1016/j.fuel.2025.136065_b0050 – volume: 308 start-page: 86 issue: 1–2 year: 2013 ident: 10.1016/j.fuel.2025.136065_b0370 article-title: Abrasive wear mechanisms and their relation to rock properties publication-title: Wear doi: 10.1016/j.wear.2013.10.005 – volume: 42 start-page: 1143 issue: 4 year: 2022 ident: 10.1016/j.fuel.2025.136065_b0235 article-title: Grindability and abrasive behavior of coal blends: analysis and prediction publication-title: Int. J. Coal Prep. Util. doi: 10.1080/19392699.2019.1694009 – year: 2024 ident: 10.1016/j.fuel.2025.136065_b0090 article-title: Metaheuristic Optimization Algorithms: an overview publication-title: HCMCOU Journal of Science-Advances in Computational Structures – volume: 389 year: 2021 ident: 10.1016/j.fuel.2025.136065_b0105 article-title: A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean publication-title: Appl. Math Comput. – volume: SAUPEC start-page: 288 year: 2013 ident: 10.1016/j.fuel.2025.136065_b0500 article-title: South african coal and its abrasiveness index determination: an account of challenges publication-title: In Proc of Southern African Universities Engineering Conf – volume: 42 start-page: 3348 issue: 11 year: 2022 ident: 10.1016/j.fuel.2025.136065_b0415 article-title: SHAP-based interpretation of an XGBoost model in the prediction of grindability of coals and their blends publication-title: Int. J. Coal Prep. Util. doi: 10.1080/19392699.2021.1959324 – ident: 10.1016/j.fuel.2025.136065_b0180 doi: 10.1609/aaai.v33i01.33019808 – volume: 10 start-page: 2552 issue: 15 year: 2022 ident: 10.1016/j.fuel.2025.136065_b0340 article-title: Review of artificial intelligence and machine learning technologies: classification, restrictions, opportunities and challenges publication-title: Mathematics doi: 10.3390/math10152552 – volume: 9 start-page: 571 issue: 6 year: 1980 ident: 10.1016/j.fuel.2025.136065_b0240 article-title: Approximations of the critical region of the fbietkan statistic publication-title: Communications in Statistics-Theory and Methods doi: 10.1080/03610928008827904 – volume: 52 start-page: 2570 issue: 10 year: 2012 ident: 10.1016/j.fuel.2025.136065_b0315 article-title: Does rational selection of training and test sets improve the outcome of QSAR modeling? publication-title: J. Chem. Inf. Model. doi: 10.1021/ci300338w – volume: 55 start-page: 96 issue: 1 year: 2021 ident: 10.1016/j.fuel.2025.136065_b0035 article-title: Definition and Assessment of Coal Abrasivity publication-title: Power Technology and Engineering doi: 10.1007/s10749-021-01326-y – volume: 200 year: 2021 ident: 10.1016/j.fuel.2025.136065_b0360 article-title: Application of supervised machine learning paradigms in the prediction of petroleum reservoir properties: Comparative analysis of ANN and SVM models publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2020.108182 – volume: 84 start-page: 63 issue: 1 year: 2010 ident: 10.1016/j.fuel.2025.136065_b0075 article-title: A study on the abundance of quartz in thermal coals of India and its relation to abrasion index: Development of predictive model for abrasion publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2010.08.005 – volume: 385 year: 2023 ident: 10.1016/j.fuel.2025.136065_b0285 article-title: Prediction of composting maturity and identification of critical parameters for green waste compost using machine learning publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2023.129444 – volume: 134 year: 2022 ident: 10.1016/j.fuel.2025.136065_b0110 article-title: Multiobjective forensic-based investigation algorithm for solving structural design problems publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.104084 – volume: 13 start-page: 5211 issue: 1 year: 2023 ident: 10.1016/j.fuel.2025.136065_b0335 article-title: American zebra optimization algorithm for global optimization problems publication-title: Sci. Rep. doi: 10.1038/s41598-023-31876-2 – volume: 30 issue: 5 year: 2016 ident: 10.1016/j.fuel.2025.136065_b0625 