An extended fuzzy parametric programming-based approach for designing cellular manufacturing systems under uncertainty and dynamic conditions
This paper proposes an extended fuzzy parametric programming (FPP) approach to solve a dynamic cell formation problem considering the uncertain part demand and machine capacity. The classical FPP approach gives the decision maker a number of alternative decisions for different grades of precision. L...
Gespeichert in:
| Veröffentlicht in: | International journal of computer integrated manufacturing Jg. 22; H. 6; S. 538 - 548 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Taylor & Francis
01.06.2009
|
| Schlagworte: | |
| ISSN: | 0951-192X, 1362-3052 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper proposes an extended fuzzy parametric programming (FPP) approach to solve a dynamic cell formation problem considering the uncertain part demand and machine capacity. The classical FPP approach gives the decision maker a number of alternative decisions for different grades of precision. Linear membership functions such as trapezoid, triangular and other piecewise forms have widely been used to express the uncertain parameters in the different engineering fields. Especially, to our best of knowledge, all researches related to the use of the fuzzy programming-based approaches for cellular manufacturing systems (CMSs) have been applied to the piecewise membership functions. In the case of lack of sufficient knowledge, there is a section in the piecewise forms called 'core', consisting of the fully included members (i.e. members with membership degree equal to one). This section, which represents the expert's ignorance, is not considered in the fuzzy programming-based approaches presented in the literature.
In a highly cost-intensive production system, such as cellular manufacturing systems, the decision maker wants to know how big the changes of the cell configuration from one period to another are. These changes are caused by the fluctuations in some parameters of the system, such as part demand and machine capacity. However, when these parameters are uncertain as well as dynamic, the risk of decision making will increase significantly. On the other hand, in practice, a domain of uncertainty of data corresponds to a unique decision and hence the whole uncertainty in the system can be covered by only a few numbers of the alternative decisions, called 'applicable decisions'. This reduction in the decision space gives a better idea to the decision maker to make the final decision. The extended FPP proposed in this paper uses a simple strategy to extract all possible applicable solutions resulting from the core of the membership functions of the uncertain parameters. To verify the performance and applicability of the proposed approach, a comprehensive numerical example is solved and experimental results are presented. |
|---|---|
| AbstractList | This paper proposes an extended fuzzy parametric programming (FPP) approach to solve a dynamic cell formation problem considering the uncertain part demand and machine capacity. The classical FPP approach gives the decision maker a number of alternative decisions for different grades of precision. Linear membership functions such as trapezoid, triangular and other piecewise forms have widely been used to express the uncertain parameters in the different engineering fields. Especially, to our best of knowledge, all researches related to the use of the fuzzy programming-based approaches for cellular manufacturing systems (CMSs) have been applied to the piecewise membership functions. In the case of lack of sufficient knowledge, there is a section in the piecewise forms called 'core', consisting of the fully included members (i.e. members with membership degree equal to one). This section, which represents the expert's ignorance, is not considered in the fuzzy programming-based approaches presented in the literature.
In a highly cost-intensive production system, such as cellular manufacturing systems, the decision maker wants to know how big the changes of the cell configuration from one period to another are. These changes are caused by the fluctuations in some parameters of the system, such as part demand and machine capacity. However, when these parameters are uncertain as well as dynamic, the risk of decision making will increase significantly. On the other hand, in practice, a domain of uncertainty of data corresponds to a unique decision and hence the whole uncertainty in the system can be covered by only a few numbers of the alternative decisions, called 'applicable decisions'. This reduction in the decision space gives a better idea to the decision maker to make the final decision. The extended FPP proposed in this paper uses a simple strategy to extract all possible applicable solutions resulting from the core of the membership functions of the uncertain parameters. To verify the performance and applicability of the proposed approach, a comprehensive numerical example is solved and experimental results are presented. |
| Author | Tavakkoli-Moghaddam, R. Safaei, N. |
| Author_xml | – sequence: 1 givenname: N. surname: Safaei fullname: Safaei, N. email: safaei@mie.utoronto.ca organization: Department of Mechanical and Industrial Engineering , University of Toronto – sequence: 2 givenname: R. surname: Tavakkoli-Moghaddam fullname: Tavakkoli-Moghaddam, R. organization: Department of Industrial Engineering , College of Engineering, University of Tehran |
| BookMark | eNqFkN1KxDAQhYMouP48gHd5gWqm2Wy34I2IfyB4o-BdmU6SNdKmS5Ki9R18Z7OsVwp6k2TOzHcmnAO26wdvGDsBcQpiKc5ErQDqMj_LBSyqSu6wGchFWUihyl022_SLPPC8zw5ifBUCpFqKGfu88Ny8J-O10dyOHx8TX2PA3qTgiK_DsMpF7_yqaDHmEVxnDemF2yFwbaJb-dzkZLpu7DDwHv1okdIYNnKcYjJ95GO2D_kkExI6nyaOXnM9eezzFhq8dskNPh6xPYtdNMff9yF7ur56vLwt7h9u7i4v7guS80UqlqClqitdERjCSqpKyqWakxQlgMBWYTtXBFS3SrRZb0mB0WSNhboFZeUhq7a-FIYYg7ENuYSbL6SArmtANJtUm1-pZhJ-kOvgegzTn8z5lnE-p9bj2xA63SScuiHYgJ5cbORfePUv_otq0nuSXy37pXE |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2016_06_025 crossref_primary_10_1080_0951192X_2011_608718 crossref_primary_10_1016_j_apm_2015_05_005 crossref_primary_10_1080_0951192X_2013_834476 crossref_primary_10_1177_0954405414555559 crossref_primary_10_1080_0951192X_2014_880949 crossref_primary_10_1080_0951192X_2013_814160 crossref_primary_10_1080_0951192X_2013_874596 crossref_primary_10_1007_s12541_016_0017_9 crossref_primary_10_4018_IJAMC_2020070101 crossref_primary_10_1080_0305215X_2014_881808 crossref_primary_10_1108_IJQRM_08_2014_0118 crossref_primary_10_1080_0951192X_2011_627944 crossref_primary_10_1155_2022_1334081 crossref_primary_10_1142_S0217595913500048 |
| Cites_doi | 10.1016/j.fss.2007.06.014 10.1007/s10845-005-4827-3 10.1287/mnsc.17.4.B141 10.1016/j.ejor.2006.12.058 10.1016/0360-8352(95)00075-C 10.1080/002075499190653 10.1016/0165-0114(93)90254-F 10.1016/j.ejor.2005.08.027 10.1023/A:1016740830286 10.1016/S0165-0114(86)80028-8 10.1007/978-3-642-48753-8 |
| ContentType | Journal Article |
| Copyright | Copyright Taylor & Francis Group, LLC 2009 |
| Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2009 |
| DBID | AAYXX CITATION |
| DOI | 10.1080/09511920802616773 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1362-3052 |
| EndPage | 548 |
| ExternalDocumentID | 10_1080_09511920802616773 361845 |
| GroupedDBID | .4S .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS 8VB AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABPPZ ABTAI ABXUL ABXYU ACGEJ ACGFS ACTIO ADCVX ADGTB ADMLS ADUMR ADXPE AEISY AEMOZ AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGBKS AGDLA AGMYJ AHDZW AHQJS AIJEM AIYEW AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CS3 DGEBU DKSSO EBO EBR EBS EBU ECS EDO EJD EMK EPL E~A E~B GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P K1G KYCEM M4Z MK~ ML~ NA5 NX~ O9- P2P QWB RIG RNANH RNS ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TH9 TNC TTHFI TUROJ TUS TWF UPT UT5 UU3 ZGOLN ZL0 ~S~ 07I 1TA 4B5 AAYXX ABDPE ACTTO ADXEU AEHZU AEZBV AFBWG AFFNX AFION AGBLW AGVKY AGWUF AGYFW AKHJE AKMBP ALRRR ALXIB BGSSV BWMZZ C0- C5H CITATION CYRSC DAOYK DEXXA FETWF IFELN L8C LJTGL NUSFT OPCYK TAJZE TAP UB6 |
| ID | FETCH-LOGICAL-c346t-81d3597d7c1eca735733854c302110ab5ab45c1c9b50b54cbc51edcfef19b15f3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000266246200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0951-192X |
| IngestDate | Sat Nov 29 06:18:21 EST 2025 Tue Nov 18 22:24:48 EST 2025 Mon Oct 20 23:32:22 EDT 2025 Mon May 13 12:09:13 EDT 2019 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c346t-81d3597d7c1eca735733854c302110ab5ab45c1c9b50b54cbc51edcfef19b15f3 |
| PageCount | 11 |
| ParticipantIDs | informaworld_taylorfrancis_310_1080_09511920802616773 crossref_primary_10_1080_09511920802616773 crossref_citationtrail_10_1080_09511920802616773 |
| PublicationCentury | 2000 |
| PublicationDate | 6/1/2009 |
| PublicationDateYYYYMMDD | 2009-06-01 |
| PublicationDate_xml | – month: 06 year: 2009 text: 6/1/2009 day: 01 |
| PublicationDecade | 2000 |
| PublicationTitle | International journal of computer integrated manufacturing |
| PublicationYear | 2009 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | CIT0010 CIT0001 CIT0011 CIT0003 Lai Y-J. (CIT0007) 1992 CIT0002 CIT0005 CIT0004 CIT0006 CIT0009 CIT0008 |
| References_xml | – ident: CIT0010 doi: 10.1016/j.fss.2007.06.014 – ident: CIT0001 doi: 10.1007/s10845-005-4827-3 – ident: CIT0003 doi: 10.1287/mnsc.17.4.B141 – ident: CIT0009 doi: 10.1016/j.ejor.2006.12.058 – ident: CIT0008 doi: 10.1016/0360-8352(95)00075-C – ident: CIT0011 doi: 10.1080/002075499190653 – ident: CIT0006 doi: 10.1016/0165-0114(93)90254-F – ident: CIT0002 doi: 10.1016/j.ejor.2005.08.027 – ident: CIT0005 doi: 10.1023/A:1016740830286 – ident: CIT0004 doi: 10.1016/S0165-0114(86)80028-8 – volume-title: Fuzzy mathematical programming: Methods and applications year: 1992 ident: CIT0007 doi: 10.1007/978-3-642-48753-8 |
| SSID | ssj0013580 |
| Score | 1.9051039 |
| Snippet | This paper proposes an extended fuzzy parametric programming (FPP) approach to solve a dynamic cell formation problem considering the uncertain part demand and... |
| SourceID | crossref informaworld |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 538 |
| SubjectTerms | cellular manufacturing system dynamic and uncertain environment fuzzy parametric programming mixed-integer programming |
| Title | An extended fuzzy parametric programming-based approach for designing cellular manufacturing systems under uncertainty and dynamic conditions |
| URI | https://www.tandfonline.com/doi/abs/10.1080/09511920802616773 |
| Volume | 22 |
| WOSCitedRecordID | wos000266246200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1362-3052 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013580 issn: 0951-192X databaseCode: TFW dateStart: 19880101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQxQADb0R5yQMTUkSc1HmMFaJiqhiK6BbZZ1tCIgE1KaL9D_xnfE4C5dUBlgzJOXbix53P331HyFmgIx4DMlymsfR6nNkpxQPhQZAYq29UAhxcsol4OEzG4_SmweaUDawS99CmJopwazVObiHLFhF3gVaBNUwwSjRiURwj16dV-zgtR4O7jzME7vKmuUTyVnzcnmn-9IZPWukTZ-mCthls_rOdW2SjMTNpvx4X22RFFztkfYF8cJe89gvausCpmc7nM4o84Dmm2ALa4LZyK-qhplO0ZR-nttVUOeCHfUjR849QVpqLYophEi7ukdYM0SXFGLWJvUINPahm1H4OVbNC5LYWuxlXNWZsj9wOrkaX116TnMGDsBdVnrVzQ7sZUTEwDSIOkVcx4T0IfdxSCsmF7HFgkEruS3tfAmdagdGGpZJxE-6TTvFY6ANClTUitFHIMxTgepIqpCuVSrMYIhOILvHbzsmgYS7HBBoPGWsJTr_-6S45fy_yVNN2LBP2F3s8q5yvxNSJTb6LZ9VL1SV8SZHw16oO_1juiKzVx1jo_jkmnWoy1SdkFZ6r-3Jy6sb9G4g_Agw |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BQQIO7Iiy-sAJKaJO6qQ5VoiqiFJxKKK3KBnbEhIJqE0R7T_wz3iyQMt2gEsOyThx4tizeOY9gBNbucJDQrj0vciqC26mlLBDC-2GNvpGNlBgRjbhdbuNft-_KQJuwyKtknxonQNFZGs1TW4KRpcpcWdkFhjLhMpEXe56njMPC8LoWcLO77XuPnYRRMacllHJG_l-uav53S1m9NIMaumUvmmt_ben67BaWJqsmf8aGzCnkk1YmcIf3ILXZsLKKDjTo8lkzAgKPCaWLWRF6lZsRC1SdpKVAOTMdJvJLPfDXGQU_KdsVhaHyYgqJbLSR5aDRA8ZlakNzBHz7IN0zMz7MDlOwtg8xfjjMk8b24bb1kXvvG0V_AwWOnU3tYyp6xh_RHrIFYaeQ9CKDVFHp0ZeZRiJMKoL5OhHohaZ8xEKriRqpbkfcaGdHagkj4naBSaNHaG0JKghm5YUXxJiaSQV99DVdliFWjk6ARbg5cSh8RDwEuP085euwul7k6ccueM34dr0kAdpFi7RObfJV_EgfUmrIH5p4vz4qL0_tjuGpXbvuhN0LrtX-7Cc72pRNOgAKulgpA5hEZ_T--HgKJsEb9ExBjY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BQQgO7Iiy-sAJKaJO6qQ5VkAFAlU9FNFblIxtCYmEqk0R7T_wz3iyQMt2gEsOyTh24m1m_OYNwImtXOEhMVz6XmTVBTdTStihhXZDm_1GNlBglmzCa7cbvZ7fKbA5wwJWSTa0zokisrWaJndf6hIRd0ZagVFMKErU5a7nOfOwYNRmlwZ4t3X_cYggssRpWSZ5I98rDzW_e8XMtjRDWjq13bTW_tnQdVgt9EzWzAfGBsypZBNWptgHt-C1mbDSB870aDIZMyICjynHFrICuBUbUYu2OslK-nFmWs1khvwwDxm5_gnLyuIwGVGcRBb4yHKK6CGjILWBuWKOPUjHzHwOk-MkjE0txhqXOWhsG-5al93zK6vIzmChU3dTyyi6jrFGpIdcYeg5RKzYEHV0amRThpEIo7pAjn4kapG5H6HgSqJWmvsRF9rZgUrylKhdYNJoEUpLIhqyaUHxJfGVRlJxD11th1WolZ0TYEFdThk0HgNeMpx-_tNVOH0v0s95O34Trk33eJBmzhKdZzb5Kh6kL2kVxC9FnB-r2vtjuWNY6ly0gtvr9s0-LOdHWuQKOoBKOhipQ1jE5_RhODjKpsAbup8E6A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+extended+fuzzy+parametric+programming-based+approach+for+designing+cellular+manufacturing+systems+under+uncertainty+and+dynamic+conditions&rft.jtitle=International+journal+of+computer+integrated+manufacturing&rft.au=Safaei%2C+N.&rft.au=Tavakkoli-Moghaddam%2C+R.&rft.date=2009-06-01&rft.issn=0951-192X&rft.eissn=1362-3052&rft.volume=22&rft.issue=6&rft.spage=538&rft.epage=548&rft_id=info:doi/10.1080%2F09511920802616773&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_09511920802616773 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-192X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-192X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-192X&client=summon |