article-title: Classification of rockburst in underground projects: comparison of ten supervised learning methods publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000553 – volume: 14 start-page: 323 issue: 4 year: 2009 ident: 10.1016/j.fuel.2025.136065_b0465 article-title: An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests publication-title: Psychol. Methods doi: 10.1037/a0016973 – ident: 10.1016/j.fuel.2025.136065_b0270 doi: 10.1080/19392699.2024.2339319 – volume: 24 start-page: 44 issue: 1 year: 2015 ident: 10.1016/j.fuel.2025.136065_b0200 article-title: Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation publication-title: J. Comput. Graph. Stat. doi: 10.1080/10618600.2014.907095 – volume: 35 start-page: 16 issue: 6 year: 2018 ident: 10.1016/j.fuel.2025.136065_b0145 article-title: Model selection techniques: an overview publication-title: IEEE Signal Process Mag. doi: 10.1109/MSP.2018.2867638 – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.fuel.2025.136065_b0135 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: The Journal of Machine learning research – volume: 33 start-page: 1019 issue: 8 year: 2023 ident: 10.1016/j.fuel.2025.136065_b0280 article-title: Stability prediction of hard rock pillar using support vector machine optimized by three metaheuristic algorithms publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2023.06.001 – ident: 10.1016/j.fuel.2025.136065_b0520 doi: 10.1109/ICIECS.2009.5362936 – volume: 272 year: 2025 ident: 10.1016/j.fuel.2025.136065_b0590 article-title: Residential building cooling load prediction with optimized KELM models and interpretability insights publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2025.126421 |
| SSID | ssj0007854 |
| Score | 2.5031679 |
| Snippet | •The study compares 18 supervised learning models for Abrasive Index (AI) prediction using 129 coal samples from South Africa's Witbank Coalfield.•Eight... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 136065 |
| SubjectTerms | Abrasive index Artificial intelligence Coal Metaheuristic optimization algorithms Supervised learning |
| Title | An optimized machine learning framework for prediction of coal abrasive index: Leveraging supervised learning, metaheuristic optimization, and interpretability analysis |
| URI | https://dx.doi.org/10.1016/j.fuel.2025.136065 |
| Volume | 403 |
| WOSCitedRecordID | wos001522195200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0016-2361 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007854 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKxgM8IK5iDJAfeNsyNTfH2VuFNnEZE4iB-hYlzvHWqk2qXsbEL-KF_8g5dpyGgiZAog9RFdV2m--rfXLy-TuMvQiLvBCBVl6_lNqLlAg9GZfaE0KDSqBU1u3z80lyeiqHw_R9r_fd7YW5nCRVJa-u0tl_hRrPIdi0dfYv4G47xRP4HkHHI8KOxz8CfoABIM4D09FXjCWnRisJrjjE-Z52YiyjL5zN6TmNCxpVTcYBePtsJO3GR5ESBieA18AWM1qsZjS3LLBn1yNhNIVlfgEra_rsRreykUYcOmq1jUaMS6ZP1gylGxwfr2Bi0hZUqtuK7ts0xQdbXbuuziu32Jp0d70yPOyQ_C09C4DJF1PJgOQ99bjNJFcj3fgMv6sXZOjcTXoEm0mPdjfOWvpkZndfeGQm053dI2Oh8OtKYZMW4wONP-0Ah4hJ8Ne3dSs2HLg_UsfUL4aLZGiW3mDbQRKnOIluD14fDd-0S38iY2v73XyRZpeWFRRujvT7SKgT3ZzdZXea2xI-sHS6x3pQ3We3O2aVD9i3QcVbYvGGWNzRgLfE4ogcXxOL15oTsbgjFjfEOuRrWvE1rdr-9vlPpOJdUu1zRJhvUoo7Sj1kn46Pzl6-8po6H54KI7H00rKQAiIpihJEAFAkPvhJrqXvFwm-UvIchFjlMlAhgAyLwNcyDSIo4wBUHj5iW1VdwWPGtRAqilVINo6RLEKMbyEplK9y6It-kOww313zTDUm-FSLZZI5teM4I5wywimzOO2wvbbNzFrAXPvp2EGZNUGsDU4zZN417Z78Y7tddmv9B3nKtpbzFTxjN9XlcrSYP28I-gPkBcvc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimized+machine+learning+framework+for+prediction+of+coal+abrasive+index%3A+Leveraging+supervised+learning%2C+metaheuristic+optimization%2C+and+interpretability+analysis&rft.jtitle=Fuel+%28Guildford%29&rft.au=Qi%2C+Hongning&rft.au=Zhou%2C+Jian&rft.au=Khandelwal%2C+Manoj&rft.au=Onifade%2C+Moshood&rft.date=2026-01-01&rft.pub=Elsevier+Ltd&rft.issn=0016-2361&rft.volume=403&rft_id=info:doi/10.1016%2Fj.fuel.2025.136065&rft.externalDocID=S0016236125017909 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon |